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RESIDUAL BASED A POSTERIORI ERROR ESTIMATORS FOR EDDY
CURRENT COMPUTATION

Rubp1 BEck!, RALF HIPTMAIR?2, RONALD H.W. HorPPE? AND BARBARA WOHLMUTH?3
b b

Abstract. We consider H (curl; Q)-elliptic problems that have been discretized by means of Nédélec’s
edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy
currents. From the defect equation we derive localized expressions that can be used as a posterior:
error estimators to control adaptive refinement. Under certain assumptions on material parameters
and computational domains, we derive local lower bounds and a global upper bound for the total error
measured in the energy norm. The fundamental tool in the numerical analysis is a Helmholtz-type
decomposition of the error into an irrotational part and a weakly solenoidal part.

Résumé. Nous considérons des estimateurs d’erreur a posteriori efficaces et fiables pour ’approxima-
tion des champs électromagnetiques par la méthode des éléments finis curl-conformes. En particulier,
en utilisant les éléments a arétes de Nédélec sur des maillages tétrahédraux, nous dériverons des bornes
inférieures locales et une borne supérieure globale pour ’erreur totale mesurée a la norme d’espace
H{(curl;Q). Le moyen fondamental en analyse numérique est une décomposition d’Helmholtz de
Perreur en une part irrotative et une part faiblement solenoidale.
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1. INTRODUCTION

The computation of quasistatic electromagnetic fields in conductors usually employs the eddy current model
[2,5,23,33]. For the transient case, if we use formulations based on the electric field, we end up with the
degenerate parabolic initial-boundary value problem

O(cE) + curl xcurlE = —§;j in Q
Exn = 0 onT :=0Q (1)
E(,0) = E, inQ.

Here the unknown quantity is the electric field E : Q x [0,7] — R?® and Q@ C R3 stands for a connected
bounded polyhedral computational domain. Though the equations are initially posed on the entire space R3,
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FIGURE 1. A model problem for eddy current computation (¢f. Chap. 8 in [24]).

we can switch to a bounded domain by introducing an artificial boundary sufficiently removed from the region
of interest. This is commonplace in engineering simulations [29].

Further, x € L*°(Q) denotes the bounded uniformly positive inverse of the magnetic permeability. We confine
ourselves to linear isotropic media, i.e. x is a scalar function of the spatial variable x € Q only. Hence, for
some x,x > 0 holds 0 < x < x < x a.e. in Q. We rule out anisotropy also for the conductivity o € L (),
for which holds o > 0 a.e. in Q. Usually, there is a crisp distinction between conducting regions, where ¢ is
bounded away from zero, and insulating regions, where ¢ = 0. We will take for granted that ¢ > g > 0, for
some bound ¢ > 0, wherever ¢ # 0. The right-hand side j = j(x,t) is a time-dependent vectorfield in L*(Q),
which represents the source current. For physical reasons div j(¢,.) = 0 a.e. in Q and for all times. We remark
that in many applications the exciting current, for instance the current in a coil, is provided through an analytic
expression. A typical arrangement is depicted in Figure 1.

We remark that (1) is an ungauged formulation, as we have already dropped the divergence constraint
div E = 0. Obviously, this forfeits uniqueness of the solution in parts of the domain where ¢ = 0. However, the
only relevant quantity there is curl E, which remains unique. Where E is of interest, inside the conductor, we
have ¢ > 0. There E is unique and divE = 0 is satisfied due to the solenoidality of the right-hand side.

For the sake of stability, timestepping schemes for (1) have to be L-stable [38]. This requirement can only be
met by implicit schemes like SDIRK-methods. In each timestep they entail the solution of a degenerate elliptic
boundary value problem of the form

curlycurlu+pu = f in Q )
uxn = 0 on 0f) .

In this context, u denotes the new approximation to E to be computed in the current timestep, and f depends on
j and the approximation of E in the previous timestep. Note that we can still assume divf = 0. The coefficient
B agrees with o except for a scaling by the length of the current timestep; accordingly, 0 < 8 < 8 < B a.e. in
Qc.
Problem (2) cast in weak form yields a variational problem in the Hilbert space H(curl;Q) of L?*(Q)-
vectorfields whose curl is square integrable:
Find u € Hy(curl; Q) such that

(xcurlu,curlq) 2 gy + (Bu,Q) g2y = (f,d) 12¢qy, Va € Ho(curl; Q) . (3)
(D) ) ()

A subscript 0 indicates that vanishing tangential traces on 9§ are imposed on the fields (for details on traces
see, e.g. [4,37]). '
For B uniformly positive a.e. in §2 the Lax-Milgram lemma guarantees existence and uniqueness of a solution

of (3). If B = 0 on sets of positive measure, we can still expect a unique solution in the quotient space
H(curl; Q)/Ker(curl).
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It is now generally accepted that an appropriate finite element discretization of (3) should rely on gen-
uine H (curl; Q)-conforming schemes that merely enforce the typical tangential continuity of the field across
interelement boundaries [3,21,22]. For simplicial meshes H (curl; Q)-conforming finite elements of arbitrary
polynomial order were first introduced by Nédélec [49], generalizing the lowest order Whitney elements [56].
Similar schemes are also known for other shapes of elements [34,49]. For all of them standard a priori error
bounds can be established [47,48,52]. Ultimately, the discretization of (3) by these so-called edge elements
leads to a large sparse system of equations for the degrees of freedom of the finite element space. Usually, an
approximate solution can only be obtained by iterative methods [28,39].

Denoting by uj, the exact solution of the discretized problem and by 1, some iterative approximation, we are
interested in an efficient and reliable residual based a posterior: error estimator for the total error e := u — 0,

with respect to relevant norms. The most significant is the energy (semi)norm |-||¢. related to problem (1)
defined by

||u|]?€;Q = (xcurlu, curlu) 2 ) + (Bu,0)f2(q) , u € Ho(curl Q).

In the current context, local a posteriori error estimation serves two purposes. Firstly, the error estimator can
be used for adaptive local refinement and coarsening of the underlying triangulation. Since the fields feature
strong singularities at reentrant corners [31] and at irregular material interfaces [32], a higher resolution of
the mesh in these zones is desirable. Precisely how much can only be concluded on the basis of information
about the local error. Secondly, information about the accuracy of the finite element solution is also required
to balance the spatial and temporal errors in the context of adaptive timestepping for the original parabolic
problem [17,18].

We note that a posteriori error estimators for adaptive local grid refinement are well established tools in
the efficient numerical solution of elliptic boundary value problems. In the framework of standard conforming
finite element approaches we acknowledge the pioneering work due to Babuska and Rheinboldt [8,9] and the
more recent articles [11,12,35,36,54,57]. Further references can be found in the survey article by Bornemann
et al. [19] and in the excellent monography by Verfiirth [55]. In the context of nonconforming techniques we
mention [41,43]. For mixed finite element methods involving Raviart-Thomas elements we refer to [1,25,26,42,
44,45]. However, as far as finite element approximations based on Nédélec’s curl-conforming edge elements are
concerned, to the authors’ knowledge no work on @ posteriori error estimation has been done so far.

The paper is organized as follows. In Section 2, we will introduce the curl-conforming approximation of (3)
by Nédélec’s edge elements. In addition we are going to supply a few technical devices required for the proofs.
Then, in Section 3, we consider the variational problem satisfied by the total error e and state the main result of
this paper in terms of a cheaply computable, efficient and reliable a posteriori error estimator for ||e||s Q- As the
main tool we will use a Helmholtz type decomposition of e into a curl-free part € and a “B-weakly solenoidal”
part e®. In particular, Section 4 contains the estimation of the irrotational part e® whereas Section 5 is devoted
to the weakly solenoidal part el. In both cases, the estimates result from an evaluation of the residuum with
respect to a dual norm. In the final section we report on numerical experiments that examine the performance
of the error estimator for a wide range of model problems.

2. FINITE ELEMENT SPACES

We consider the finite element approximation of (3) by means of Nédélec’s edge elements with respect to a
hierarchy 7, , k € Ny, of simplicial triangulations of 2 generated by successive local refinement of an initial
coarse triangulation 7,,. We use the standard refinement process developed by Bank et al. [10,11] in the
2D case which has been extended to the 3D setting in [16,50] (¢f. also [19]). Alternative schemes are also
available [7,13,46]. For a description of the refinement strategies we refer to the literature cited above.

We demand that the coarsest mesh 75, can resolve the boundaries of the conductors. This means that any
element either entirely belongs to the conducting region or to the nonconducting region. !
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We fix some 7, within the hierarchy and, for notational convenience, omit the lower index k, i.e., Ty 1= Ty, .
For D C Q, the sets of vertices, edges and faces in D are denoted by N3 (D), Ex(D) and Fr (D), respectively. If
D = Q, we will simply write N}, Ex, Fr, and refer to Mjint, £irt Fint and ML, EL, FT as the sets of vertices, edges
and faces located in the interior of © and on the boundary T, respectively. Those interior edges that belong to
Q¢ constitute the set FF and for the set of elements in Q¢ we write 7,C.

All the edges have to be endowed with a fixed internal orientation (direction). We denote by hr and hp
the maximal diameter of an element T' € 7; and a face F' € F}. Since the refinement rules imply regularity
and local quasiuniformity of the hierarchy of triangulations (cf. [16]), there exist constants k3 > 0 and kg > 0
depending only on the local geometry of the initial triangulation 7 := 73, such that

B kihy  for T,T € T, TNT #0

<
- 4
hr < kKohr for F € fh,(T) . ( )

Following Nédélec’s construction of simplicial edge elements in [49], we denote by Px(D), k > 0, the linear space

of multivariate polynomials of degree < k on D, and refer to 75k(D), k > 0, as the subspace of homogeneous
polynomials of degree k. We define

3
Sk(D) = {p € ﬁk(D)3> (X,p) = Z%Pi = O}) k 2 1.

i=1

Then, for T' € 75, and k > 1, the local space for the Nédélec element is given by
ND(T) := Pr_1(D)3 ® Si(D) .
In the special case of lowest order edge elements, £k = 1, we find the representation
ND(T) = {x—a+bxx, a,beR%}. (5)

Appropriate degrees of freedom are provided by linear functionals on N'Dy(T) of the form (cf. e.g. [49])

(1) quE (q,t) pds, p € Pr_1(E), Ee&T),
(ii) g~ [p{axmn,p)do, pePra(F)? FeFu(T),
(i) ar~ fp(a,p)dx, p € Pe-3(T)°.

Here, polynomial spaces with negative degree are supposed to be empty. This specification of the degrees of
freedom ensures that the global finite element space N'D(€;73) is contained in H (curl; Q). Then, setting

NDio(T8) := NDy(Q; 7)) N Ho(curl; Q) |
the curl-conforming finite element approximation of (3) is as follows: Find up € N'Dy o(€;73) such that
(x curluy, curl qh)LZ(Q) + (Bup, Qh)L'z(Q) = (f, Qh)Lz(Q) Van € NDio(Q;T3) - (6)

We recall that Nédélec’s finite elements provide affine equivalent families of finite elements in the sense of [27],
if the vectorfields are subjected to a covariant transformation: For any T' € 7; write ® : T — T for the affine
mapping of a fixed reference tetrahedron 7" to T' and define

FV)(R) = DOT(RX) v(®(X)), XeT. (7)
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Then it turns out that N D (T) = F(WDw(T)) and the degrees of freedom are invariant under the transfor-
mation (7).

Edge elements provide one specimen of discrete differential forms [20,40]. This accounts for the exceptional
property that the result that every curl-free vectorfield on a contractible domain is a gradient is preserved in
purely discrete context. The role of the potentials is played by Lagrangian finite element functions

Sko(Tn) = {¢n € C°(Q), dnlon =0, ¢nlr € Pr(T)} -

The following lemma is a special case of Theorem 20 of [40].

Lemma 1 (Discrete potentials). If the boundary 9§ is connected, then for any qn € NDro(4Th), k > 1,
with curlqp = 0 there ezists a unique ¢p, € Sk,0(%;7s) such that qn = grad ¢y,

3. RESIDUAL BASED ERROR ESTIMATOR

We assume that G, € N Dy o(2;7) is some iterative approximation of the unique solution uy, of the curl-
conforming finite element solution of (6). It can be obtained, for instance, by the multigrid iterative solution
process as developed in [39]. Denoting the total error by e := u — i, it is easy to see that e € Ho(curl; Q)
satisfies the defect equation

(x curle, curl q)Lg(Q) + (Be, q)L2(Q) =r(q) Vq € Hy(curl; ), (8)
where 7(-) stands for the residual
r(q) = (f,q)z>(q) — (x curlii,, curl @20y — (BUr A p2qy » a € Ho(cur Q). (9)
The construction of the error estimator will be based on a direct splitting of the function space Hg(curl; 2)
H(curl; Q) = H)(curl; Q) & Hy (curl; Q) . (10)

It may be labelled a “B—orthogonal” Helmholtz type decomposition, since we require

e Both HY(curl; Q) and Hj (curl; Q) are closed subspaces of Ho(curl; Q).

e Hi(curl;Q) := {q € Hy(curl;Q); curlq = 0} is the kernel of the curl operator.

o (Bqt, qo)LZ(Q) =0 for all q° € HY(curl;Q), gt € Hy (curl; Q).
Evidently, a decomposition complying with these requirement is also orthogonal with respect to the energy
seminorm.

The following procedure furnishes a splitting of q € H(curl; Q) according to (10): First decompose Qo =
u’ @ ut, where u®,dt € H{(curl;Q¢) and (ﬂuo,ﬁl)Lg(Qc) = 0, curlu® = 0. If meas(9Q N ONc) > 0, we
also require that u®, i+ have vanishing trace on 8. Write u* for the H(curl;Q)-extension (cf. [4]) of U+

to Q. Then, let v be the unique vectorfield in Ho(curl; Q2/Q¢) such that curlvt = curlq — curlut and
vt 1 Ker(curl) in Hy(curl; Q2/Q¢). Finally set

1. G'L in QC
T =V vi4ut in Q/Qc .

The functions q* thus constructed form a closed subspace of Ho(curl; Q). This can be seen by completeness
arguments.
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Unfortunately, mere existence of such a decomposition is not enough; our theoretical examinations hinge on
the following assumption:

Assumption 2. We assume that a splitting (10) with the above features can be found such that Hy (curl; Q)
is continuously embedded in H'(2) N Hy(curl; ) and, moreover,

|a*| 2y < C(@) [|eurla| o, Vab € Hy(curl; Q).

Thus far, the statement of this assumption can be shown only if Q¢ = Q and f,x are continuously dif-
ferentiable and uniformly bounded away from zero [6,37]. In this case we simply use the true Helmholtz-
decomposition.

A characterization of the kernel of the curl-operator is provided by the continuous version of Lemma 1

(cf. [37]):

Lemma 3. For any q € H)(curl; Q) there exists a unique ¢ € H}(Q) such that q = grad ¢, provided that the
boundary T’ of Q is connected.

If " is not connected, i.e. {2 has embedded cavities, the entire kernel of curl is not provided by grad H} ().
This is only true modulo a space of small dimension (see Prop. 3.12 in [6]). To avoid technical difficulties we
do not allow cavities in .

By means of the decomposition (10) we may split the total error according to e = e® + e+, where €° €
H{(curl;Q) and et € Hy (curl; ). We note that €® represents the curl-free part of the total error whereas

L stands for a “B-weakly solenoidal” part. As a matter of course, €° is only meaningful in Qc.

It readily follows from (8) that € and et are the unique solutions of the variational equations

(6e°,d%) 2oy = 7(@)  Va° € Hy(curkQ), an
(x curlet, curl qi)lﬂ(m + (ﬂeL,qJ‘)Lz(Q) = r(q) vqlt € Hi (curl;Q) .
The irrotational and the B-weakly solenoidal part of the error will be estimated separately. For simplicity,
throughout the rest of this paper we assume the functions x and ﬁ to be elementwise constant.
Ag far as the +atd mavt o0 PROR BRI PO

As far as the irrotational part € is concerned, the estimate is based on the evaluation of the residual l\)

restricted to H o(curl; Q) = grad H} (). In particular, exploiting that f is solenoidal, Green’s formula yields

r(gradv) = Z (f—ﬁﬁh,gradv)Lz(T)
TET,
= Z (div Bun, v) (1) — Z ([{n, Bag)] J,’U)LZ(F) ,
TeTf Ferf

where [(n, 30)]; denotes the jump of the normal component of the vector field S, across the interelement
face F € F;"t. Tt is defined as follows: If F' € Fi* is the common face of two adjacent elements Tin, Tou € T
and n denotes the unit normal vector on F directed towards the interior of Tj,, then

[(n,q)]; := (m, q>|FCTO.,: — (n, q>|Fch :

Note that [(-,n)] ; does not depend on the specification of T, and Toue.
As will be shown in Section 4, the upper and lower bounds for ||e H L2(9) involve the error terms

1/2 1/2

= 3 m)? o+ D @)?) (12)

TeT,C FeFf
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whose local contributions nf’, i are given by

Mo = hr||divvBan| .y TeT?C,
F 2|1 o = C
G = h —— [(n, Bap)] ‘l , FeFy,
0 F /Ba J () h

where 34 is defined as the average on F, 84 = 0.5(8),,, + Bj5_)- The scaling in the different terms of the
error estimator corresponds to the fact that we measure the error in the energy norm. For elements and faces
outside Q¢, we formally set the contributions nd and n{ to zero.

The upper bound also involves the iteration error

) = “\/B(Uh — Up) (13)

L2(Q)

On the other hand, concerning bounds for el for q € Hjy (curl; Q) the residual r(q) can be written as

rl@) = TZT {(f = B, Q) 2y — (x curlay, curl q)L2(T)}
€75
= Y (f—curlxcurl@y — Bis, d)p2ry — > (mx xcurlﬁh]J,q)Lz(F) .
TeT FeFint

We note that a localization of the residual is not feasible due to the global character of the space Hy (curl; Q).
Instead, we will use a localization by means of an interpolation with respect to the entire discrete space
NDyo(Q;71). As we shall see in Section 5, this is at the expense of a coupling between €% and e'. However,
this will not thwart the primary goal of obtaining an efficient and reliable estimate of the total error in the
energy norm. In particular, the bounds for ||e-L|| €0 comprise the error terms

1/2

1/2
1
0 = ( ) (n%zlf) + > @) (14)
TET;, FeFint
1/2
w = ( 3 (n%:z)?) , (15)
TeTh
with the local contributions nil;,,, 1 <v <2, and nf given by
- 1 } N
M,y = hr ——(mpf — curl x curlay, — Bay) , T €Ty,
VX L%(T)
1
T
My = hr —(f—ﬂ’hf) 5 Te T,
VX L2(T)
bl 1/2 1 ~ int
n = hE%|l—=[nx xcurlay], , F e Fre,
VXA L2(F) ’

where x4 is defined as the average on F, x4 := 0.5(x|,,,, + X|r, ). Here, maf denotes the L?-projection of f

onto [[rer, Pr(T)3.
Again, the iteration error

1) = llun — @nlleq (16)
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will enter the upper bound. Be aware that using a fast asymptotically optimal iteration scheme, we can quickly
tell the truncation error from the size of the correction to the current iterate. Good bounds for 771(1;) and 17(1)
are at our disposal, thus.

As the main result of this paper we state the following a posteriori estimate for the total error e measured
in the energy norm.

Theorem 4. Let 1 := 0@ +n{", n := 0’ + 0l with 0@, ", n{, o) given by (13), (12), (14), and
(16), respectively. If assumption 2 holds true, then there exist constants Y, Iy >0, 1 < v <2, depending only
on 2, x , B, X , B and on the local geometry of Tp, such that

nm — Y2 < llefle.q < Film +m2) + Tome -

Eventually, we need an estimate for the energy of the error on each element. Such an element oriented error
estimator can be constructed by assigning half of the contribution of a face to either adjacent element. To
offset the impact of jumps in the coefficients it is advisable to resort to additional scaling. As the actual error
estimator we then get for each T € 7},

o= P+ Y %(né”)%"“(l). a7)

FeF(T)NFm

Here 84 and x4 stand for the averages of the material parameters 3 and x over the two elements adjacent to
the face F.

Since only local information is needed, the evaluation of 77 is cheap. Low order numerical quadrature is
sufficient to compute the local norms. Of course nf;2 is elusive, but 7, has been chosen such that for smooth f
this quantity can be expected to decrease faster than the other contributions to the error estimator.

For lowest order edge elements and locally constant coefficients, we can capitalize on the simple local ansatz
space (b). First note that it contains only piecewise linear, divergence-free vectorfields. Therefore, x curl iy, is
locally constant and we end up with the simplified local error estimator

, B X
g = —- ”7"hf ﬁuh”L2(T) + Z ‘hF‘ ( L ll[{n :Buh>]J||L2(F) +—= IT H[n x x curl uh]J”L2(F)
Xz F€.7:;~¢(T)ﬂ.7:"‘t

(18)

Here, 7, can be a suitable interpolation onto the space of piecewise linear vectorfields. Moreover, Gaussian
quadrature formulas that are exact for quadratic polynomials on 7" and F', respectively, can be used to evaluate
all the norms. Thus, only the values of degrees of freedom in a neighborhood of T' and the local geometry of
the mesh will show up in an explicit expression for 7.

4. ESTIMATOR OF THE IRROTATIONAL PART OF THE ERROR

Here, we will consider the irrotational part € of the error e. Upper and lower bounds for (8e?,e) L2()

will be established by means of 7(% and the iteration error. The starting point for the error analysis is the
variational problem (11). The defect problem (8) restricted to the curl-free subspace of Hy(curl; Q) gives rise
to the following uniformly positive definite variational problem on HE(Q¢):

Find ¢ € H:(Q¢) such that

(Bgrad ¢, grad ) 2 q,) = r(grad ¢) = 7($) V¢ € HA(Qc). (19)






