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Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, N° 1, 1999, p. 191-207
Modélisation Mathématique et Analyse Numérique

APPROXIMATION OF SOLUTION BRANCHES FOR SEMILINEAR
BIFURCATION PROBLEMS

LAURENCE CHERFILS1'2

Abstract. This note deals with the approximation, by a Pi finite element method with numerical
intégration, of solution curves of a semilinear problem. Because of bot h mixed boundary conditions
and geometrical properties of the domain, some of the solutions do not belong to H2. So, classical
results for convergence lead to poor estimâtes. We show how to improve such estimâtes with the use
of weighted Sobolev spaces together with a mesh "a priori adapted" to the singularity. For the H1 or
L2-norms} we achieve optimal results.

Résumé. Cet article concerne l'approximation, par une méthode d'éléments finis avec intégration
numérique, des branches de solutions d'un problème semi-linéaire. En raison des conditions aux limites
mêlées et de la géométrie du domaine, les solutions ne sont pas dans l'espace H2. Ce qui, classiquement,
entraine de mauvais taux de convergence des branches de solutions approchées vers les branches de
solutions exactes. Nous montrons comment l'utilisation d'un maillage "adapté a priori" à la singularité
des solutions permet d'obtenir des taux de convergence optimaux dans les normes H1 et L2.
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1. INTRODUCTION

For ƒ given in L2(Q), let us consider the following linear and semilinear problems:
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where fî, represented in Figure 1, dénotes a semidisc, whose boundary dQ is divided in FJV = [—1, 0] x {0} and

Our purpose is twofold. We first want to study the convergence, towards the exact solution branches of (2),
of the curves computed with a Pi finite element method including numerical intégration (cf. [11]). Moreover,
we also intend to illustrate, on this simple example, the use of the adaptive finite element methods for the
numerical resolution of bifurcation problems with singularities (cf. [10]).
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FIGURE 1. The domain O.

Applying Grisvard's results [14], we know that. due to both the mixed boundary conditions and the inner angle
equal to ir at the origin, the solution of problem (1) does not belong to iî2(O), but to the space H^^£(Q)^ s > 0,
Consequently, the finite element method associated with a regular mesh will converge, in the Jff

1-norm, at the
rate O(hi~£) (cf. Babuska-Suri [4]). Nevertheless, the a priori knowledge of the singularity permits us to
overcome this lack of regularity. Classically, two stratégies are possible. The first one (cf. Babuska-Hoo [3],
Wigley [20]...) consists in searching, on each element of the mesh, the solution in a space larger than usual,
containing the singularity. The second one, consists in using a usual finite element method, posed on a strongly
non-uniform mesh, "adapted to the singularity" (cf. Raugel [18]). In this work, we chose the latter method,
which, of course, produces a mesh closely related to those obtained with an adaptive finite element strategy.

In Section 2, we first define the non-uniform mesh which will be used further on, Then, we prove for problem
(1), the convergence of the P± finite element method with numerical intégration, in the norms of VF1'9, q > 2,
H1 and L2. For the last two, we achieve optimal rates, the saine unes as for a iiT2-regular solution computed
on any regular mesh.

In Section 3, we show how these previously obtained convergence rates still apply to solution branches of the
semilinear problem (2) (cf. Brezzi et al. [8], Crouzeix-Rappaz [13], Caloz-Rappaz [9], Paumier [16]).

Finally, we propose in Section 4, a numerical validation of one of the theoretical convergences of Section 3.
These results are compared to those obtained with another kind of non uniform mesh: an a posteriori refined
mesh.

First of all, setting r(x) = ||#||, p > 1 and a > 0, we introducé, as in Grisvard [14] and Raugel [18], the
weighted Sobolev spaces defined with:

= { u e ); ra , 13 - 2 (3)

and provided with the norm ||. l^p^f i :

E
|J3|=2

This space satisfies the properties, for ç > 2, | < a < l , l < p < -~^} 2 < s < —^

(i) W^2(ft) ^> W2iP(ü) c~> C°(Û) (continuous injection),
(ii) W^q(Ü) «->> W^'2(O) CC Wl>s(Q) (compact injection),
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as well as the proposition:

Proposition 1. (Raugel [18])
• Let f e LP{Ü), p > 1. Thtn u, solution of (1) belangs to W^p(ü), with a > f - | ,
• IMtap.a.n < c\\f\\o}P)n, c constant

2. CONVERGENCE OF THE FINITE ELEMENT METHOD

Let h > 0 be a parameter which will approach 0. Hereafter, we will mean by "optimal" mesh, a mesh
composed with affine equivalent triangles with 0 belonging to the set of vertices, and sâtisfying the following
hypotheses, for fixed q and cu, with q > 2 and | — - < a < 1.

(Hi) — < d \/K G Th,
PK

(H2) KK < c2 hJ^ "iK having 0 as a vertex,

(H3) KK < C3 frd(0, K)a \/K having not 0 as a vertex,

l (H4) hK > c 4 h ^ VKGTH,

where JIK-, PK and d(0, K) dénote respectively the diameter of the triangle K} the diameter of the maximal bail
included in K, and the distance between the origin and the triangle K. The constants c% are independent of h.

The assumption (Hi) is classical, it only enforces the triangulation to be regular. The hypotheses (H2) and
(H3) are more restrictive. They require the use of non-uniform meshes, much finer near the singularity than
everywhere else. They dénote the minimal assumptions necessary to obtain optimal interpolation errors in the
Hl and L2-norms (cf. Proposition 2). The last condition has been added in order to construct an inverse
inequality (cf. Lemma 1), weaker than the one on quasi-uniform meshes, but sufficient to prove the convergence
of the finite element method in the semi-norm |.|I)Q)Q, q > 2 (cf. Proposition 3).

Raugel [18] gives an example of a mesh sâtisfying (Hi,H2iH3) (cf. fig. 3). By construction, such a mesh
also satisfies the assumption (H4).

Thereafter, c will dénote a generic constant, independent of h. Moreover, so as to study the convergence of
the Pi finite element method with numerical intégration for the resolution of problem (1), we define:

Définition 1. Let V be the spaçe V = {v G WliQ(ü), q > 2 ; v/rD = 0}, and T the linear operator such that
for f eV,Tf £ VH W^q(Q) is the unique solution to:

f V(T f).Vvdx = f fvdx \/v e H^fi), vfVu = 0. (4)

Let (Th)h>o be a discretization family of Q,, sâtisfying the assumptions (i2i), (#2), (H3), (H4), and Qh be a
polygonal convex domain such that U K — iïh C O, 9^^ = FJV U F ^ , and the vertices of dVth belong to

K&Th

dn.
The approximation space and the test space are chosen to be:

Vh = {vhe C°(ïï) ; vh/K G Pi, VK G Th ; vh/VDh = 0 ; vh/n_nh = 0 } .
For f G C°(ü), let Thf e Vh be the unique solution to:

f V(Thf).Vvhdx = f Uh (fvh)dx Vvh G Vh, (5)
Jn Jn
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where the Vh-interpolation operator 11^ E £(C°(O)j Vh) is defined for v E C°(0) by:
n^ v £ Vh and Uhu(ai) = «(a*) for all node ai of (%)h>o-

We introducé two Lemmas, whose results will be useful afterwards.

Lemma 1. Let (7h)h>o be a family of triangulations satisfying the hypotheses (Hi) and (U4). Let (a,q) be
chosen to verify:

8 3 2 2

2<q<- ; 2 - " < - < - - (6)

Thus the term (1 — ~)(jz^) 5̂ strictly less than one, and we have for 1 = 0 or l :

Klli,„nh < chtf-W^ \\vh\\i,2,nh \fvh e Vh. (7)
Proof Using the same arguments as Ciarlet in the proof of the inverse inequality on a quasi-uniform mesh

(cf [12]), we have, for any K in Th,:

\vh\i,qtK < c-f- (me$(K))s~ï \vh\i,2,K,
PK

i—i
(assumption (Jïi)) < ch^ \vh\i,2tK,

(assumption (H4)) < c/i^""1^1^^^ ivhli^.K*

So5 with Jensen's inequality:

and we get the inverse inequality, for l = 0 or 1:

Moreover, for i = 1, we deduce:

ll«fcllï,,,nh <

which ends the proof of Lemma 1. •

Lemma 2. With the previous notations, and p > 1, we have:

||«||o,p,n-nh < ch\\u\\hp>n V u e W ^ f i ) , (8)

(9)
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Proof. The proof of (8) is well-known (cf. Raviart-Thomas [19] for p = 2). Nevertheless, this estimate can
be improved, as soon as u vanishes along the boundary of Q distinct from the boundary of fi^. For instance,
we have, when u E V:

I N I o ^ n - n * < c h 2 \ \ u \ \ l i P i n V u e W h p ( Ü ) n V . (10)

First of all, in order to prove (9), we have to verify:

duu-os+1

\

The proofs of these two inequalities use the same arguments. So, we will only detail the first. We have:

dultn . „ d , , ± 1 du„in ,, 9
| | r a + 1 ^ | | ? „ o - \\r° ^(r^^)

and
, du,

)L e t u s n o w s t u d y t h e t e r m ||—— ( r a + 1 —— ) | |Q n.
CJX CsX

>

consequently:

< <

The same results apply to the term ||—- (ra+1 — )||o,p,n, and it yields (11).

Next, applying (8) and (11) to r a + 1 ^— and r a + 1 -7—, we obtain:
ax ay

ch |
du,

<

and

Thus,

Furthermore, it can be noticed that:

„Ot + l du

r > - sur r2 —

p,a,n-
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Therefore:

]dyl

Then we deduce:

which, using (8), leads to (9). D
Concerning the interpolation errors, we have the following results:

Proposition 2.

• Assume u € W2iP(Q) R V, p > 1. For any faraily of triangulations, we have:

\\u - nhu\\ltP# < ch2-1 ||«||2lPln, J = 0, 1. (12)

• Assume u Ç- W2}q(Q)> u G W^q(ft) n V with (a,q) venfying (6). If the triangulation satisfies the
hypotheses {Hi), (H2) and (i/3), we have:

\\u - Uhu\\i^n < ch2~l \\u\\2tq,atn, l = 0, 1. (13)

Proof. The inequality (12) for p = 2 (resp. p = 1), comes from the well-known estimate (cf. Giarlet [12]):

together with (9) (resp. (10)) and the injection W2^(Q) <-» W^p(ü) (resp. W2>p(ü) <-» W1

Inequalities (9, 10) are still convenient for dealing with \\u—H-hV'\\itq,Q-Qh ? when u only belongs to W^q(Q)(l V.
On the otter hand, the estimate of ]\u — U.hu\]i}qiQh is more unusual. In order to justify the very restrictive
assumptions on the mesh, we present here a brief description of the bound of the semi norm \u —
The complete proof can be found in Raugel [18] in case q = 2, and Cherfils [10] for q ̂  2.

Writing:

the study reduces to a local interpolation error. Because of the particular définition of the triangulation, it is
clear that the term \u — II/ftA|ii€^ will be treated differentlvj whether K touches the singularity or not.

case 1: O is a vertex of K
With the help of the référence element, it can be proved that (cf. [10,18]):

ll.a.K S C -, . U
PK

(assumption (ifi)) < ch]^a \u\2yq,aj

(assumption (H2)) < ch\

case 2: 0 is not a vertex of K
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This time, u € H2(K)y and we have a standard estimate (cf. [12]):

hq

\u-UKu\l K < c-jf \u\q
2

PKPK

< chq
K(in(ra)-g(m{ra)g V f \DP u{x)\q dx,

|/3|=2 J K

(assumption (H3)) < chq ^ f rqOL \DP u(x)\q dx,
|/3|=2

The proof of the bound of the seminorm \u — Hhlu>\oiqtnh is very similar and will be omitted. D
The convergence results for the finite element method including numerical intégration are summarized in

Proposition 3. Their proofs, relying on arguments of [12,13,18], are detailed in [10].

Proposition 3. Let (Th) be a family of triangulations satisfymg the hypotheses (iïi,..., H4). Let (a, g) be
chosen to verify (6). With the notations mtroduced m Définition 1, we have for the finite element method with
numerical intégration:

V/ G W ^ î î ) , g>2, | |T/-Th / | | l ï 2 in < c/i(||T/||2)2,a,a + ll/lk*.n), (14)

l|T/-Th/| |i ig in < chi^ (\\Tf\\2>qta>n + ||/||iïQ,n), (15)

y f e W2*(Q), p > l , | | T / - T h / | | 0 | 2 , n < cfc2||/||2lP,n, (16)

V / G Wl>q(Ü)y q>2, \\Thf\\liq# < c | | n h ƒ 110,2,0- (17)

Proof Let u = Tf G V H W*><*, uh = Th ƒ G Vh.

The inequality (14) is a conséquence of the first Strang's Lemma (cf. Ciarlet [12]) on the one hand, and of
Proposition 2, on the other hand. We have:

M u

\\u - uh\\i

/ f • c 11 u \ L fwhdx - JnUh(fwh)dx\\
t2tn <ci inf \\u-vh\\li2,n + sup -^^ n — ^ ^ '- \.

y^^Vh whevh H^hlli^n J

As usual, the term relevant to numerical intégration converges at the rate O (h) (cf. [12]). Using Propositions 2
and 1, we conclude:

\\u - uh\\it2tQ < c {\\u-Ilh u\\it2tQ + h

< ch {\\u\\2t2tatn +

< ch\\f\\liqta.
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Next, in order to verify (15), we apply Lemma 1, Proposition 2 and inequality (14). Thus we get:

itqiQ + \\UhU-Uh\\lyq,üh,

n + ch^i'1^^ (\\Uhu-u\\1Xnh + ||u-«h||i,2,nh),

Our proof for (16) follows from the one of Crouzeix-Rappaz [13]. First, we notice that the operators Th and
satisfy:

Thf = Th(uhf) y ƒ G c°(n).
We set Uh ~ Th f ~ Th (Hh ƒ), w = T (Hhf) and Wh = T'h (Ilh ƒ), where T'h is a linear operator defined by:

for all g e £2(Q), Thg G Vh is the unique solution to

l V(Thg)S7vhdx = gvhdx VvheVh.
Jn Jn

The error \\u — n^||o,2,n may be decomposed into 3 terms which will be treated separately:

The term \\w — W/I||O,2,Q is in fact relevant to the convergence of the finite element method without numerical
intégration. As usual, we use Aubin-Nitsche's Lemma (cf. [12]), which can be written in our particular case:

c\\w - WhW^ïi f SUP \TT\\ 'ml

Moreover, using Propositions 1 and 2,

inf l i r ^ - ^ H i ^ n < \\Tg-ILhTg\\U2)a < ch\\Tg^^n < ch\\g\\0t2ta- (20)
Vh€Vh

Thus, combining (19, 20) and Céa's Lemma:

< ch2 IH^.afi-

Taking into account that W2>P(Q) ^ C°(ïï), when p > 1, it follows that:

\\w - WfcHô n < ch2 \\TUhf ||2,2,a,
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Next, to deal with the term \\u — W||O,2,ÎÎ, we use Propositions 1 and 2, and the Sobolev imbedding W%>P(Q) <—>
WltP(Ü) ^ L2{ü) . It yields:

\\u - Hlo,2,n = | | Ï7 - TUhf 110,2,0,

(Proposition 1) < || ƒ - Uhf ||0)Pîn

(Proposition 2) < ch2 ||/||2)p,fi.

Finally, to handle the last term \\wh — ttft,||o32,n, w e n^ed the following resuit, whose proof is very similar to that
of Crouzeix-Rappaz [13] and will be omitted,

\wh-Uh\i,2tn < ch2\îlh /|i,2ln.

Thus we get, since ijT1-norm and Jï1-seminorm are equivalent on V:

< c\wh -

Combining the above results, we get (16).
For the proof of (17), we write:

w\\itgtn 4- | |^ | | i ,g ,a. (21)

Classically, we have (see [13]):

it2tn < ch\\Uh ƒ||o,2,n.

Thus, applying Lemma 1, we get:

\\uh -Wh\\itqin = \\v>h - Wh\\itq,nh < c/i (^~1) (ï r^ r ) \\uh - w

||nh/||o,2,n,

Since the term ||iu — ^^||o,2,n is relevant to the convergence of the finite element method without numerical
intégration, the inequality (14) reduces to:

2,n < c/i 11^112,2,0^-



200 L CHERFILS

FIGURE 2. Bifurcation diagram for the problem (22).

Thus, using Lemma 1 and Proposition 2, we have:

^ n + \\Tlhw -

ch |

2i2ïaïn + ch\\ILhf\\Oiq,n,

Finally, we have:

The above bounds applied to (21) lead to (17). D

Remark 1. Our estimate (15) is not optimal. Setting a = 0 in (15), it leads to a convergence with the rate
Ö(/ii) for a regular solution (i.e. belonging to üT2(Q)), instead of O(h)1 which, according to Rannacher and
Scott's results [17], is the optimal rate. Nevertheless, as it will be pointed out later, our single aim is, in order
to apply Theorem 1, to prove that the finite element method converges in the norm ||.||i q n, for (a, q) satisfying
(6).

3. APPROXIMATION OF A SEMILINEAR BIFURCATION PROBLEM

Now, we consider the semilinear problem:

— Au =
u =

du
dn

Au+w3

0

0

in O,

on

(22)

According to Brezzi et al [8], the solution branches of (22) look as in Figure 2. Our purpose in this Section is
to estimate the error induced by the computation of a nontrivial solution branch near a bifurcation point. We
use for the computation a Pi finite element method with numerical intégration.
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First of all, the problem (22) is written in a standard way for bifurcation problems (cf. [8]):

f find(A,?i) e E x F ,
\ Fo(\,u) =u+ TG(\u) = 0,

with:

• V, T defîned as in Définition 1, and g > 2 satisfying (6),

G : s / , x x 3
ixV —y F,
(A,w) —> -Xu — u3.

The operator T is linear, continuous from LP(Q) into Wj'p(Q), for p > 1 and a > | — - (Proposition 1), It
is also straightforward to verify that T is compact from F into F5 and self-adjoint on JJ1(O). Moreover, the
mapping G, and consequently F, are C°° from M x F into F.

Hereafter, we will assume that (AQ, 0) is a simple bifurcation point of (23) (cf. [8]). This means that:

F = N(DUF°) © R(DUF°)7

and the existence of:
• <po € F, such that N(DUF°) = E ^ o and ||y>o||v = *>
• y)5 G V', such that N(DUF0*) = R^S (= H f ^ F 0 ) 1 ) and (^5,^0>V',v = ^

where D^F0 = JD^FOCAO^O), and N(DUF°), R(DUF°) are respectively the kernel and the range of the
derivative DUF° . The function cpo is in fact an eigenfunction of the operator T, associated with the eigenvalue
—î

Besides, let (Ao,0) be such that ^o ^ H2(Ü) (this is true for example if (Ao,0) is the first bifurcation point
of (22), cf. [10] ).

The trivial branch being solution of (23), the non trivial one may be, near the bifurcation point (Ao,O),
parametrized with, for |a| < ce0, (cf. Brezzi al [8], Crouzeix-Rappaz [13], Paumier [16]):

with v : [—ao,ao] x R H- R(DUF°)1 £ : [—ao,ao] •-» IR such that £(0) = 0, v(0,0) = 0, and the application
a ,—^ (Ao(a),Mo(a)) of class C°° from [—ao,o;o] into F.

Consequently, we have:

{(foi ^o(a))v',v = a ^a ~ laol* (24)

The error induced by the numerical approximation of the non trivial branch

comes from Paumier's results [16]:

Theorem 1. Under the assumptions:

Vh is a finite dimensional subspace of F5

TheC(V;Vh), (25)
Yim\\T-Th\\c(v.v) =0,


