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FINITE ELEMENT METHODS FOR THE THREE-FIELD STOKES
SYSTEM IN R*’: GALERKIN METHODS (*)

by V. Ruas ()

Résumé — Dans cet arncle, on introduit plusteurs méthodes d’éléments finis, pour la réso-
lution du systéme de Stokes a trots champs, associé a l’écoulement de fluides viscoélastiques dans
l’espace a trois dimensions Toutes les méthodes proposées sont fondées sur la formulanon de
Galerkin standard, et des résultats complets de convergence a l'ordre un ou deux sont donnés
pour la plupart d’entre elles

Abstract — In this work several new finite element methods for solving the three-field Stokes
system associated with viscoelastic flow problems in three-dimension space are introduced The
methods presented are based on the standard Galerkin formulation, and complete proofs of first
and second order convergence for the corresponding approximations are given for most of them.

1. PRELIMINARIES

Before starting the study 1itself we first consider in this section some general
aspects of the work, together with its motivation. Besides we give here an
outline of the paper and a list of the notation used in the subsequent sections.

1.1. Introduction

In the framework of the convergence study of linear variational problems of
non coercive type approximated via finite elements, one 1s essentially led to
a stability analysis of the corresponding discrete problem. Two techniques are
basically being employed in order to construct stable solution methods. The
first one called here the technique of stable methods 1s based on the use of the
same Galerkin formulation as for the continuous problem. This approach
requires that the interpolation of the different unknown fields satisfy compat-
1bility conditions, namely the so-called inf-sup conditions or yet in some cases
the Ladyzhenskaya-Babuska-Brezzi conditions. In this case it is often neces-
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490 V RUAS

sary to choose representations of some of the discrete unknown fields involv-
ing locally defined polynomuals such as the so-called bubble-functions of the
elements These play mainly the role of ensuring stability and 1n general they
add practically nothing as far as accuracy and order of convergence are
concerned In the second approach called the technique of stabilized methods
one attempts to satisfy the very same inf-sup conditions with classical piece-
wise polynomuial representations However in this case the stability of the
method 1s attained through the use of a modified varational form in the
discrete case by adding some terms which may depend on the mesh step size
In so doing the corresponding methods will be stable if some numerical
parameters mnvolved 1n such formulation satisfy appropriate conditions

This work deals with the approximmation of the three-field Stokes system by
the first type of techmique For some new methods of the Galerkin-least-
squares type, applied to the same problem, the author refers to another recent
work of his [35] Let us recall that this system 1s the linearized form of several
non linear problems In particular its study 1s essential for deriving efficient
approximation methods of the systems of partial differential equations that
govern viscoelastic flow, since 1n this case the three unknown fields, namely,
the velocity, the pressure and the extra-stress tensor are helplessly coupled
Thas study 1s 1llustrated in detail through the convergence analysis of a second
order method for the three-dimensional case treated with tetrahedral meshes,
based on the technique of parametrized degrees of freedom introduced by the
author about ten years ago Additionally, some new first order methods are
proposed and treated 1n abbridged form

As 1t should be stressed, in the present state-of-the-art both the study and
the use of three-field finite element methods for solving this class of problems
are cipient as far as the three-dimensional case 1s concerned This 1s
particularly true of methods with a discontinuous pressure Since this approach
1s generally considered to be the most efficient way to satisfy the mass
conservation 1n the flow, the present work brings about a contribution 1n this
sense, as 1t deals with methods that fall into this category

Generally speaking, this work attempts to present a number of methods
involving reasonable computational costs for three-dimensional systems of
this class, 1n which the number of scalar unknowns is as high as ten

1.2. Motivation

Let us now briefly review the system of partial differential equations that
mainly motivates the study carried out 1n this work, namely the one describing
the flow of a viscoelastic liquid 1n a region 2 of the space considered to be
a bounded open set with boundary 92 These systems are derived on the basis
of conservation laws of Continuum Mechanics, complemented with a consti-
tutive law for the fluid assumed here to be of the differential type
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THE THREE-FIELD STOKES SYSTEM IN R’ 491

We consider as a model problem only the case of 1sothermal flows, and of
stable and incompressible fluids, which means that 1ts physical and mechanical
characteristics such as density, viscosity, among other parameters, do not
change with the position of 1ts particles. It 1s 1mportant to stress that such
circumstances effectively occur in a wide spectrum of applications such as
njection molding with melt polymers among other complex materials. The
time-dependent, non 1sothermal and non stable cases may be treated as simple

variants of this basic problem and an illustration of this assertion may be found
in [1]

_9
Now under the above assumptions denoting by u the velocity field, p the

hydrostatic pressure and by t the Cauchy stress tensor of the fluid given by

3
1y=1

t=0-pl t={1}

where [ 1s the 1dentity tensor, and o 1s the extra stress tensor, 1n a rather general
way, the motion of the fluid under the action of body forces ?, 1s governed

-
by the following system (c¢f (7, 11, 18, 37], where x = (x,, x,, x3) represents
the cartesian coordinates of the space R

3 - s
pzlu,aa—xu—dW'rz?
1= ]

t'=t=0-pl

(Momentum Equations ) ()

._)
div u =0 (Mass Conservation Law ) 2)

o+ Byo=2n[e(u)+ D, e(u)]
( Constitutive Law of the Differential Type )(3)

where

. 8(7) = [g—rzl 7 + (g_rzzl 7 )'1/2 is the strain rate tensor,

e p 1s the density of the fluid ;

e 7 1s the viscosity of the fluid
%,1=0,1, denotes an objective material derivative (nonlinear) operator
(¢f. [4]), which means that 1ts expression 1s invariant with respect to the frames
which the tensor 1s referred to

In most of the applications the fluid flow 1s sufficiently slow or equivalently
the Reynolds number 1s low (¢f [13]), so that the (inertia) term involving p
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may be neglected 1 equation (1) In so doing, the system of equations that
govern the motion of the wviscoelastic liquid 1n terms of the fields

—>
(o, u, p) (admtting that law (3) implies that ¢ 1s symmetric) reduces to

— —>

- d1va+gradp=?

o+ Dyo=2nle(w)+ D, e(u)] @
ldw—;:O

As far as boundary conditions for (4) are concerned, for the sake of
simplicity and omitting eventual conditions on o (see e g [24]), we will

consider the case where the velocity field 1s entirely prescribed on the

boundary, that 1s
- -
u=4g

on 4R )

%
where g 1s a field satisfying the global conservation property

f 9 .7ds=0,
a2

-
n being the unit outer normal vector with respect to 9£2

In any case the three-field Stokes system results from the linearization of (4)
mn the limiting case where the terms involving the operators %, and &, may

be neglected Our approach then 1s the study of approximation methods of the
three-field linear system

p
— —
d1va—gradp=—?m 2
%

o=2ne( u) m Q

o (6)
divu =0 m 0
\7=—g-> on 4R

aiming at applying them to the case of the non linear system (4)-(5) Although
we can only conjecture here that any convergent solution method of system (6)
1s also convergent when applied to system (4)-(5), 1t 1s possible to assert on
the basis of Baranger & Sandrt’ pioneer work (see [6] and references therein),
that at least for Oldroyd models 1e %, =a%, ac R, see eg [11)),
under the conditions allowing the convergence of certain type of finite element
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THE THREE-FIELD STOKES SYSTEM IN R 493

approximations of system (6), the very same types of approximations converge
as well. This is particularly true of second order triangular elements that
become actually accurate to the order 3/2 in the nonlinear case [6]. Since we
will study more particularly second order tetrahedral methods for system (6)
one may legitimately conjecture that their convergence properties are main-
tained in the case of Oldroyd models, although some loss in order of
convergence is to be expected.

1.3. Outline of the paper

As we are going to study finite element methods to solve the three-field
Stokes system (6), we first recall in Section 2 some general results about the
approximation of linear variational problems. Next in the same section we
introduce the variational form under which we will consider system (6) in this
work. More specifically we will deal with the standard Galerkin formulation
for which we shall search for stable finite element methods. Additionally in
Section 2 we exhibit the conditions to be satisfied by a finite element method
to yield convergent approximations with an appropriate order.

In Section 3 we study in detail a second order stable approximation based
on a finite element method for solving the three-dimensional two-field
(velocity-pressure) Stokes system introduced by the author in [29]. The
method is optimal in terms of the discrete representations of the three fields,
at least as far as local stability analysis are concerned.

Following this detailed study we briefly present in Section 4 some first order
three-field finite element methods for the Galerkin formulation too.

1.4. Notation

Before starting our study let us specify the notation used in the text that
cannot be considered as universal. At the same time we recall some classical
definitions related to Sobolev spaces (see e.g. [2]).

Let S be a measurable bounded set of R", n=1,2,3, Sc £, and
x =(x;, X, ..., x,) be the space variables related to a cartesian coordinate
system.

® Jis denotes the restriction to S of a function f defined in Q or on a subset
of Q that contains S.

e (f|g)s denotes the standard inner product of Lz(S) given by
(fl&)s = Lfg s Yf,ge LX(S),

and | . |i, ¢ denotes the associated norm, i.c., {|flly s= (ﬂf);’z.
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|S | represents the measure of S, that is,

|S]=J.dS.
N

For m € N, H"(S) denotes the usual hilbertian Sobolev space equipped
with the standard inner product denoted by ( . |. ), s and associated
norm denoted by || . ||,

For H™(S) the seminorm involving only the derivatives of order m is
denoted by |v],, s

S being a sufficiently smooth domain of R", with boundary 9§ of
piecewise C' class, H(l,( S) is the closed subspace of H'(S) consisting of
those functions whose trace over dS vanishes a.e., normed by |. |, ¢
(cf. [8D.

Whenever S is €2 itself we shall omit dS in the above integrals, and
symbol S in the above defined norms, seminorms and inner products.

Lg(S ) is the closed subspace of L*(S) of those functions f such that
J‘ fdS=0.
s

V being a function space, 7 denotes the space of fields

%

v =(v,,0,0;) such that v, e V, i=1,2,3, and V and V; denote
respectively the space of arbitrary and symmetric tensors {ry}i ;=1 such
that 7, € V, Vi, j e {1,2,3}.

- - . - - .
u and v being two R’ valued vector fields, u . v denotes their

euclidean inner product, that 1s

3
- -
WU =>uv,
=1
—> - —.un
fu|=Cu.u)™
7 and o being two 3 X 3 tensors their inner product and associated norm
are defined by :

g.T=

3 3
=1

2 0',] le

J=1

o] = (o o).
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THE THREE-FIELD STOKES SYSTEM IN R’ 495

e The notations (.]|.)s, (.]- dms and |0, ¢, |- I, s and
_>

((C-|+)); s will naturally extended to the spaces L*(S), ﬁm(S),

ﬁ“(S), ﬁ(l)(S) and to L%(S), L;(S), H"(S), etc. as well, which means

that in the definition of the inner product of these spaces the product

appearing in the integrals are to be replaced by vector or tensor inner
products, respectively.

e E being a normed vector space with norm | . ||, S; denotes the unit
sphere of E, namely

S;={elec E and el =1}.

- - - > -5
eFor xeQ and ce R, 6>0, B(x,e)={y e R"/|x — y|<e}

2. VARIATIONAL FORMS

In this Section we will first present the basic and general functional
background which the convergence analysis of the methods to be studied in
the next two sections relies upon. Next we consider the particular case of the
Galerkin formulation used in this work. Without any loss of generality
henceforth we take #n = 1/2.

2.1. Functional Background

As we will see later on, system (6) will be written in a variational form of
the following type.

Let

(i) Z be a Hilbert space with inner product ( . | . ), and associated norm
(P

(ii) a:ZxZ —> R be a continuous bilinear form, which means that
dM > 0 such that

a(y,z) S Mlyliz izl Vy.ze Z;

(iii) L:Z — R be a continuous linear form.
By definition,

lall = sup a(y,z).

¥, 2€ Sy
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496 V. RUAS
The variational problem to be considered is :

Find y € Z such that
( a(y,z)=L(z) Vze Z.

For problem ( £ ) we have the following well-known result due to Babuska
[5] and extended and refined by Dupire [12].

THEOREM 2.1 ([5, 12]) : Under the assumptions (i)-(ii)-(iii) there exists a
unique solution y to problem () if and only if

(iv)3a>O0suchthatVye Z sup a(y,z) = allyll,

ze S,

(v)Vze S, 3ye Z, such that a(y,z)>0. H

Notice that if a is symmetric, condition (v) is a simple consequence of
condition (iv).

Suppose that one wishes to determine approximations y, of the solution y
in a family {Z,}, of finite dimensional spaces that have suitable approximation
properties vis-a-vis Z. The subscript 4 of the family of spaces is supposed to
sweep a non finite set with the same cardinality as N. Assume also that % is
strictly positive and that it varies decreasingly tending to zero.

Although a priori the converse situation would be desirable, in the cases to
be considered in the next section for each A, Z, will not be a subspace of Z.
Otherwise stated we will be dealing with non conforming approximations of
y. In this way it is not possible to guarantee in general neither that a is defined
over Z, X Z, nor that L is defined over Z,. Moreover the norm | . ||, will not
necessarily be defined over Z,. All this leads to the following additional
definitions :

(i), For each h, || . ||,:Z,+Z — R is a norm that satisfies

lzll,=lzll, Vze Z.

In so doing we further introduce :
(ii), A bilinear form aq,:(Z,+Z)x(Z,+Z) > R uniformly con-
tinuous in the sense that 3M” independent of A such that

a(y,z) s M’|lyll, llzl, Vy.ze Z,+Z

and
(iii), A linear form L, : Z, — R necessarily continuous.
Analogously we define :

”ah” = sup a,,(ys Z) .

Y.2€ Sz,.2
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THE THREE-FIELD STOKES SYSTEM IN R® 497

Now the family of approximate problems that we wish to solve is
(2,), where

Find y, € Z, such that
(Z) =L(z) VieZ
a, (¥ 2) w(2) 2€ 4.

The main issue to be addressed is how to estimate the error y — y, measured
in the norm || . ||,. However in order to do so it is necessary to study
beforehand the existence and uniqueness of the solution of (£, ). The answer

to both questions may be obtained by applying the following result slightly
adapted from Dupire’s [12] (see Remark 2.1).

THEOREM 2.2 ([12]) : Under assumptions (i),, (ii), and (iii), Z, being a
finite dimensional space Vh, (2,) has a unique solution y, if and only if
(iv), 3a, >0 such that Vye Z, sup a,(y.z) = o,lyl,

z€ Sy,
Furthermore the following estimate holds

uy—yhu,,sail[ua,,u inf [ly —z||, + sup |a,,<y,z)—Lh<z>|]. %

z€ Z, 2€ Sy,

|

Remark 2.1: As Z, is a finite dimensional space we may disregard a
condition analogous to (v) for problem (£,). Indeed in this context (iv),
ensures that any matrix associated with form g, and space Z, is invertible. This

clearly suffices to establish both existence and uniqueness of a solution to
(Z,)- 1

2.2. The case of the three-field Stokes system

Let us now go back to the main purpose of our study, that is, the
approximation of the three-field Stokes system (6).

First let us set it under form (£ ) and for this purpose we assume that
_%
7 e L?*(£). On the other hand, in order to simplify the notation we shall

. - > - . .

only consider the case where g = 0. The case where g is arbitrary may be
treated in an entirely analogous way, after performing non essential modifi-
cations in the analysis that follows.

The unknown z of our problem is the triple (o, u, p) which will be
searched for in space

Z=L¥Q)x H\( Q) x LA Q).
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This space equipped with the natural norm

e T ), = LIe12+ |77 + 1912]"

is a Hilbert space. It is also so for any other equivalent norm such as the one
to be considered in Section 3.

In so doing the problem to solve is :

Find (o, _z? p) € Zsuch that
(2)

a((o, 4, p). (1.0, q))=L((z. v, q)) V(1. D.q)eZ

where
a((o, u,p) (1. 0, q)) = (a|t) + (p|div v ) = (z]e( %))

+(qldiv i) = (ale(V)) (8)

and

L((x. . q)=-(F|7). ©)

One can easily prove that every solution of (£ ) is a solution of (6) with
- = . .
g = 0, in the sense of distributions and conversely, under certain regularity

assumptions on 2, every solution of (6) with ? = ~(5) is a solution of
(2).

On the other hand, the fact that ( £ ) has a unique solution is a consequence
of well-known results in connection with Theorem 2.1. Referring to the
author’s recent work [30] for further details let us just say here that, since form
a given by (8) is symmetric, condition (iv) related to (£ ) is equivalent to the
following ones :

(vi) 38> 0 suchthat Vg e L(Z)(Q) sup f qdiv7 = Bligll,
—

v € Siijay

(vii) 3f'> Osuchthat Vo e U sup f (V)= RIT N,
2

TE s|,§m)
where

7:{?]?6 71)(1)(0) and div?:Oa.e.inQ}.
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THE THREE-FIELD STOKES SYSTEM IN R® 499

The first condition is nothing but the classical LBB condition (see e.g. [21],
[51, [9]) for the Lagrange multiplier associated with the restriction

div # =0. It is satisfied according to [19]. The second one was identified by
the author in [28] as a necessary condition in a more restrictive form exploited

in [16], and was given as such in [30] and [36]. It is actually a consequence
of :

sup f 128(7)3——-1—-—-—-" 8(_1_7)).'8(_0_))‘:
Q o

%
€ Sk leCv )l
- av \2 av, v ) "2
SEHIRORER .
,_1=12 a axj anjax,

By classical density arguments, and by using integration by parts, taking into
account that v, =0 a.e. on 992 for every i, we derive

sup fr:e(?)?ﬁ’]?[l with b”:-\%z.
@

7€ Sp )

Remark 2.2 : The above calculations establishing that

|71, =V21e(V ), V¥ e H(2) Ker (div)

are well-known. This relation is actually a particular case of Korn’s second

inequality (cf. [14]), stating that 3K, >0 such that V? € ﬁ‘(!)) that
vanishes a.e. on a portion of d€2 having non zero measure, then

leCO ), <[], < K lle( O, -

However for fields belonging to a finite element subspace not included in

ﬁl( £2) these relations do not necessarily hold. This will be precisely the case
of a velocity space studied hereafter and in principle it will be necessary to
prove equivalence of both norms in the corresponding discrete version. Such
results are called discrete Korn’s second inequality and although this is not
strictly necessary a proof of it is given in [35] for this space. W

Let us now switch to the discrete version of (£ ) to be considered in this
work. For this purpose let us consider that £ is a domain having a polyhedral
boundary.
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Let {ET,,},, be a family of partitions of € into tetrahedrons respecting the
usual conditions required for applying the finite element method (cf. [10]). In
particular, if 7 denotes a tetrahedron of 9,1 (considered here to be an open set)
and defining for every bounded open set S of R’

- -
hy= sup |x — y| and pg= _ sup {e}
x,ye S B(x.e)c S, xe§

we set as usual

h=max h, and p= min p,.
Te J, Te T,

Next we assume that family {J,}, is quasiuniform (cf [10]), i.e. :

de > 0 independent of A such thatp > ch  Vh.

Let us associate with every partition J, three finite dimensional spaces
T,, V, and Q, in such a way that T, 7,1 and Q, are the respective discrete
analogues of Lf(Q), H(’)(Q) and Lg(Q), in which we will search for

- -
approximations ¢,, u, and p, of g, u and p. In the cases considered in this
work we have T, c Lf(Q) and Q, C L(Z)(Q) Vh, but not necessarily

T/)h c ﬁ('}(Q ). In this way among other possibilities the norm || . |}, that we
have selected here for Z, =T, X 7,, X Q, is the one given by:

(s, ), = Lhel2 + 1e(O) 2, + 1gh2)™? (10)
where
IR, ,=(R|R),”* with (R|S),= Eg (R|S);, (an
Te »

whereby R and S are a pair of functions, vector fields or tensors defined in each
element of J,, whose components belong to LY(T)VTe I, Notice that this

—_—
will be the case of —l?[r or of (grad ?)IT and a(?)lT Vo e 7,,‘.
— - 2. =
Remark 2.3 : As we assume that Vv € —\—/)h, ve C(T)VTeJ,, we

. . —> = 2
will abusively denote by grad v the tensor of L°( ) defined by

— —>
(grad ©)p=grad (V);) VTe 9,
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