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i m MATHEMATICA!. HODEUING AND NUMERICAL ANALYSIS
B H MODELISATION MATHEMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 32, n° 3, 1998, p 359 à 389)

RESOLUTION OF THE MAXWELL EQUATIONS IN A DOMAIN WITH REENTRANT CORNERS (*)

F. Assous O , R CIARLET, Jr. (2) and E. SONNENDRUCKER (3)

Abstract — In the case when the computational domain is a polygon with reentrant corners, we give a décomposition of the solution of
Maxwell's équations into the sum of a regular part and a singular part It is proved that the space to which the singular part belongs is
spanned by the solutions of a steady state problem The précise regulanty of the solution is given depending on the angle of the reentrant
corners The mathematical décomposition is then used to introducé an algonthm for the numerical resolution of Maxwell's équations in
présence of reentrant corners This paper is a continuation ofthe work exposed in [3] The same methodology can be applied to the Helmholtz
équation or to the Lamé System as well © Elsevier, Paris

Résumé —Lorsque le domaine de calcul est un polygone non convexe, c'est-à-dire avec un ou plusieurs coins rentrants, nous donnons
une décomposition de la solution des équations de Maxwell en une partie régulière et une partie singulière Nous prouvons que l'espace
des parties singulières est engendré par les solutions d'un problème statwnnaire simple La régularité exacte de la solution est déterminée
en fonction de l'angle aux coins rentrants Cette décomposition mathématique permet alors de construire un algorithme de résolution
numérique des équations de Maxwell dans un polygone non convexe Cet article est la suite de la note [3] Cette méthodologie peut également
s'appliquer à Véquation de Helmholtz ou au système de Lamé © Elsevier, Paris

1. INTRODUCTION

The resolution of the steady-state or time-dependent Maxwell équations in a bounded domain has become
classical thanks to finite différence methods in rectangular domains or finite element methods conforming in
//(curl) [33] or mixed, conforming in //(curl, div) ([5], [14]) in more complicated geometries. However, when
the boundary is not regular and when the domain is not convex, that is in présence of reentrant corners, the mesh
needs to be refined drastically in the neighborhood of the reentrant corners in order to get an acceptable numerical
solution (see [7], [18] among others for a study of this approach). Another method consists in using special
singular shape fonctions (see for instance [21], [27]). It is however generally accepted that grid refinement is a
better approach, except in some special cases ([20], [25]). Let us finally mention the more recent approach called
the method of auxiliary mapping which deals with elliptic boundary value problems with singularities ([8], [10]
or [34]).

In this work, we are going to study this problem in a bounded domain of [R2. Physically, this can describe a
3D problem in which the electromagnetic field is independent of one of the three space variables (x, y, z), which
we assume to be z: in this case, we are working in a plane perpendicular to the Oz axis. This happens for example
in an infinité cylinder of axis Oz, when the electromagnetic field is independent of z.

In this paper we shall introducé several methods to solve numerically the Maxwell équations in domains with
reentrant corners as well in their steady-state as in their time-dependent form, with a perfectly conducting
boundary condition. More precisely, following the work of Grisvard for the Laplace problem and the wave
équation [26], we shall introducé a décomposition of the L2(Q) space, from which we shall obtain a
décomposition of the solution of the Maxwell équations in a "regular" part and a "singular" part. Then we shall
show how to calculate the singular part in order to reduce the problem to the numerical computation of the regular
part of the electromagnetic field which can be done with a usual method.

(*) Manuscript received January 27, 1997 Revised March 19, 1997
C1) CEA/BIII, BP 12, 91680 Bruyères-le-Châtel, France
(2) ENSTA, 32 boulevard Victor, 75739 Pans Cedex 15, France
(3) Institut Elie Cartan, Université Nancy I, France
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Concerning the study of the singularities of the wave équation as well as the Maxwell équations in a unbounded
domain, we refer the reader to the work of Gérard and Lebeau [22] and Lafitte ([29], [30]), who deal with the
problem of the diffraction of a wave incident to a curved corner with perfectly conducting as well as mixed (of
impédance type) boundary conditions. In the case of a conical geometry which allows to use polar coordinates,
we refer the reader to the work of Cessenat ([11, 12]) who solves problems linked to the Helmholtz équation in
polar coordinates with the Sommerfeld radiation condition. These studies obviously yield a useful basis for the
treatment of the steady-state problem, at a given non vanishing frequency, comparable to the one we propose
hereafter for the time-dependent problem. Ho wever, the methodology we apply hère on the time-dependent
Maxwell équations can be straightforwardly extended to the Lamé System, or to the Helmholtz équation by
substituting C for R.

This paper is organized as follows. In Section 2, we introducé the notations and useful properties of some
functional spaces. In Section 3, the model problems (steady-state and time-dependent) are presented. Then, the
orthogonal space décompositions are introduced in Section 4, from which the décomposition of the solution into
a regular and a singular part is obtained. Section 5 is devoted to the computation of the solution: we first present
a détermination of a basis of the singular part by using several formulations, and then the resolution of the
time-dependent regular part. Finally, concluding remarks and perspectives are given in Section 6. For the sake of
simplicity, we restrict ourselves in these Sections to the case of a single reentrant corner, and to the boundary
condition u . r — 0. The case when u . v = 0 on the boundary is postponed to appendix A, and the gênerai case
of several reentrant corners is addressed in appendix B.

2. NOTATIONS AND PROPERTIES OF SOME FUNCTIONAL SPACES

Let Q be a connected and simply connected polygon of R2 with a boundary F for which all the angles at the
vertices have a value not greater than n, except for one reentrant corner whose angle is — with 1/2 < a < 1 (see
fig. 1). We dénote by Qc an open angular sector in the neighborhood of the reentrant corner and by /^ its boundary.
We call Qe the open subdomain such that Qc n Qe = 0 and Qc u Ôe = Q, and Fe its boundary. Finally,
we call SS the boundary F° n Fe and we décompose Fc (respectively F6) in F°' - 3$ u F° (resp.

Figure 1. — Shape of the domain Q.

As we are working hère in a domain of R2, there exists a scalar curl operator which maps R2 -valued functions
into [R-valued functions and a vector curl operator curl which maps [R-valued functions into [R2 -valued functions.
In order to avoid confusions, we shall write in bold face the functions and operators having vector values. The
extension to C-valued functions yields similar results on the Helmholtz équation. We shall dénote by

H( curl, Q ) = {v e L2( Q )2> curl v = dvy - dyvx e L2( Q ) } ,

M2 AN Modélisation mathématique et Analyse numérique
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RESOLUTION OF THE MAXWELL EQUATIONS 361

and

L2
0(Q)= J / G L2(Q)A /dk = oktfo(curl,fl) = {ve //(curl, ü), y . r - 0 on F} .

For a function ƒ, we have

c u r l / = ( _ \ , ) (1)

and so curl/e L2(Q)2 if and only if V/e L2(Q)2. Hence the space that we could dénote by //(curl, ü) as
above is identical to Hl(Q). On the other hand, if v = (vx, v ) is the outgoing normal vector at any point of
the domain (except the corners) we dénote by T = (v , - v^) the associated tangent vector.

We shall need the following functional spaces:

//(div 0 ; Q) = {v G L2{Q)2, div v = O}, as well as V = { v e //0(curl, fl), div v = 0}

the Hilbert space endowed with the canonical scalar product of //(curl, Q). And also 0 the space of stream
functions:

It can be easily checked that

= 0 on

LEMMA 2.1: W^ /zave the following vector space isomorphisms:
1. The curl operator defines an isomorphism from V onto Q
2. The curl operator defines an isomorphism from (P/IR onto VT
3. 77ie Zf operator defines an isomorphism from 0/U onto L2

0(Q).
In the case when the boundary F is of class C2, or in the case when the domain Q is convex with a Lipschitz

continuous boundary F, the space Vis included in Hl(Q)2 (see for example Girault-Raviart [23]) and the space
0 is included in H (Q) (see for example Grisvard [26]). This is not true anymore in présence of reentrant corners.
Hence we need to introducé the regularized subspaces of V and 0 :

VR = V n H\ Q f = {v G H\ Q )2, div v = 0, v . z = 0 on F}

and

2 { 2 ^ = 0 on

3. THE MODEL PROBLEMS

3.1. The steady-state problem

Given a function ƒ G L2( £2
Find u G //( curl, & ) such that:
Given a function ƒ G L2(Q), we consider the following problem:

cu r lu= / in Q (2)

div u = 0 in Q (3)

u • T = 0 on F (4)

voL 32, n° 3, 1998
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PROPOSITION 3.1: Take fe L\(Q). Then problem (2)-(4) admits a unique solution u G #(curl, Q).

Proof: Let us use the associated stream function. Due to lemma 2.1, every function u G V is associated to one
and only one function 0 G &/R such that curl <p = u, and we have curl u = curl curl (p = - A<p. Problem
(2)-(4) is therefore equivalent to the following problem:

- A<fi —f in Q

d(f> n ^
—5e- = (j o n 1 .

This is a Laplace problem with a Neumann boundary condition, which, as the compatibility condition

ƒ dx = 0 is fulfilled, admits a unique solution <f> in Hl{Q)M. •

Remark 3.7; In this section, u stands for the electric field, thus (3) corresponds to the Coulomb équation with
a zero right-band side. Nevertheless, the more gênerai problem, whith g G L2(Q), in which (3) is replaced by

div u = g in Q ,

can be brought back to the previous problem by letting w = u - Vy, y/ being the unique element of
Hl

0(Q) verifying Ay/ = g. The function w then satisfies indeed problem (2)-(4) and y/ vérifies a Laplace problem
which has been studied exhaustively by Grisvard [26]. •

3.2. The time-dependent problem

Given a function ï(t) e L2([0,T] ; L2(Q)2) such that d ivf=0 and two functions uo G V and
Uj G H( div 0 ; Q ) which do not depend on time, we consider now the following problem:

Find u( 0 G L2( [0, T] ; HQ( curl, Q ) ), du/dt(t) G L2( [0, 7] ; H( div 0 ; Q ) ) such that

2

—~ + curl curl u = f in Q (5)

dr

div u = 0 in Q (6)

u . T = 0 o n r (7)
with the initial conditions

u(0)-u0 (8)

au
dt

These équations can be written in variational form:
Find u( 0 G L2( [0, T] ; Ho( curl, & ) ) such that

^5 u . v J x + curl u curl v dx =\ î.\dx, Vv e Ho( curl, X2 ) (10)

dt ia JQ ia

divu = 0in£2 (11)

with the initial conditions

u(0) = u0, ^ ( 0 ) = U l . (12)

M2 AN Modélisation mathématique et Analyse numérique
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RESOLUTION OF THE MAXWELL EQUATIONS 363

PROPOSITION 3.2: Let f e L2( [0, T] ; H( div 0 ; Q ) ), u0 G V and ux G H( div 0 ; Q ). TTien problem (10)-(12)
admits a unique solution u such that u e C°( [0, T] ; V) n C*( [0, T] ; //(div 0 ; 42) ).

Proof: Apply the variational theory of Lions-Magenes [31], Tome 1, p. 286. •
Remark 3.2: As in the case of the steady-state problem, the more gênerai problem where (6) is replaced, for

g e C 2 ( [ 0 , r ] ; L 2 ( f 2 ) ) , by

div u = g in Q ,

and the compatibility condition div f = 0 is replaced by

% - div f = 0 in Q
dt2

can be brought back to a problem of type (5)-(9). Indeed, taking w = u - Vy/ where y/ is the unique element
of H\(Q) such that Ay/ ~ g, w belongs to V and vérifies

dt2 dt2

4. DECOMPOSITION OF THE SOLUTION INTO A REGULAR PART AND A SINGULAR PART

4.1. Space décomposition

LEMMA 4.1: The L -norm of the curl defines on V a norm which is equivalent to the canonical norm of
H(curl,fi).

Proof: It is clear that for all v G V we have

|| curl v || L2 ^ || v || L2 + || curl v || L2.

For the other inequality, we associate to any v G V its stream function <p G 0/U such that curl <p = v, and we
have curl v = curl curl q> = - Acp. It results, multiplying by <p and using a Green formula, that

V(p , V<p dx = curl \<p dx ^ || curl v || L2 || ç? || L2,

which yields, using the norm équivalence, cp •-» ||Vç?||£2 and ç? >-̂  | | ^ | | H i in Hl(Q)/U, see theorem 1.9,
chapter 1 of [23]: 3 ^ > 0 such that

Then as

we finally get that

||v||L2+ || curl v || i 2 ^ (1 + ^ ) || curl v | | i 2 .

vol. 32, n° 3, 1998
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Remark 4.1: A similar resuit has been proved by Grisvard [26] for the space 0IH. Here, the norm
i

(p »-> || A<p || L2 is equivalent to the canonical norm on &/R, i.e. (p •-> ( || ç> || Rx + || Aq> || L2 )2. M

COROLLARY 4.1: Endowing 0/M. with the L -norm of the laplacian and V with the L -norm of the curl, the
isomorphisms defined by lemma 2.1 preserve orthogonality.

We shall assume in the sequel that V and 0/M are endowed with those norms.

DÉFINITION 4.1: We shall dénote by curl VR the image of the space VR by the curl operator.

LEMMA 4.2: The space VR and curl V̂  are closed in V and L2
Q{ Q ) respectively.

Proof: Thanks to a result of Costabel [16] (see also Moussaoui [32]), we have for all v e VR,

The claimed closure properties then result of the completeness of Hl( Q ) for its canonical norm. •

DEFINITION 4.2: We shall dénote by A0R the image of &R by the Laplace operator and we let
N = (curl VR)\

LEMMA 4.3: The space curl VR is identical to A0R and the space N is of dimension 1. We have the direct
orthogonal sum

L2
0(Q) = cwl VRè> N.

Proof: Let v e V .̂ An element <p e 0 can be associated to it using isomorphism 2 of lemma 2.1. As
v G Hl(Q)2 and v = curl <p, we have V<p e Hl(Q)2 and so q> e H2{Q), which means that q> e <PR. We then
have by définition curl v = Acp, hence curl V̂  is included in A&R. In the same way, to q> e &R, we can associate
v e V̂  to show the converse inclusion. As A<PR — curl V̂  is closed, we have by denoting 7V= (curl V/?)

± the
following orthogonal décomposition

= curl VR 0 N .

By définition, for p G N we have

A<p p dx = 0 V#? G cẐ  .

It follows that Ap = 0 in the sensé of distributions. On the other hand, we can write a double Green formula

(see theorem 1.5.3 of [26]) and define the trace of -r^ on each segment F of the boundary F in the space

(Hgo( Fj ) y. We write in a "condensed" (and abusive) manner that -r̂  is in H~ â( F), and as ̂  = 0 we also find

that r^ = 0 on the boundary. Finally, N is the vector space of functions p G LQ( £2 ) such that

Ap = 0 in Q ,

^ = OonT.

It has been proved in Grisvard [26], theorem 2.3.7, that AT is a one dimensional vector space. •
Remark 4.2: According to lemma 2.3.2 (i) and to theorem 2.3.3 of [26], p has to satisfy sortie compatibility

conditions at the corners. We shall not describe these conditions here, knowing that they are automatically satisfied
by the local expressions of p (cf. infra, theorem 4.2). •

M2 AN Modélisation mathématique et Analyse numérique
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RESOLUTION OF THE MAXWELL EQUATIONS 365

The lemmas that we have proved so far allow us to state an orthogonal décomposition of vector fields into
singular and regular parts.

DÉFINITION 4.3: We shall dénote by Vs (resp. &s) the reciprocal image of N by the curl (resp. the Laplace)
operator, Le. Vs = curF 1 N and &s = A~ 1 N.

THEOREM 4.1: We have the following décompositions into direct orthogonal sums:

j_
V — y fes y

0 = 0R

S

±

Remark 4.3: The properties we give hère for the spaces V and V̂  in this section have their equivalent for the
spaces 0 and 0R. These properties have been proved by Grisvard [26] in his study of the singularities of the
Laplace problem. •

Given u = u^ + us a solution in V of (2)-(4) or of (5)-(7), we shall call regular part of the solution
nR e VRy and singular part u5 e Vs.

4.2. Regularity of the solution

In Qc, we can use polar coordinates (r, Ö) centered on the reentrant corner, with 0 < r ^ /?,
0 ^ 0 ^ - . We have:

According to a classical result that can be found for example in [26], if a function g regular outside the reentrant
corner is identical to /z(0) in Qc, with z regular and ƒ? G IR\Z, then

g e H\Q) if .y<^+ l,and

g € H\Q) if s ^ P+ 1 .

THEOREM 4.2: A function u of V\VR belongs to Has(Q ) 2 for all e > 0 and does not belong to Ha{ Q ) 2 , where

— is the value of the angle at the rentrant corner ( -~ < et < 1 j .

Remark 4.4: This result précises the gênerai regularity result u G Hy2{Q)2
y obtained by Costabel [15] in any

polyhedra. •
Proof: Such a u can, according to theorem 4.1, be decomposed into two parts, one being in Hl(Q)2, the other

(non zero) part being in the less regular vector space V̂ . According to lemma 2.1, Vs is of dimension 1.
According to lemma 2.3.4 of [26], the functions of iV are regular outside a neighborhood of the corners. If we

call \s an element of Vs, there exists ps e Af such that curl \s - ps. As moreover div \s = 0, we deduce that
Avs = curl/?5. ps being regular outside corners, this is also true for \s. The regularity of u will hence be that
of any element of Vs in the neighborhood of these corners.

vol. 32, n° 3, 1998



366 F ASSOUS, P CIARLET Jr, E SONNENDRUCKER

By définition of Vs, ït is natural to start by studymg the behavior of the functions of TV near the corners For
that, we consider first the neighborhood of the reentrant corner For all the other corners, ït will suffice to substitute

a ' to a, where —r is the value of the angle at the considered vertex (in particular, we always have OL' > 1 )

S o we are looking for the functions S0 solution of
Find S° e L (Qc) non vanishing such that

AS° = 0mÜ\ (13)

^ = Oonr\ (14)

5° not belonging to Hl(Qc) Note that the solutions of (13)-(14) form a vector space Using the method of
séparation of variables (mathematically justified in [26]) we find that all the terms of the séquence

are solution of (13) (14) As rn0L cos (naO) e L2(QC) if and only if n ^ - 1 and as it belongs to Hl{Qc) for
n ^ 0, S0 can be wntten

S°(r,0)= 2 Anr
na cos (naO), withA_ x * 0 (15)

n =* 1

As iV is a one dimensional vector space, the coefficients (An)n ^ _ 1 are ail related when S0 is actually
considered to be the restriction of an element of N (see subsection 5 1) The functions of Vs can be deduced from
those of N by a liftmg with the operator curl Thus, knowing S0, we define S a local singular lifting of S , î e

Find S ^ L (Qc) non vanishing such that

curl S1 = S0 in Qc, (16)

divS1 = 0 in i2 c , (17)

S1.T = 0 a n r c , (18)

S1 not belonging to H (Qc) Note that the solutions of (16)-(18) form an affine space, the associated vector space
being the curl free functions venfying (17) and (18) A particular solution of (16) (18) is

r „« + i /V^T4 s m ( w a é ? )

This particular solution belongs to H1(QC )2 The homogeneous solutions are themselves the terms of the séquence

Hère both components belong to L2(QC) if and only if n ^ 1, and they belong to Hl(Qc) for n 5= 2 Hence

0 9 ,
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RESOLUTION OF THE MAXWELL EQUATIONS 367

Thus, the least regular term, corresponding to n — 1, can be wntten ra ~ l z(0) it belongs to HS(QC) for
s < a and does not belong to Ha{ Qc )

In a neighborhood of the other corners, we notice easily that the functions of N can be expressed locally as

2 A'nr'na cos (n'a'6')
n ^ 0

As a'> 1, we must notice here that the condition according to which the function belongs to L implies that
the sum starts at n' = 0 In particular, the solution belongs to H

Concermng the local behavior of the functions of Vs, ie the lifting (16)-(18), we venfy first that each
component of the particular solution is in H2 As for the homogeneous part, it can be wntten

/smU'a'ö') \

Hence each of lts component is locally in Hl

In short, the regulanty of the functions belongmg to Vs is the one at the neighborhood of the reentrant corner,
this means that they belong to H\Q) for s < a but not to Ha{Q) •

Remark 4 5 S0 belongs to L2(QC) by définition, which means that (S0)2 dx < °o After some algebra,

we obtain

In particular, we deduce that for s > 0, there exists C( s ) such that,

V(r,0)e ] e , K - e [ x [ O , ! ] , | S ° ( r , 0 ) | < C ( 6 )

In the same way, as S1 belongs to L2(QC) , we obtain, for s > 0, the existence of C(e ) such that,

V ( r , 0 ) e ] s , t f - f i [ x [ 0 , g ] , H S 1 ^ ) ! ! < C'(e)

m
COROLLARY 4 2 Let (p e 0 be the antecedent (defined up to a constant) of u by the isomorphism curl,

u e V\VR Then, <p belongs toHl + a~e(Q) for alle>0 and does not belong to H1 + a(Q ), where ̂  is the value

of the angle at the reentrant corner ( ̂  < a < 1 j
Proof We deduce from theorem 4 1 that 0 = 0^ + <ps, with 0^ G ^ and <ps G 3>5 Moreover, (ps is solution

of the followmg problem, for ps E Af

S e Hl(Q) such that

- A<ps = psmQ , (20)

~jf = 0onr (21)

According to remark 2 4 6 of [26], <f>s G H1 + Œ " e( Q ), for ail 2 > 0, and <ps <£ H1 + a ( Q ) M

vol 32 n° 3 1998



368 F ASSOUS, P CIARLET, Jr, h. SONNENDRUCKER

Remark 4.6: This resuit précises corollary 23.5 of Dauge [19], in the case we are interested in; in this corollary,
it is proven that there exists a non négative constant ôN depending only upon Q such that <p G H3/2 + N(Q)7 for
the Laplace problem with a Neumann boundary condition on a polygonal open domain with right-hand-side in
L\Q). m

COROLLARY 4.3: Ail stream fonctions of 0 belong to C°(Q).
Remark 4.7: In the case when the domain is in R2, recall that Hl(Q) <£ C°(Q). •
An explicit expression of <ps can be obtained m a neighborhood of the reentrant corner. Indeed, the solution

S2 of
Find S G H (Qc) non vanishing such that

^ - 0 on Ie , (22)

and, equivalently,

either curl S2 = S1 in Qc, (23)

and S2 not belonging to H2(QC), is of the form

or - AS2 = S0 in Qc, (24)

S2(r9 #) = - ^V — rnoL cos (na0) - V A" r
na + 2 cos (na6) . (25)

na é ! 4na + 4
1 n S — 1

Remark 4.8: S2 belongs to Hl{Qc) by définition. Hence, for e > 0, there exists C"(e) such that,

The f act that its gradient is bounded is a direct conséquence of (23). •

5. COMPILATION OF THE SOLUTION

5.1. Détermination of a basis of AT

The space Af being of dimension 1, we only need to exhibit a non vanishing element of Af. We shall dénote it
by Ps- We recall that & stands for the arc of circle of radius R being in the domain Q. The computation of
ps uses the method called "Dirichlet-to-Neumann (DtN)" by Keiler and Givoli [28]. This method, developed
initially in order to bring a problem posed on an infinité domain back to a bounded domain for numerical purposes,
has then been extended to handle singularîties at reentrant corners (see [24]). We find hère a particular case of
the theory of Steklov-Poincare operators (see Agoshkov [1]). The method can be split up into three steps:

1. Analytical computation of the singular local solution in the neighborhood of the reentrant corner.
2. Détermination of the Dirichlet-to-Neumann operator in order to obtain, with the help of the transmission

conditions, the boundary condition for the outer problem on ^ .
3. Numerical resolution. First, of the outer problem, whose solution is then exactly the restriction of the

solution of the initial problem. Then, numerical reconstruction of the solution in the neighborhood of the reentrant
corner, using again the transmission conditions.

Remark 5.1: This method offers a double avantage. First, it yields an explicit expression of ps (see (31)) in the
neighborhood of the reentrant corner. On the other hand, ps being smooth enough away frora this corner, a
variational formulation can be used to find it there (see (36)-(38)). Fmally, the explicit knowledge of ps will enable
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RESOLUTION OF THE MAXWELL EQUATIONS 369

us to preserve the orthogonality in V and 0 between the regular and singular parts of u and 0, which is not the
case if we regularize "locally", i.e., if we substract from p s the term A x r~ a cos ( aö) rj( r ) , where rj is a regular
cut-off function (cf. [26], theorem 2.4.3). •

More precisely, in order to détermine a basis of N, we are looking for ps a non vanishing solution of:

Find ps e LQ( Q ) such that

Aps = 0 in Q , (26)

Ap„
^ = 0on/\ (27)

The restriction of ps to Qc, denoted by pc
s, vérifies in particular (13)-(14). We have previously computed (see (15))

a family of local solutions S° in L2(QC) : 5°(r, 6) = 2 An r™ cos (naO). This will enable us to complete
point 1 (computation at the neighborhood of the reentrânt corner). Indeed, we shall express each of the An as a
function of the trace of S° on ^ , by using the orthogonality of 6 »-> cos (maö) for the different m ^ 0. Thus,
by integrating 5 (R, 9) cos ( maö ) from 0 to n/a in 9, we obtain:

J
I 2 n

n a ) cos (ma9)d6 = j ^ R m o t A m , (28)
o l J

m = 1 , - 1 f { V AnR
naco$(na9)X cos (a9)d9 = 7^ (R~aA_x+R^A^, (29)

m = 0 { S An/?"acos(naÖ)| d6 = -A0. (30)

/?^ can hence be written as

2 \rna cos (naö), (31)
n £ - 1

with, for n ^ 2 :

711 Jo
cos («aff) dB . (32)

The value of Aö is given by (30). However, the value of either A_ 1 or Ax is undetermined, as we can not solve
(29). To overcome this problem, we simply add the relationship

r dpç -T
-r- ( R, 9 ) cos ( aÖ ) d9 = TT-B ( — R

Jo a v 2K (33)

This, together with (29), removes the indétermination. Therefore, we can choose to express Ax as a function of
A_ v which does not vanish by définition:

A! =—/?"" pc
s(R, ö)cos(aÖ) d9-R~2oLA_l. (34)
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