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HATHEHATICAL HODELLING AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 32, n° 5, 1998, p 631 à 649)

FINITE VOLUME BOX SCHEMES ON TRIANGULAR MESHES (*)

B. COURBET 0) and J. R CROISILLE (2)

Abstract — We introducé a finite volume box scheme for équations in divergence form — div ((p(u)) = f which is a generahzation
of the box scheme of Keiler As in Keiler's scheme, affine approximations both of the unknow u and of the flux (p are used in each cell Although
the scheme is not vanationnal, finite element spaces are used. We emphasize the case where the approximation spaces are the nonconforming
P -space of Crouzeix-Raviart for the primary unknown u, and the divergence conforming space of Raviart-Thomas for the flux (p We prove
an error estimate in the discrete energy seminorm for the Poisson problem Finally, some numencal results and implementation details are
given, proving that the scheme is effectively of second order. © Elsevier Paris

Key words Box-method - Box-scheme - Finite volume scheme - Finite-element method - Mixed method - Raviart-Thomas element -
Crouzeix-Raviart element - Poisson problem
AMS: 35J25 - 65P05 - 73V05 - 65M15 - 65N30

Résumé — Nous introduisons un schéma boîte de type volume fini pour les équations sous forme divergence — div (<p(u)) = ƒ, qui
est une généralisation du schéma boîte de Keiler Comme dans le schéma de Keiler, une approximation affine est utilisée dans chaque cellule,
à la fois pour l'inconnue u et pour le flux <p Bien que le schéma ne soit pas sous forme vanationnelle, on utilise des espaces d'éléments
finis Nous décrivons plus particulièrement le cas où les espaces d'approximation sont l'espace P 1 non conforme de Crouzeix-Raviart pour
l'inconnue pnmale et l'espace div-conforme de Raviart-Thomas pour le flux ç? Nous prouvons une estimation d'erreur en semi-norme
d'énergie discrète pour le problème de Poisson Finalement, la mise en œuvre de la méthode ainsi que quelques résultats numériques sont
présentés, prouvant qu'elle est effectivement d'ordre 2 © Elsevier Pans

1. INTRODUCTION

In a fundamental paper [17], H. B. Keiler introduced the notion of box-scheme for parabolic équations. For an
équation in divergence form, the main idea is to take the average of the conserved quantities on boxes defined
from the mesh, in order to use only interface unknowns. The discretized équations form a so called compact
scheme, in the sense that the local stencil of dependence of the scheme is reduced to the local "box".

The box-schemes of Keiler have been applied by several authors [13, 18] to non-standard parabolic équations,
for example with moving boundaries, owning an integro-differential part, or involving constraints in some part
of the domain. The results clearly demonstrate that the box-schemes are at least as good in précision than standard
finite différence or finite element methods.

The box-schemes have been also used in some works m the 80' for compressible flows computations (Euler
or Navier-Stokes équations). These schemes have indeed many interesting properties for the approximation of
complex flows. They are conservative and of good accuracy for stationary solutions on relatively poor meshes.
The matrices resulting from the discretization are compact and of simple structure on structured grids. Moreover,
there are no edge-gradient interpolation problems as in the cell-centered fini te-volume approach. We refer to
Casier, Decomnck, Hirsch [6], Wornom [24, 25], Wornom and Hafez [26], Chattot and Mallet [7], Courbet [9,
10], Noye [22].

The aim of this paper is to introducé in a rigorous way a class of finite volume box-schemes on triangular
meshes for équations in divergence form, like V . <p = ƒ, where the flux <p is given by a closure relation like
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632 B COURBET and J. P. CROISUXE

<p = F(u, Vu ). The main interest of the new scheme is to allow an affine cell approximation both for the function
u and for the flux (p, in the framework of a finite-volume method defined onto the primary mesh. This is clearly
an important property when the closure model is complex. A typical example is when a large variation of the
diffusion coefficients occurs within a cell, for example in boundary layers. The basic principles of the scheme are,
firstly to remark that choosing the boxes as the primary triangular mesh gives the good number of équations [8],
secondly to introducé a formulation mixing two types of standard finite element spaces: the nonconforming
Pl element of Crouzeix-Raviart [11] for the primary unknown, and the divergence-conforming element of
Raviart-Thomas of least order (RTÖ) for the gradient [23]. The resulting scheme seems to be new. In particular,
it is different from the classical mixed finite element approximation [23], which is variationnal, and insures the
equality between unknowns and équations by a Babuska-Brezzi condition. It is also different from the box-scheme
of Bank and Rose [1], also studied by Hackbusch [15]. This latter scheme remains basically variationnal and
requires the construction of boxes as a dual mesh of the primary one. This is also the case in the covolume
approach of Nicolaides [19, 20, 21]. Let us point out finally the recent works by Farhloul and Fortin [14], and
by Baranger, Maître, Oudin [2] on the connection between finite volume and mixed finite element methods. See
also the work by Emonot [12].

In the present paper, we restrict ourself to the présentation of the scheme onto the Poisson problem, i.e. when
(p — Vu. The outline is as follows. After the introduction of the scheme in Section 2, we study in some details
the particular case where the discrete spaces are the nonconforming Pl space and the RT0 space in Section 3. An
error estimate in the energy semi-norm is derived. Finally we give in Section 4 some implementation details
together with some numerical results, bef ore to conclude in Section 5.

2. THE PRINCIPLE OF THE SCHEME

Let us introducé the scheme on the Poisson équation

" — Au =f in Q ,f- Au=f ïnQ

where Q cz [R is a bounded domain. The équation can be recasted in the mixed form with unknowns u and
£ = Vu.

(V . £ + / = 0 ïnQ

£ - Vu = 0 in Q

u = 0 onto dQ .

The problems (1) and (2) are equivalent and have a unique solution (w,£>) e (H\(Q) r^H2(Q), (Hl(Q)2)
when ƒ e L2(Q) and when Q is convex or has a smooth boundary. Let ?Th be a mesh consisting of triangles K,
such that Q= Î J K with max d(K)/p(K) ^ C, where C is a constant independent of h, and d(K),

p(K) are the diameter of K and the diameter of the inscribed circle in K. We suppose that d(K) ^ h. We note
K\ the area of K, A = Ai u Ab the set of the edges of ?fh constitued of the internai edges At and the boundary

edges Ab. The number of triangles is NE. The number of internai edges, boundary edges are NAt, NAb and the total
number of edges is NA — NAl + NAb.

We approximate u by uh and £ by p_h, where uh G Vk, and £& G Qh> ^h an(^ Qh being approximation spaces of
finite element type. The consistency with (2) is not ensured in variationnal form but by the équations

f(3a) < V . a + / , 1 ^ = 0 V ^ e $h

(3) (3b) ( & - Vuh, nK) = 0 V* e °rh

|̂  ( 3c ) uh = 0 on dQ .
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FINITE VOLUME BOX SCHEMES 633

(3) is a finite volume method in that the trial functions 11̂  are indicatrices of the cells K e ?Th. The équation (3a)
can be rewritten as

(4)
idK1

f
where fK ~ j-jpr ƒ is the average of f(x) on the triangle K. Thus, (3a) appears as a conservation law. Moreover

I I i K
the équation (3b) ensures in a weak sense the equality of Vuh and ^ in the triangle K.

3. THE CASE Vh = NON CONFORMING P1, Qh = RTQ

3.1. The approximation spaces

We present in this section the Standard approximation spaces of our scheme namely that where Vh is the non
conforming Pl finite-element space of Crouzeix-Raviart, and Qh the Raviart-Thomas space of least order (denoted
RT0). Recall that both spaces occur in classical finite element approximations of the Poisson équation, but not
simultaneously. The non-conforming P1 space is introduced in [11] for the Stokes problem, and can be used for
the Poisson équation. No approximation of Vw is required. On the other hand, the space RT0 is introduced in [23]
for the approximation of Vu in the Poisson équation in mixed formulation, but the Babuska-Brezzi condition
requires the P -approximation of u (i.e. constant in each triangle). For a good synthesis on these approximations,
we refer to Braess [3], Brenner and Scott [4], Brezzi and Fortin [5].

Let us recall the définition of these two spaces. The space Vh is defined by

Vh = {vhNK^L 2T/,» UA | JC e ^i(^0> vh'ls continuous atthemiddle of each e e dK] .

In other words, if a G dKx n dK2 is an edge of (3'h and ma the rrüddle point of a, vh\K1(ma) = ^h\K2l^îna)' ^ e

dénote by (pa( x ) )a G A the canonical basis of Vk, that is, the dual basis of the global degrees of freedom La defined
by (Laivh) = vh(ma). We have {La,pa{x)) = ôaa, for a, a e A. If uh(x) = X uapa(x)9 the restriction of
uh to the triangle K is given by

e e BK

where pe(x) = 1 - 2 As(x), Às(x) being the barycentric coordinate of x with respect to the vertex S, opposite

kl
to e in the triangle K. Note that V/?e(x) = "n r̂ V̂ -

Moreover, we dénote by V̂  0 the sub space of the uh e Vh such that wa = 0 for each edge a e Ab.
The space Qh is defined by

where, for each K G 2TA, RTO(K) = PQ(K)Z + PÖ(K) 2 \ (dimRTQ(K) = 3). The constraint
L x J

qh(x) e Hdiv(Q) is equivalent to the continuity of the normal component ^ . v̂  through each edge
a = T̂ j n /ir2. If a = e in ü^ and a = ë in 7̂ 2, we have

vol. 32, n° 5, 1998



634 B COURBET and J P CROISILLE

S"

Figure 1. — A triangle of ÏÏh .

The global degrees of freedom of Qh are the linear forms La, a e A, defined by the circulation of q^ along the
edge a

(La,gJl)=\ g^'Y^da ( circulation of %h along the edge a ) .
Ja

The canonical basis of Qh (dual basis of ((La)ae A) is given by

where « is oriented from ürx towards K2, a = e in Kv a- e m KT Note that this orientation of a gives
va = ve. For each K e ST̂ , and each e G d̂ f, the polynôme PK e is defined by

N o t e that, for x & a, PKl e(x) .ve = -,—r.

Moreover, if q^ e ÖA is globally decomposed onto the basis
e A

in the form
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FINITE VOLUME BOX SCHEMES 635

t h e n t h e l o c a l d é c o m p o s i t i o n o f qh(x) \K o n t o (P_K e ) e 6 dK i s

e e dK

where qe = qa(Ke) if the global orientation of e is from K= Kx towards Kv and qe — - qa(^K e ) in the opposite
case.

Finally, qj^x) \K admits also a useful représentation in the form ([2])

where qK = T-Ĵ T q^, ( V . q^ )K is the constant value of V . ^ in K, and P^Cx) is the polynôme of first order
\K\ JK

L J

3.2. The discrete system

Let us describe now the discrete Poisson équation obtained in the case where Vh is the non conforming P1 space
and Qh is the /?ro-space. Let uh e Vh and £& G Qh n a v e t r i e local décomposition on each K G 2Tft,

ee dK e e dK

Equation (3 a) gives for K e 2TA

(7a) 0 = f a . v + 1̂ 1 fK = 2 Pe + 1̂ 1 /* ( ^ équations ) .
JdK ee dK

Equation (3b) gives

0=f ( & -

lel f=el f
Recalling that Vpe(x) = -rĵ r ve and denoting ^ e = ^ ( - x ) , Ne= \e\ ve we get, for each K e STA,

(7b) 0 ^ 2 VPeQe~'ueKe\ ( 2 W£ équations ) .
ee dK

Note that since

K ee dK
= 3 f

JK

we have ^ 3 = - ( ö^ + ^ ). Moreover we have 2 A^ = 0. Finally the Dirichlet boundary condition gives,
€, G dK

for each a e dQ

(7c) 0 = a a .

vol. 32, n° 5, 1998



636 B. COURBET and J. P. CROISILLE

More generally, we will consider boundary conditions of the form, for a e Ab,

0 = <fi
a,„> «*> + (Ba,P>2h) (NA„ équations) ,

where Ba M, Ba are linear forms onto Vh, Qh such that at least one of Ba M, Ba is different from 0. For ex ample,
a mixed boundary condition on the edge a e Ab gives

where (mü, £fl) ^ (O, 0). A Neumann boundary condition is given by ma = 0, £a = 1. By counting the edges
of 3~h we have

K e G dK e e As e e ^

Thus, we get the relation between the number of triangles NE, the total number of edges NA, and the number of
boundary edges NAb

(8) 3NE + NAb = 2 NA.

The number of unknowns (uaipa)a e A is equal to the number of the équations (7a), (7b), (7c).
We note finally that the relation (6) gives the following représentation of £^(x) in each triangle K

(9) Ph(x) = VufC- \K\ fKPJx) ,

where we note VuK = -y^r Vuh.

Summarizing the discrete system (7a, b, c), we get the discrete problem: Find uh(x) — 2 u
aPa(

x^

p^ix) = 2 PaEa(x) s u c n t n a t

a e A

(10) ^_
•: dK

e e dK

Note finally the following elementary result, linking the 3 vectors {Qe)e G dK and (Ne)e e dK (see fig. 1 for the
notations)

1 / 1 1 \
ö^ = ö ( cotan 0eNe — -~ cotan Qe, N^, — •= cotan 6e„ N^„ I .

3.3. Numerical analysis

This section is devoted to the numerical analysis of the problem (1) approximated by the discrete system (10).
The main tools are those of the finite element method, although the framework is not of variational type.

Let us introducé some Standard notations.

I M I O , Û = jW
2(x)Jx

1/2

2 /for u G L\Q)

y/2T
' u(x)\2dx for «e Hm(Q)

M2 AN Modélisation mathématique et Analyse numérique
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The first observation is

LEMMA 1 [11]: The discrete energy semi-norm \\vh\\h w a norm onto the space
^ . o = K e Vk,vh = OondQ}.

Proof: Let vhe Vh 0 such that || vh\\h — 0. The gradient of vh is zero in each cell K e ST̂ . Hence vh is constant
in each K. Since vh is continuous at the irüddle of each edge a of ?Fh and vh = 0 onto dQ, we deduce that
vh = 0 in ü. M

The first result is the existence and uniqueness of the discrete problem (10).

THEOREM 1: The discrete problem (10) has a unique solution (uh,£h) e Vh 0 x Qh.

Proof: The problem (10) in ( uh, ph) e VhQx Qh is linear, and the number of unknowns is equal to the number
of équations. Hence, it is sufficient to prove that ƒ = 0 implies uh— £Jl = 0. The relation (9) gives that
2h(x) is a constant cK in each K e ^Fh and that £K= VuK. Hence

= 2 I a(^).VMfc(jc)dr

= E | (&(^)-v(jc))iiA(x)rfa- f
K JdK JK

since V . £^ (JC) | ^ = /^ = 0, and ŵ  = 0 on

a*:

= 2
a E At va

where At is the set of the internal edges and the edge a is oriented from Kx towards KT Denoting by pa the constant

value of 2h i ( x ) 'Y^=Rh i(x^ • Y& ^or x G fl' o n e n a s

va

by définition of V .̂ Therefore c_K ~ VuK = 0 for each TsT» hence \\uh\\h = 0 and by Lemma 1, uh = 0.

m
Bef ore proving an error estimate, note the two following stability estimâtes:
PROPOSITION 1: If (u^^) G Vh 0 x Qh is the solution of (10), then there exists C, independent of h, s.t.

dl) (i) ll«J*

(12) (ü)

vol. 32, n° 5, 1998



638 B. COURBET and J. P. CROISILLE

Proof: (i) The equality (3b) gives VuK = -r-^\ g^x) dx, hence

2 Sf
K K JK

Moreover (9) gives

\EH\O.K< K I I * . * + 1 * 1 Uirl \ZK\O.K-

We have

where / ^ is the gyration radius of K. By noting that the regularity assumption on the mesh insures the existence

PK - 1
of C, independent of h, such that sup ^iT ̂  C an<^ § i n c e l/̂ l ^ ïTT |/|o *:> w e § e t ^y summation on

where C = max ( 21/2, C/21/2 ).
(ii) Again (9) gives

Thus

Ha,II2, =
K

N o t i n g t h a t \^P_K\\K- 2 \ K \ J w e

Our second main resuit is an error estimate in the discrete energy norm || \\h. Let u e H n Ho be the solution
of the Poisson problem (1) with ƒ G 12(Q). We consider also £(x) G Hl(Q)2 defined by g(x) = Vu(x). For
u, v e H1 © V. we define

a(w, v) = 2 Vw.
/c JA:

the bilinear form associated with |||U Q- On ^(div, f2) = {̂  e L2(Q)2 IV .£ e L2(D)} we define the
semi-norm

M2 AN Modélisation mathématique et Analyse numérique
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associated with the bilinear form

THEOREM 2: The re exist constants C = C(Q) > 0 independent of h such that

( i ) \\u-uh\\h^Ch\u\2Q

-£ f t lo , f i^ ch\u\i,Q

Proof of (i): We follow a classical strategy. We have for any vh e Vft 0

\U-Vjh+ \\uh-Vh\\h

(13)

Thus

and (13) gives

(14)

= a(uh- u, uh -vh) + a(u- vh, uh-vh).

\a(uh~u,uh-vh)\
+ u-v,

Ah "h II h

u — vAh+ sup
" " IA! t- V VhWh

Since the space Vh 0 contains the Standard P ̂ Lagrange finite element space, the classical interpolation estimâtes
gives inf || M — vh\\h ^ C(Q) h\u\2 Q. It remains to estimate the second term. We have

vh e Vft 0

(15) aA(«, - u, wh) = 2 f VM„ . Vwfc - f V« . Vw

Vuh is constant on each K, and by (3b) its value is £h K = T^T Eh(x) dx. Thus

J/t: JA:

= - V.^(x) w (̂x) + w ^ x ) ^ ^ ) - V(JC) der.
J K J BK

gives V .^ (x )+ / (x ) = 0. Thus the value of the constant V . ^ ( x ) in K is -fK where

f
' = T W Therefore

Vuh.Vwh=\ fKwh(x)+\ wh(x)Rh(x).v(x)da.
J K JK J ÖK

(3a)

vol 32, n° 5, 1998



640 B. COURBET and J. P. CROISILLE

Moreover

f VM . Vw, = f - AM W, + f |^ •
JK " h " JöKdV

JK JdK UVI dK

Thus (15) can be rewritten as

(16) ^Zl \fK-f(x)]wh(x)dx+^\ [Eh(x)-Vu(x)].vw\x)da(x)

Since fK~f(x) = 0, one can subtract a constant value from wh(x) in each term of the fïrst sum and rewrite

(/) asJ*

K JK

Therefore

^Ch\u\XQ\\wh\\h.

Consider now the sum ( / / ) in (16). Each internai edge e e dK occurs two times in the sum with a vector

v changing of sign. On each boundary edge e, one has wh da = 0 since wh e Vh 0. Thus, by subtracting the

I C \
function ( T—T ( £ ^ ( X ) - VM(JC)) 'V^da J wh(x), we do not change the sum. lts value is

\\e\Je /

(17) 2 f
K J dK

K ee dKfJe

We recall now the following result (Lemma 3 of [11]).

LEMMA 2: Let e e dK, v, q> e H\K), ve = -p-r u(jc) Ja ,

I I J e

L <p(v -ve

where C is independent of h.

ChW\ltK\V\l.K*

M2 AN Modélisation mathématique et Analyse numérique
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Applying this result to the right-hand side of (17) gives

and, using (12)

Finally, there exists C > 0 independent of h such that

\a( u, — w, w, ) |

641

vh"h

Going back to (14), we obtain

CA

Proof of (ii): From the représentation identity (9) of £h(x)\K we have

&(*)|*=V^-|^|/^(x) and

Thus

and

s i n c e

(18)

lo.jc = 0 , y f
Z\K\

f and \fK\ \K\
deduce

where C stands for a constant independent of /z.

Proof of (Ui): We suppose here that u e /f3 (£?), or equivalently, ƒ G Hl (Q). Again by (9),
V •

(19)

| fK = " ƒ*: and V .£ = - / ( x ) . Thus,
Ch\f\l K and, by summation over the triangles K& ?fh, we obtain

Since V̂  0 e/ //Q we can't deduce directly from Theorem 2(i) an error estimate in the L2 norm by the Poincaré
inequality. We propose a regularity assumption on the triangulation ST̂ , which is sufficient to insure such an
inequality.

Hypothesis (H): There exists a disjoint cover of ^Fh by a set of Nh connected slabs $t where each slab 3Si is
made of N( h triangles, with at least one triangle in contact with the boundary dQ. Moreover

N»=°{\)'(Hl)

(H2)

This hypothesis can be read as a type of structuration of ST̂ . The triangulation of figure 2 satisfies this hypothesis.

vol. 32, n° 5, 1998



642 B. COURBET and J. P. CROISILLE

LEMMA 3: Under the hypothesis ( H ) on the triangulation 2TA, there exists C ( O ) > 0 such that for
u^ Hl® Vh()

\h.

Proof: Since this inequality is true for u e H\ (Poincaré inequality), it is sufficient to prove it for we Vh 0. Let
u e Vhi0. For each x e ^ . , consider the path y cz 38^ y being defined by [x09 x j u [xv x2] u —[xNt(xy x] where
the Xj aie mid-edge points of the triangles of 38i and where ^0 e dü n ^ .

By définition of Vh0, uhly is piecewise affine and continuous; hence

«OOI

Taking the L norm of M on 38i9 gives

E

F i g u r e 2 . — A t r i a n g u l a t i o n ïïh s a t i s f y i n g t h e h y p o t h e s i s ( H ) w i t h Nh = i ; N i j h = ^ ; A f = 1 .
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Mathematical Modelling and Numerical Analysis



FINITE VOLUME BOX SCHEMES

Since Nh = o(-rj by (Hl), we have \ÜSt\ = O(h) and the Cauchy-Schwarz inequality yields

Moreover Nt h= Ol-r) (hypothesis H2), hence

643

Summation over the slabs Sê{ yields the conclusion since the Mx are a disjoint cover of ?fh. •
Theorem 2(i) and Lemma 2 allow the L error estimate

COROLLARY 1 : Under the hypothesis (H) on the mesh 3~k, the re exists C independent of h such that

Figure 3. — A path joining x e K to dQ.

4. NUMERICAL RESULTS

4.1. Implementation

We present in this section the principle of the implementation of the discrete system (10). We call
U = ( ua)a e A the vector of the components of uh(x) onto the Pl non-conforming global basis pa(x) (see § 3.1).
We define also UK and PK the vectors of the local components in the cell K of uh(x) and p^x).

UK = [u , ue2, w e j r , PK ~ [pej,pe^Pe3]
T •>

vol. 32, n° 5, 1998



644 B. COURBET and J. P. CROISILLE

where dK = {ev e2, e3} are the 3 edges of K. (No spécifie orientation of the 3 edges is required in UK and
PK)- Clearly (10) can be rewritten as

(20)

1
K\

u3

- o
AT

are

0 0 "

A T 3

^3 _

C.UK + MK.PK =

l

\K\

~ 1 i i " ~fK
0
0

Since Qe3 = - ( ^ + ^ 2 ) , we deduce that the 3 vectors of U3( 1, ̂  ), ( 1, Q^), ( 1, Q^) are never colinear.
Hence MK is non singular and (20) can be rewritten as

(21)

where NK = NK, LK = M~K
 l LK.

We eliminate now the unknowns (pa)a e A. If a is an internai edge, with orientation from Kx(a) towards
K2(a), a = ex in Kx(a), a = e2 in K2(a), the identity PKl ei = ~ PK2 e2 holds. Thus we have

Consider now a boundary edge a e ö^1 with boundary condition (7d)

there are two cases, corresponding respectively to Neumann and Diriehlet boundary conditions:

(O f
( i i) a a f l ^

obtain in this way a linear system in the unknown U = (u)a e AWe obtain in this way a linear system in the unknown U = (ua)

(23)

where sé is the global stiffness matrix and b the global right hand side.
The final algorithm is similar to the one of the standard finite element method, with a main loop on the éléments.

It can be written shortly
do for K<E

 <3h

evaluate NK
K K

assemble the contribution of LK to sé, NK to B
enddo
do resolution of s$U = b.

If it is necessary, £^(x) can be evaluated from uk(x) by (21).
We define now Ui G R M ' the sub vee tor of U G M corresponding to the internai degrees of freedom (i.e. the

internai edges). s${ is the matrix extracted from sé that has the same dimension that Ut, and fe. e RNA' is the
corresponding right hand side. In the case of the homogeneous Diriehlet problem, the resolution of séU = b is
equivalent to the system séx Ul = bv It is not directly apparent from the form of the elementary matrices LK,
MK that the matrix s&t is symmetrie definite positive.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis


