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MATHEMATICAL MODELUNG AND NUHERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol 30, n° 4, 1996, p 489 à 525)

FINITE ELEMENT METHODS FOR THE THREE-FIELD STOKES
SYSTEM IN R3: GALERKIN METHODS (*)

by V. RUAS C)

Résumé —Dans cet article, on introduit plusieurs méthodes d'éléments finis, pour ta réso-
lution du système de Stokes à trois champs, associé à l'écoulement de fluides viscoélastiques dans
l'espace à trois dimensions Toutes les méthodes proposées sont fondées sur la formulation de
Galerkin standard, et des résultats complets de convergence à l'ordre un ou deux sont donnés
pour la plupart d'entre elles

Abstract —In this work several new finite element methods for solving the three-field Stokes
System associated with viscoelastic flow problems in three-dimension space are introduced The
methods presented are based on the standard Galerkin formulation, and complete proofs offirst
and second order convergence for the corresponding approximations are given for most of them.

1. PRELIMINAIRES

Before starting the study îtself we first consider in this section some genera!
aspects of the work, together with its motivation. Besides we give hère an
outline of the paper and a list of the notation used in the subséquent sections.

1.1. Introduction

In the framework of the convergence study of lmear variational problems of
non coercive type approximated via finite éléments, one is essentially led to
a stability analysis of the corresponding discrete problem. Two techniques are
basically bemg employed in order to construct stable solution methods. The
first one called here the technique of stable methods is based on the use of the
same Galerkin formulation as for the continuous problem. This approach
requires that the interpolation of the different unknown fields satisfy compat-
ïbility conditions, namely the so-called inf-sup conditions or yet in some cases
the Ladyzhenskaya-Babuska-Brezzi conditions. In this case it is often neces-
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490 V RUAS

sary to choose représentations of some of the discrete unknown fields învolv-
îng locally defined polynormals such as the so-called bubble-functions of the
éléments These play mamly the rôle of ensunng stabihty and in gênerai they
add practically nothing as far as accuracy and order of convergence are
concerned In the second approach called the technique of stabihzed methods
one attempts to satisfy the very same inf-sup conditions with classical piece-
wise polynomial représentations However in this case the stabihty of the
method is attained through the use of a modified vanational form m the
discrete case by adding some terms which may depend on the mesh step size
In so doing the corresponding methods will be stable if some nu mène al
parameters involved in such formulation satisfy appropnate conditions

This work deals with the approximation of the three-field Stokes System by
the first type of technique For some new methods of the Galerkin-least-
squares type, apphed to the same problem, the author refers to another recent
work of his [35] Let us recall that this System is the lineanzed form of several
non linear problems In particular lts study is essential for denving efficient
approximation methods of the Systems of partial differential équations that
govern viscoelastic flow, since in this case the three unknown fields, namely,
the velocity, the pressure and the extra-stress tensor are helplessly coupled
This study is îllustrated in detail through the convergence analysis of a second
order method for the three-dimensional case treated with tetrahedral meshes,
based on the technique of parametnzed degrees of freedom introduced by the
author about ten years ago Additionally, some new first order methods are
proposed and treated in abbndged form

As ît should be stressed, in the present state-of-the-art both the study and
the use of three-field finite element methods for solvmg this class of problems
are incipient as far as the three-dimensional case is concerned This is
particularly true of methods with a discontinuous pressure Smce this approach
is generally considered to be the most efficient way to satisfy the mass
conservation in the flow, the present work bnngs about a contribution in this
sense, as it deals with methods that f all into this category

Generally speaking, this work attempts to present a number of methods
ïnvolvmg reasonable computational costs for three-dimensional Systems of
this class, in which the number of scalar unknowns is as high as ten

1.2. Motivation

Let us now briefly review the System of partial differential équations that
mainly motivâtes the study carried out in this work, namely the one describing
the flow of a viscoelastic hquid in a région Q of the space considered to be
a bounded open set with boundary dQ These Systems are denved on the basis
of conservation laws of Continuüm Mechanics, complemented with a consti-
tutive law for the fluid assumed here to be of the differential type
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THE THREE-FIELD STOKES SYSTEM IN IR3 491

We consider as a model problem only the case of isothermal fiows, and of
stable and incompressible fluids, which means that lts physical and mechanical
charactenstics such as density, viscosity, among other parameters, do not
change with the position of lts particles. It is important to stress that such
circumstances effectively occur in a wide spectrum of applications such as
injection molding with melt polymers among other complex matenals. The
time-dependent, non isothermal and non stable cases may be treated as simple
variants of this basic problem and an illustration of this assertion may be found
in [1]

Now under the above assumptions denoting by u the velocity field, p the
hydrostatic pressure and by r the Cauchy stress tensor of the fluid given by

x- a -pi T = {ry}3
j = 1

where I is the ïdentity tensor, and o is the extra stress tensor, in a rather gênerai

way, the motion of the fluid under the action of body forces j t is govemed

by the followmg system (cf [7, 11, 18, 37], where x = (xv xv x3) represents
the cartesian coordinates of the space IR

( Momentum Equations ) ( 1 )
i

T = T = O — pi

div u = 0 ( Mass Conservation Law ) (2)

a + S/o a = 2 rj[e( u ) + Bx e( u ) ]

( Constitutive Law of the Differential Type )(3)

where
—» —> —» —> —» T

m e( u ) = [grad u + (grad u ) ]/2 is the stram rate tensor,
• p is the density of the fluid ;
• n is the viscosity of the fluid

®^ i = 0, 1, dénotes an objective matenal denvative (nonlinear) operator
(cf [4]), which means that lts expression is invariant with respect to the frames
which the tensor is referred to

In most of the applications the fluid flow is sufficiently slow or equivalently
the Reynolds number is low (cf [13]), so that the (inertia) term mvolvmg p
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492 V RUAS

may be neglected m équation (1) In so doing, the system of équations that
govern the motion of the viscoelastic hquid in terms of the fields

(er, u, p) (admittmg that law (3) imphes that a is symmetrie) reduces to

- div a + grad p - j

a + 2iï0 G = 2 rj[s( u ) +

div u = 0

e( u ) ] (4)

As far as boundary conditions for (4) are concerned, for the sake of
simphcity and omitting eventual conditions on a (see e g [24]), we will
consider the case where the velocity field is entirely presenbed on the
boundary, that is

u = g on dQ

where g is a field satisfying the global conservation property

(5)

J dQ

n being the unit outer normal vector with respect to dQ
In any case the three-field Stokes system results from the lineanzation of (4)

in the hmiting case where the terms involving the operators !3Q and 2X may
be neglected Our approach then is the study of approximation methods of the
three-field hnear system

—?

div

o =

div

—>
u •

a

2

u

— ^
- grad p

rje{ u )

—>
9

=-7 in

in

in

on

Q

Q

Q

dQ

(6)

aiming at applying them to the case of the non hnear system (4)-(5) Although
we can only conjecture here that any convergent solution method of system (6)
is also convergent when apphed to system (4)-(5), ît is possible to assert on
the basis of Baranger & Sandn' pioneer work (see [6] and références therem),
that at least for Oldroyd models (î e 2}x-a2^ a e 1R + , see e g [11]),
under the conditions allowing the convergence of certain type of finite element
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THE THREE-FIELD STOKES SYSTEM IN IR 493

approximations of system (6), the very same types of approximations converge
as well. This is particularly true of second order triangular éléments that
become actually accurate to the order 3/2 in the nonlinear case [6]. Since we
will study more particularly second order tetrahedral methods for system (6)
one may legitimately conjecture that their convergence properties are main-
tained in the case of Oldroyd models, although some loss in order of
convergence is to be expected.

1.3. Outline of the paper

As we are going to study finite element methods to solve the three-field
Stokes system (6), we first recall in Section 2 some gênerai results about the
approximation of linear variational problems. Next in the same section we
introducé the variational form under which we will consider system (6) in this
work. More specifically we will deal with the Standard Galerkin formulation
for which we shall search for stable finite element methods. Additionally in
Section 2 we exhibit the conditions to be satisfied by a finite element method
to yield convergent approximations with an appropriate order.

In Section 3 we study in detail a second order stable approximation based
on a finite element method for solving the three-dimensional two-field
(velocity-pressure) Stokes system introduced by the author in [29]. The
method is optimal in terms of the discrete représentations of the three fields,
at least as far as local stability analysis are concerned.

Following this detailed study we briefly present in Section 4 some first order
three-field finite element methods for the Galerkin formulation too.

IA Notation

Before starting our study let us specify the notation used in the text that
cannot be considered as universal. At the same time we recall some classical
définitions related to Sobolev spaces (see e.g. [2]).

Let 5 be a measurable bounded set of U!\ n- 1,2,3, 5 c ^ , and

x = (xpx2 , ...,xn) be the space variables related to a cartesian coordinate
system.

• ƒ15 dénotes the restriction to 5 of a function ƒ defined in Q or on a subset
of Ü that contains S.

• (f\g)s dénotes the standard inner product of L2(S) given by

= \f0dS V / , £ e L 2 ( S ) ,

and II . II0 s dénotes the associated norm, i.e., ||ƒ|| 0 s = (f\f)lJ2.
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494 V. RUAS

• l^l represents the measure of S, that is,

For m e M, Hm(S) dénotes the usual hilbertian Sobolev space equipped
with the standard inner product denoted by ( . |. )m s and associated
norm denoted by || . ||m s.
For Hm(S) the seminorm involving only the derivatives of order m is
denoted by \v\mS.
S being a sufficiently smooth domain of R", with boundary dS of
piecewise C1 class, Hl

0(S) is the closed subspace of Hl(S) eonsisting of
those functions whose trace over dS vanishes a.e., normed by | . \l s

{cf. [8]).
Whenever S is Q itself we shall omit dS in the above intégrais, and
symbol S in the above defined norms, seminorms and inner products.

is the closed subspace of L2(S) of those functions ƒ such that

1fdS = 0 .
s

V being a function space, V dénotes the space of fields

v = (vvv2,v3) such that v(e V, /= 1,2,3, and V and \ s dénote
respectively the space of arbitrary and symmetrie tensors {T }f j such
that rtf e V, V i j e {1,2,3}.

u and v being two IR3 valued vector fields, u . v dénotes their
euclidean inner product, that is

2
1 = 1

i~^i / ~ * "^NI/2

• | M | = ( M . M ) .

• r and cr being two 3 x 3 tensors their inner product and associated norm
are defined by :

( a : < 7 ) 1 / 2
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THE THREE-FIELD STOKES SYSTEM IN R3 495

• The notations ( . | . ) s , ( - | . )m .5
 a n d 11-IL.s» II • IL,5 a n d

( ( • i • ))i,5 w i n naturally extended to the spaces Z?2(S), ~Êm(S),

~ÊS(S), ~Ê}
Ö(S) and to L 2 (S) , L ^ S ) , HW(S), etc. as well, which means

that in the définition of the inner product of these spaces the product
appearing in the intégrais are to be replaced by vector or tensor inner
products, respectively.

• E being a normed vector space with norm || . ||£, SE dénotes the unit
sphère of E, namely

SE = {e\e e E a n d \\e\\E= 1} .

• For ~7 e Q and c e R, e > 0, B(~x, e) = {y e Rn/fx -~y\ < e}.

2. VARIATIONAL FORMS

In this Section we will first present the basic and genera! functional
background which the convergence analysis of the methods to be studied in
the next two sections relies upon. Next we consider the particular case of the
Galerkin formulation used in this work. Without any loss of generality
henceforth we take r\ = 1/2.

2.1. Functional Background

As we will see later on, system (6) will be written in a variational form of
the following type.

Let
(i) Z be a Hilbert space with inner product ( . | . ) z and associated norm

l | . | | 2 ;
(ii) a : Z x Z —» R be a continuous bilinear form, which means that

3M > 0 such that

(iii) L : Z —> IR be a continuous linear form.
By définition,

||a|| = sup a(y,z)
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496 v. RUAS

The variational problem to be considered is :

f Find y e Z such that

(y9z) = L(z) Vz e Z.

For problem ( # ) w e have the following well-known resuit due to Babuska
[5] and extended and refined by Dupire [12].

THEOREM 2.1 ([5, 12]) : Under the assumptions (i)-(ii)-(iii) there exists a
unique solution y to problem (&) if and only if

(iv) 3a > 0 such that y y e Z sup a(y, z) ^ «
z

ze Sz

( v) Vz e 5Z, 3y e Z, such that a(y,z) > 0. •

Notice that if a is symmetrie, condition (v) is a simple conséquence of
condition (iv).

Suppose that one wishes to détermine approximations yh of the solution y
in a family {Zh}h of finite dimension al spaces that have suitable approximation
properties vis-à-vis Z. The subscript h of the family of spaces is supposed to
sweep a non finite set with the same cardinality as f\l. Assume also that h is
strictly positive and that it varies decreasingly tending to zero.

Although a priori the converse situation would be désirable, in the cases to
be considered in the next section for each h, Zh will not be a subspace of Z
Otherwise stated we will be dealing with non conforming approximations of
y. In this way it is not possible to guarantee in gênerai neither that a is defined
over Zh x Zh nor that L is defined over Zh. Moreover the norm || . || 2 will not
necessarily be defined over Zh. Ail this leads to the following additional
définitions :

(ï)h For each h, || • \\h : Zh + Z —> R is a norm that satisfies

\\z\\h= llzllz V z e Z .

In so doing we further introducé :
(ii)^ A bilinear form ah: (Zh + Z) x (Zh + Z) —> R uniformly con-

tinuous in the sensé that 3M' independent of h such that

a ( v , z ) *M'\\y\\h\\z\\h Vv, z e Zh +Z

and
(iii)/2 A linear form Lh : Zh —> R necessarily continuous.
Analogously we define :

IKH = sup ah(y,z).
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THE THREE-FIELD STOKES SYSTEM IN M 497

Now the family of approximate problems that we wish to solve is
&h)h where

e Zh such that

The main issue to be addressed is how to estimate the error y — yh measured
in the norm || . || h. Ho we ver in order to do so it is necessary to study
beforehand the existence and uniqueness of the solution of ( 3?h ). The answer
to both questions may be obtained by applying the following result slightly
adapted from Dupire's [12] (see Remark 2.1).

THEOREM 2.2 ([12]) : Under assumptions (i)h, (ii)h and (iii)h Zh being a
fini te dimensional space V/z, ( 0>

h ) has a unique solution yh if and only if
(iv)h3ah>0 such that \/y e Zh sup ah(y, z) 2* <*h\\y\\h

Furthermore the following estimate holds

a A inf ||y —z||A+ sup \a.(y, z) — L.(z)\ I. (7)

Remark 2.1 : As Zh is a finite dimensional space we may disregard a
condition analogous to (v) for problem ( ^ A ) . Indeed in this context (iv)^
ensures that any matrix associated with form ah and space Zh is invertible. This
clearly suffices to establish both existence and uniqueness of a solution to

2.2. The case of the three-field Stokes system

Let us now go back to the main purpose of our study, that is, the
approximation of the three-field Stokes system (6).

First let us set it under form ( ^ ) and for this purpose we assume that

/ G L2(Q). On the other hand, in order to simplify the notation we shall

only consider the case where g = 0 . The case where g is arbitrary may be
treated in an entirely analogous way, after performing non essential modifi-
cations in the analysis that follows.

The unknown z of our problem is the triple (er, u, p) which will be
searched for in space

xL2
0(Q) .
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This space equipped with the natural norm

1/2

is a Hubert space. It is also so for any other equivalent norm such as the one
to be considered in Section 3.

In so doing the problem to solve is ;

Find (a , u, p) e Xsuch that

V(t, v,q)e 2

where

r» w ,p ) , (T , U , # ) ) = (0* |T) + (/?|div v ) — (T[£( M ) )

W ) - {<T\S{ V ) ) ($)

and

| ) . (9)

One can easily prove that every solution of ( # ) is a solution of (6) with

g = 0 , in the sensé of distributions and conversely, under certain regularity

assumptions on O, every solution of (6) with g - 0 is a solution of

On the other hand, the f act that ( 0* ) has a unique solution is a conséquence
of well-known results in connection with Theorem 2.1. Referring to the
author's recent work [30] for further details let us just say hère that» since form
a given by (8) is symmetrie, condition (iv) related to ( & ) is equivalent to the
following ones :

(vi) 3^>0suchtha t \fq e L\(Q) sup q div i f ^ P\\q\\0

(vii) 3f? > 0 such that Vu e u sup T : c( v ) 2* /T|| i; || t
C V if?where

and div v = 0 a.e. in O} .
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The first condition is nothing but the classical LBB condition (see e.g. [21],
[5], [9]) for the Lagrange multiplier associated with the restriction

div u = 0. It is satisfied according to [19]. The second one was identified by
the author in [28] as a necessary condition in a more restrictive form exploited
in [16], and was given as such in [30] and [36]. It is actually a conséquence
of:

sup %:z(t)^ ^- e(V);e(!?) =
" S o ^ J n l |e(t>)llo J n

By classical density arguments, and by using intégration by parts, taking into
account that vt = 0 a.e. on dQ for every i, we dérive

sup f r:e(~u~) & P\$\x with /T = ^ .

Remark 2.2 : The above calculations establishing that

are well-known. This relation is actually a particular case of Korn's second

inequality (e/[14]), stating that 3K2 > 0 such that Vl? e ~Êl(Q) that
vanishes a.e. on a portion of dQ ha ving non zero measure, then

However for fields belonging to a finite element subspace not included in

H](Q) these relations do not necessarily hold. This will be precisely the case
of a velocity space studied hereafter and in principle it will be necessary to
prove équivalence of both norms in the corresponding discrete version. Such
results are called discrete Korn's second inequality and although this is not
strictly necessary a proof of it is given in [35] for this space. •

Let us now switch to the discrete version of ( SP ) to be considered in this
work. For this purpose let us consider that Q is a domain having a polyhedral
boundary.
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Let {?fh}h be a family of partitions of Q into tetrahedrons respecting the
usual conditions required for applying the finite element method (cf. [10]). In
partieular, if T dénotes a tetrahedron of 2Tft (considered hère to be an open set)
and defining for every bounded open set S of H3,

hs= sup | x - y | and ps = sup {s}

x , j e 5 B( x,e)cS,xe S

we set as usual

h = max hT and p = min pT.
1 € J h i e J h

Next we assume that family fâh}h is quasiuniform (cf. [10]), i.e, :

3c > 0 independent of h such that p > ch \/h .

Let us associate with every partition 2Tft three finite dimension al spaces

Tft, Vh and Qh in such a way that T^, v h and Qh are the respective discrete

analogues of l / ( £ 0 , Hl
0(Q) and L Q ( O ) , in which we will search for

approximations ah, u h and ph of a, w and p. In the cases considered in this
work we have Thczh*(Q) and QhaL2

0(Q)sih, but not necessarily

Vh cz HQ(Q). In this way among other possibilities the norm || . \\h that we

have selected hère for Zh = T^ x y ^ x 2^ is the one given by :

—» \lf2||(r, »,9)l l f c=[lkllS+| |e(») | lo,*+lkllo] 00)

where

T e 3"A

whereby /? and S are a pair of functions, vector fields or tensors defined in each
element of 2TA, whose components belong to L2( T) VF e Wh> Notice that this

will be the case of v , r or of (grad v ) , T and e( v ) , r V v e vh.

Remark 23 : As we assume that V"? G "$h, i f e ^ " ( r ) V T e 3"A, we

will abusively dénote by grad t> the tensor of L2( O ) defined by
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while e( V ) will represent

v +(grad v

with div D =Tr [e( t> )] . •
Notice that our choice implies that we will not be working with the norm

of V h that appears to be the most natural in the present framework, that is5

norm | . \x h given by :

and ((R\S))lh~(gmdR\gmdS)h

where R and S play the same role as in (11).
Now let us introducé the variational form (^h) to be considered in

Section 3, namely, the standard Galerkin formulation, where

-, - , ( 1 2 )

and

Lh = L. (13)

With the above définitions problem ( SPh ) will take the form

) Z h t h a t

V(T,

The analysis related to problem (&h) will be carried out in the light of an
adaption of the analysis given in [34] for the conforming case. Although the
essential modifications are aimed at using discrete norms or inner products, we
will recall below the main arguments of this analysis in order to clarify the
steps to follow.

First of all we observe that problem {0*\) may be set in the following
« mixed form ».
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