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APPROXIMATION OF SOLUTION BRANCHES FOR SEMILINEAR
BIFURCATION PROBLEMS

LAURENCE CHERFILSY?

Abstract. This note deals with the approximation, by a P; finite element method with numerical
integration, of solution curves of a semilinear problem. Because of bath mixed boundary conditions
and geometrical properties of the domain, some of the solutions do not belong to H2. So, classical
results for convergence lead to poor estimates. We show how to improve such estimates with the use
of weighted Sobolev spaces together with a mesh “a priori adapted” to the singularity. For the H' or
L2%-norms, we achieve optimal results.

Résumé. Cet article concerne ’approximation, par une méthode d’éléments finis avec intégration
numérique, des branches de solutions d’un probléme semi-linéaire. En raison des conditions aux limites
mélées et de la géométrie du domaine, les solutions ne sont pas dans I’espace H?. Ce qui, classiquement,
entraine de mauvais taux de convergence des branches de solutions approchées vers les branches de
solutions exactes. Nous montrons comment l'utilisation d’un maillage “adapté a priors” 3 la singularité
des solutions permet d’obtenir des taux de convergence optimaux dans les normes H* et L2
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1. INTRODUCTION
For f given in L?(f2), let us consider the following linear and semilinear problems:

—Au = f in Q,

u = 0 onI'p,
a_u 0 onT W
an N
—Au = du+ud in Q,
v = 0 onI'p,
?ﬁ = 0 onT’ )
8“ - N,

where €, represented in Figure 1, denotes a semidisc, whose boundary 9 is divided in 'y = [—1,0] x {0} and
I'p =900 —Tn.

Our purpose is twofold. We first want to study the convergence, towards the exact solution branches of (2),
of the curves computed with a P, finite element method including numerical integration (cf. [11]). Moreover,
we also intend to illustrate, on this simple example, the use of the adaptive finite element methods for the
numerical resolution of bifurcation problems with singularities (cf. [10]).
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FIGURE 1. The domain .

Applying Grisvard’s results [14], we know that, due to both the mixed boundary conditions and the inner angle
equal to 7 at the origin, the solution of problem (1) does not belong to H2((2), but to the space H e Q), e>0.
Consequently, the finite element method associated with a regular mesh will converge, in the H!'-norm, at the
rate O(hz7¢) (¢f. Babuska-Suri [4]). Nevertheless, the a prior: knowledge of the singularity permits us to
overcome this lack of regularity. Classically, two strategies are possible. The first one (¢f. Babuska-Hoo [3],
Wigley [20]...) consists in searching, on each element of the mesh, the solution in a space larger than usual,
containing the singularity. The second one, consists in using a usual finite element method, posed on a strongly
non-uniform mesh, “adapted to the singularity” (¢f. Raugel [18]). In this work, we chose the latter method,
which, of course, produces a mesh closely related to those obtained with an adaptive finite element strategy.

In Section 2, we first define the non-uniform mesh which will be used further on. Then, we prove for problem
(1), the convergence of the P; finite element method with numerical integration, in the norms of W4, ¢ > 2,
H' and L2. For the last two, we achieve optimal rates, the sawe ones as for a H2-regular solution computed
on any regular mesh.

In Section 3, we show how these previously obtained convergence rates still apply to solution branches of the
semilinear problem (2) (¢f. Brezzi et al. [8], Crouzeix-Rappaz [13], Caloz-Rappaz (9], Paumier [16]).

Finally, we propose in Section 4, a numerical validation of one of the theoretical convergences of Section 3.
These results are compared to those obtained with another kind of non uniform mesh: an a posteriori refined
mesh.

First of all, setting 7(z) = ||z||, p > 1 and a > 0, we introduce, as in Grisvard [14] and Raugel [18], the
weighted Sobolev spaces defined with:

W2P(Q) = {u € WhP(Q); r*Dfu € LP(Q), Be N?, | B |= 2}, (3)
and provided with the norm || . |2 pa0:
lullf e = 1l 0+ > lIr*DAullf o
1Bi=2

This space satisfies the properties, for ¢ > 2, % <a<l,l<p< 5%1—, 2<s< 22_—pp:

(i) W22(Q) o W2P(Q) < C°(Q) (continuous injection),
(ii) W21(Q) «— W22(Q) cc Wh5(Q) (compact injection),
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as well as the proposition:

Proposition 1. (Raugel [18])
o Let f € LP(Q), p > 1. Then u, solution of (1) belongs to W2P(QY), with & > § — 2,
o [ull2pea < c|fllopn, ¢ constant.

2. CONVERGENCE OF THE FINITE ELEMENT METHOD

Let h > 0 be a parameter which will approach 0. Hereafter, we will mean by “optimal” mesh, a mesh
composed with affine equivalent triangles with 0 belonging to the set of vertices, and satisfying the following
hypotheses, for fixed ¢ and «, with ¢ > 2 and % — % <a<l

h
(Hy) K < VKeT,
PK

(H2) hx < c2 hTma VK having 0 as a vertex,

(Hs) hx < ¢3hd(0,K)* VK having not 0 as a vertex,

(Hy) hg > cah™s VK €T,

where hx, px and d(0, K) denote respectively the diameter of the triangle K, the diameter of the maximal ball
included in K, and the distance between the origin and the triangle K. The constants ¢, are independent of h.

The assumption (H;) is classical, it only enforces the triangulation to be regular. The hypotheses (H3) and
(H3) are more restrictive. They require the use of non-uniform meshes, much finer near the singularity than
everywhere else. They denote the minimal assumptions necessary to obtain optimal interpolation errors in the
H' and L%-norms (c¢f. Proposition 2). The last condition has been added in order to construct an inverse
inequality (¢f. Lemma 1), weaker than the one on quasi-uniform meshes, but sufficient to prove the convergence
of the finite element method in the semi-norm |.|1,4,0, ¢ > 2 (cf. Proposition 3).

Raugel [18] gives an example of a mesh satisfying (Hy, Hz, H3) (¢f. fig. 3). By construction, such a mesh
also satisfies the assumption (Hy).

Thereafter, ¢ will denote a generic constant, independent, of Ah. Moreover, so as to study the convergence of
the P; finite element method with numerical integration for the resolution of problem (1), we define:

Definition 1. Let V be the space V. = {v € Wh4(Q), ¢ > 2; v/r, = 0}, and T the linear operator such that
for f €V, Tfec Vn W2Q) is the unique solution to:

/V(Tf).V'udm = /f'oda: Yo € H'(Q), wvyr, =0. (4)
Q Q

Let (Th)n>o0 be a discretization family of Q, satisfying the assumptions (H1), (Ha), (Hs), (Ha), and Qp be a
polygonal convex domain such that Kgn K =0, cQ, 09, =TxUTph, and the vertices of O, belong to
onN.
The approximation space and the test space are chosen to be:
Vi, = {Uh € Co(ﬁ), Vh k € Py, VK € Tp; Vh/Tp, = 0; Vh/Q-Qn — 0}
For f € C%(Q), let Tyf € Vi, be the unique solution to:

/V(Thf).Vvh dr = /Hh (fvh) dx V’Uh EVh, (5)
Q Q
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where the Vi, -interpolation operator II;, € L(C°(Q), Vi) is defined for v € CO(Q) by:
Opv € Vi, and Hpula;) = ula;) for all node a; of (Tr)n>o-

We introduce two Lemmas, whose results will be useful afterwards.

Lemma 1. Let (Ta)n>o0 be a family of triangulations satisfying the hypotheses (Hi) and (Hy4). Let (o, q) be
chosen to verify:

8 3 2 2
2 S Z.
<q<3 g q<a<q (6)

Thus the term (1 — %)(ﬁ) is strictly less than one, and we have for [ =0 or 1:

lonllugan < ¢hG™ED opllion,  Von € Vi (7)

Proof. Using the same arguments as Ciarlet in the proof of the inverse inequality on a quasi-uniform mesh
(¢f. [12]), we have, for any K in Tp:

l

h 1_1
rlgx < = (mes(K))a? Jonla.x,
Pk
21
(assumption (Hy)) < ch) |unligk,

(assumption (Hy)) < chlE DR |y,

12,K-

So, with Jensen’s inequality:

1 1
q q
{ Z l”hI?,q,K} chGDG) { Z |”h|?,2,Kl )
J

<
LKeT;, J \keT,
3
¢ o {5 )
KeTy

and we get the inverse inequality, for { = 0 or 1:
2_ .
onligan < chla D) upli20, Von € Vi
Moreover, for | = 1, we deduce:

2 _1)(—2—
[onll o, < kD (junld 0, + lonll s, ).

< 2¢RGEVER) Jvnll? 5 g,

which ends the proof of Lemma 1. a

Lemma 2. With the previous notations, and p > 1, we have:

lullopo-a. < chlullipe Vue WHP(Q), (8)

lulipo-an < chlullzpan YueWIP(Q). 9)
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Proof. The proof of (8) is well-known (cf. Raviart-Thomas [19] for p = 2). Nevertheless, this estimate can

be improved, as soon as u vanishes along the boundary of Q distinct from the boundary of ;. For instance,
we have, when u € V:

lullopo-a, <ch?lulipe Yue WHP(@Q)NV. (10)

First of all, in order to prove (9), we have to verify:

ou

11 P < elullopas,
5 (11)
U

[ CH_l_nl,p, < cllullzpenn-

The proofs of these two inequalities use the same arguments. So, we will only detail the first. We have:

du Ou Ou 9 Ou
o T pa = I =l 0 + |l ol G | Y 15y o g o
and
ou
H,,,a-!;—l ”me < ” ”:D,p’ < ||u||11)7p79 < Hulg,p,a,n.

0 du
Let us now study the term ”8_ (TO‘H )||pp
m E2 7

O | ap10u ou at1 O%u
E(T %):cosﬂ(a—i—l)r‘”%—i—r 9
consequently:
0 | ap1 Ou, du &u
= = < 2 dod «» |22 grdy )
I35 50 pa < o ([ I5oPdody + [ 127|551 dody
< ¢ ”u”g,p,a,ﬂ'
0

The same results apply to the term ||§ (rott a—Z)Ho,p,Q, and it yields (11).

)

0
Next, applying (8) and (11) to r**! Ou and 721 22 we obtain:
Oz Oy
a1 Ou at1 OU
[ Sollopo-an < chr® o-llpa,
< chilullzpe0;

and 5

11 Ou

lret yllo,p,n an < chilulzpan

Thus,

ou ou
(a+1)p P P P P
T _— + |=— dIdl/ < ch U a.Qr
/Q—Qh (|a$| layl ) H ”2’p’ '

Furthermore, it can be noticed that:

1
'r‘>§ sur Q — Q.
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Therefore:

: Ou du
(a+1)p % 12292 ded p ‘
L—Qh " (162:’ + ayl ) zTay > ¢ lull,p,ﬂ—ﬂh

Then we deduce:
[ul1,pa-a, < chllull2pa0,

which, using (8), leads to (9). O
Concerning the interpolation errors, we have the following results:

Proposition 2.

o Assumew € W2P(Q)N V, p > 1. For any family of triangulations, we have:

lu—Thullipe < ch®> Hullzpo, 1 =0,1. (12)

o Assume u & W29(Q), u € W29(Q) N V with (a,q) verfying (6). If the triangulation satisfies the
hypotheses (Hy), (Hs) and (Hs), we have:

lu — Mpullig0 < ch*™ ”’Lb||2,q,a,ﬂ, =01 (13)

Proof. The inequality (12) for p = 2 (resp. p = 1), comes from the well-known estimate (cf. Ciarlet [12]):
v~ Mhullipe, < ch?ullzp0,

together with (9) (resp. (10)) and the injection W2P(Q) — W2P(Q) (resp. W2P(Q) — W1P(Q)).
Inequalities (9, 10) are still convenient for dealing with |'u—II,ul|; 4 -, , when u only belongs to W24(Q)N V.
On the other hand, the estimate of [|u — IIpul|; 4,0, is more unusual. In order to justify the very restrictive
assumptions on the mesh, we present here a brief description of the bound of the semi norm |u — IIpuli g,0,-
The complete proof can be found in Raugel [18] in case ¢ = 2, and Cherfils [10] for g # 2.
Writing:

o= Thulf o, = D lu-Txul{,k,
KeTh

the study reduces to a local interpolation error. Because of the particular definition of the triangulation, it is
clear that the term |u — IIgu|1,4, x Will be treated differently, whether K touches the singularity or not.

case 1: 0 is a vertex of K
With the help of the reference element, it can be proved that (cf. [10,18]):

h2
|U - HK u|1,q,K S cﬁa |u|27q,0‘7K’
K
(assumption (H1)) < ch®[ul2gak,
(assumption (H3)) < chlulzgo.k-

case 2: 0 is not a vertex of K
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This time, u € H%(K), and we have a standard estimate (cf. [12]):

hie

— q K 1,19

lu—Tguligp < Cpq uls,q,50
K

IA

ch; (i%f r®)9 (ir}zf r®)d z / |DP wu(z)|? dz,
Bl=2 7K

(assumption (H3)) < ch? Z / 7% | DP u(z)|? dz,
lol=2 /K&

< ch? |u|g,q,a,K'

The proof of the bound of the seminorm |u — IIjulo 4,0, is very similar and will be omitted. O
The convergence results for the finite element method including numerical integration are summarized in
Proposition 3. Their proofs, relying on arguments of [12,13,18], are detailed in [10].

Proposition 3. Let (T,) be a family of trangulations satisfying the hypotheses (Hi,...,Hs). Let (o, q) be
chosen to verify (6). With the notations wntroduced wn Definition 1, we have for the finite element method with
numerical integration:

VieWh(Q), ¢>2, [Tf~Twflhae < ch(ITfl2zma + Ifl1an), (14)
ITf —Th flluge < chi3 (ITfl2qma + IflLe0), (15)

Vie W (@), p>1, |Tf=Tuflloze < ch®lflzpe (16)
VEeWh(Q), ¢>2, [Tuflige < cllafloze. (17)

Proof. Letu=Tf e VNW29 up=Tyf € V.

The inequality (14) is a consequence of the first Strang’s Lemma (c¢f. Ciarlet [12]) on the one hand, and of
Proposition 2, on the other hand. We have:

. ) [ wp dr — II wy,) dz
lu = unllon < c { inf |lu—uvnl120 + sup - Jo fwn Jo I (fwn) dz | }
UREVh wnEVi lwnl1,2,0

As usual, the term relevant to numerical integration converges at the rate O(h) (¢f. [12]). Using Propositions 2
and 1, we conclude:

lu—urlhzo < c{llu—Trulliz0 + hllfllieal,
< ch(Jullz2,a0 + [1fll1e9),
< chlfllig0-
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Next, in order to verify (15), we apply Lemma 1, Proposition 2 and inequality (14). Thus we get:

lu—unllige < llu—Thulige + [Taw —unlign,
: 2_1y(—L_
< chlullzgan + chle VD My — ualli 2.0,
. 2_1y(—L
< chllulzgan + chGTVED (M — uf g0, + v = unlhiz0.),
2—ga
< chi@ (Jullz,g00 + [ fllg0)-
Our proof for (16) follows from the one of Crouzeix-Rappaz [13]. First, we notice that the operators T} and II
satisfy: B
Tnf = To(Tnf) Yf € CO(Q).

We set up, = Th f = Th (Inf), w = T (I, f) and wy, = T}, (If), where T}, is a linear operator defined by:
for all g € L%(Q), T,g € V} is the unique solution to

/ V(T,;g).Vvh der = / gupdz Y vp € Vp.
Q Q
The error ||u — unlo,2,0 may be decomposed into 3 terms which will be treated separately:

llw —unlloz.o < llu—wlozn + llw—whloza + llwn —unloze0- (18)

The term [[w — wp||o,2,0 is in fact relevant to the convergence of the finite element method without numerical
integration. As usual, we use Aubin-Nitsche’s Lemma (cf. [12]), which can be written in our particular case:

1 :
lw—whllo20 < cllw—willi20 | sup {——— inf ||Tg "”h”l,2,n} . (19)
serz(@) Llglloza vneva

Moreover, using Propositions 1 and 2,

Jof 1T g~ wnlliz0 < 1Tg~TpTglli2,0 < ch||Tgll22,00 < chlgloze- (20)
h h
Thus, combining (19, 20) and Céa’s Lemma:
lw—whlloge < chlw—whnlize,
< ch? w2260

Taking into account that W2P(Q) < C°(Q), when p > 1, it follows that:

lw—wrllog,e < ch?||THrfl2,:260
< ch?|Onflloz.0
< ch?|fllzpa
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Next, to deal with the term ||u — wl|o 2,0, we use Propositions 1 and 2, and the Sobolev imbedding W2?(Q) <
WbhP(Q) — L3(Q) . It yields:

lu—wloze = |Tf~THufloz0

IA

ITf—Trfli2p0.9
If = In fllope

ch? || flizp.0-

(Proposition 1)

IA

(Proposition 2)

INA

Finally, to handle the last term ||wp, — un||0,2,0, We need the following result, whose proof is very similar to that
of Crouzeix-Rappaz [13] and will be omitted,

lwp, — unli,2,0 < ch? I, fli2.0-

Thus we get, since H'-norm and H!-seminorm are equivalent on V:

lwp —unlloze < llwn —unll120;
< clwn — unliz,0,
< ch? |y fli2.0,
< ch?||fll2p0

Combining the above results, we get (16).
For the proof of (17), we write:

llunlligo < llun —whllige + llwn —wllige + lwihge- (21)

Classically, we have (see [13]):

lup —wrl12,0 < ch| f

lO,2,Q~

Thus, applying Lemma 1, we get:
21yl
lun —wnllga = lun —wnlign, < chl™E luy —whlh 20,
< chliDG=) [un — Whl1,2,00 )
2—go
< cha® ||l fllo2,0,
< ¢l flloz,0-

Since the term [|w — wy|lo,2,0 is relevant to the convergence of the finite element method without numerical
integration, the inequality (14) reduces to:

lw —willoz.0 < chlwlzz.a.0,-
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FIGURE 2. Bifurcation diagram for the problem (22).

Thus, using Lemma 1 and Proposition 2, we have:

lwn —wlhige < llwe—Hrwllee + [[Haw — wlie0
< chETVED |lwp — w1 2,0, + b w200
2—go
< chia [wlza0 + chlTafloqn;
2—go 2—qo
< ch@ [[Ixflloz20 + cha® |[[nflloz20,
< c|hflloz.a-
Finally, we have:
lwllige < llwl2z2,a9
< cldnflloz0-
The above bounds applied to (21) lead to (17). O

Remark 1. Our estimate (15) is not optimal. Setting o = 0 in (15), it leads to a convergence with the rate

O(hf) for a regular solution (u.e. belonging to H%(2)), instead of O(h), which, according to Rannacher and
Scott’s results [17], is the optimal rate. Nevertheless, as it will be pointed out later, our single aim is, in order
to apply Theorem 1, to prove that the finite element method converges in the norm ||.||1,4,0, for (e, g) satisfying

(6).

3. APPROXIMATION OF A SEMILINEAR BIFURCATION PROBLEM

Now, we consider the semilinear problem:

—-Au = Au+u® in €,
u = 0 onI'p
o ) (22)
— =0 onI'y.
on

According to Brezzi et al. [8], the solution branches of (22) look as in Figure 2. Our purpose in this Section is
to estimate the error induced by the computation of a nontrivial solution branch near a bifurcation point. We
use for the computation a P, finite element method with numerical integration.






