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Œ J O m MATHEUATICAL UODELUNG AND NUMERICAL ANALYSIS
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(Vol 29, n° 2, 1995, p 171 a 197)

TIME-DISCRETE FINITE ELEMENT SCHEMES FOR MAXWELL'S
EQUATIONS (*)

by Ch. G MAKRIDAKIS C1) and P MONK (2)

Commumcated by M CROUZEIX

Abstiact — We analyze a family offully discrete finite element methods apphed to Maxwell's
équations To discretize in space we use the edge éléments of Nedelec which are particularly
smtable for discretizmg electro magnetic problems To discretize m Urne we use a farnily of
methods based on rational approximations of the exponential We prove error estimâtes for this
scheme

Résumé — Nous étudions une famille de discrétisation complète des équations de Maxwell
L'approximation en espace utilise les éléments d'arêtes de Nédelec, bien adaptés aux problèmes
d'elettromagnetisme, la discrétisation en temps est basée sur une famille d'approximations
rationnelles de l'exponentielle Nous montrons des estimations d'erreur pour le schéma obtenu

1. INTRODUCTION

We shall analyze the use of fully discrete finite element schemes to
approximate the time dependent Maxwell équations on a bounded domain
The finite element scheme used to discretize m space is the standard Nédélec
family of edge éléments for the electnc field and the correspondmg Raviart-
Thomas-Nédélec éléments for the magnetic flux The advantages of these
éléments for electromagnetic computations are summarized for example m [3],
To discretize m time, we use a family of implicit schemes based on rational
approximations of the exponential of order 2, 3 or 4. Among others, a reason
of analyzmg the implicit schemes is that these schemes may be preferred in
situations in which the mesh has some irregular tetrahedra (this is often the
case with meshes that are generated automatically, even though most tetra-
hedra may be quite regular) We note however that our analysis can be
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172 Ch. G. MAKRIDAKIS, P. MONK

extended to include explicit schemes also, under of course, a restriction on the
stability région of our method. For other implicit and explicit schemes for the
time discretization of the Maxwell équation we refer to [1, 17].

To state Maxwell's équations, let Q cz (R3 be a bounded, polyhedral, and
convex domain with boundary denoted by F and unit outward normal is
denoted by n. We remark that the assumption of convexity is necessary for
analysis, but not for the successful use of the method in practice. The
extension of the method to curved domains is possible but significantly
complicates the présentation of the method (see [5] for details of how to define
edge éléments on a smooth domain). In the case of a smooth domain the
convexity assumption is not needed. We shall also assume that the material
contained in Q is non-conducting. Some parts of the paper (in particular the
semi-discrete error analysis) can be extended trivially to include conducting
media, but the fully discrete time stepping seheme must be modified in that
case.

We suppose that Q is filled with a dielectric material have permitivity (or
dielectric « constant ») E and permeability /J both of which may be three by
three matrix functions of position. We dénote by E = E(x, t) and
H == H( x, t) the electric and magnetic fields respectively. These fields satisfy
the Maxwell équations in Q :

eEt - V x H = J in Q , (la)

jMt + V x E = O in Q, (lb)

where

E, = | E and H, = | H .

In addition, for simplicity we shall assume that the boundary of Q is perfectly
conducting so that

n x E = 0 on F, (2)

Finally, we need to specify initial data so we suppose that functions Eo and
Ho are known and require that

E ( O ) = E O and H ( 0 ) = H0 in Q (3)

(where E ( 0 ) = E( - , 0 ) and H(0 ) = H( • , 0 ) ) . On physical grounds, we
can assume that

V • (juH0) = 0 in Q and (JJUQ) • n = 0 on F. (4)
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In order to handle the case where /J is not a constant function of x it is more
convenient to use as dependent variables the electric field strength E and the
magnetic flux B. The magnetic flux is given in terms of the magnetic field H
by the constitutive relation

B = juH. (5)

Using (5) in (1) to eliminate H, we arrive at the following equivalent équations
for E and B :

eEt -Vx(ju~ 1 B ) = J in Ü, (6a)

B f + V x E = O in Q. (6b)

Our goal for this paper is to develop and analyze fully discrete finite element
approximations to the fields ( E, B ) satisfying (2)-(6) for 0 ^ t ^ T where
T>0 .

In order to write down an appropriate variational formulation for the
Maxwell system we will need s ui table spaces for the field and flux variables,
Thus we recall the standard spaces :

tf(curl;fi) = {ue (L2(O))3 |V x u e ( L 2 ( O ) ) 3 } , (la)

#0(curl ; Q) = {u e H(curl ; fl)|u x n = Oon F} » (lb)

H(div;O) = {ue (L2(Q)f\V * u e L2(Q)} . (7c)

Let us now be more précise about the requirernents on the functions e, ju
a n d J . W e a s s u m e tha t s^(Cl(Ü)ff ju~ l e (Cl(Ü))9 a n d
J e C(0, T : (L (Q)) ) (the continuity assumptions are made to allow analy-
sis and can be weakened considerably in practice), The functions e and
fjT 1 are assumed to be positive definite and uniformly bounded (above and
below) on Ü.

A weak formulation of the system (2)-(6) is

H0(curl ;f l) (8a)

(^u"1Br,4i) + (VxE, / i~ 1 <l))=0 V<|>€ H(div;Q) . (8*)

Here B and E are still subject to the initial conditions (3). We will assume that
the system (8) has a unique solution smooth enough for the purposes of our
analysis. For existence uniqueness of the Maxwell équations see for ex-
ample [10].

vol. 29, n° 2, 1995
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To approximate (8) we use Nédélec's edge éléments and the Raviart-
Thomas-Nédélec divergence conforming éléments [15] to construct finite
element subspaces of jF/0(curl ; Q) and H(div ; Q). We detail this construc-
tion, and the assumptions required on the mesh, in § 2. Hère it suffices to say
that if we are given the spaces U£ ° c Ho( curl ; Q ) and Vr

h <z H( div ; Q ) we
can discretize (8) in space in the obvious way to obtain the semi-discrète
problem of finding ( Eh ( t), Bh ( t) ) e U f x V ^ such that, for
0 < t ̂  T,

i f c A A A f (9a)

(^^B.^^ + iVxE^" 1^)^ V^eV;. (96)

In addition (E ; ï, Bft) satisfy a discrete version of (3) so that

and

The first part of our paper § 2-§ 3 is devoted to analyzing the error in this
semi-discrète scheme. We remark that in a previous paper on this type of
scheme [14] error estimâtes for the corresponding semi-discrète scheme using
H in place of B and constant coefficients 8 and JJ were proved. The novelty of
the analysis hère is that it allows variable matrix coefficients (but not y et
discontinuous coefficients),

Having analyzed the semi-discrète scheme, we formulate a family of fully
discrete time stepping schemes in § 4. We analyze the convergence of the fully
discrete schemes in § 5, where we prove optimal order error estimâtes. These
schernes belong to thc cîass of schemes inùoduced in [2] for the discretization
of second order hyperbolic équations. Their construction is based on a choice
of a rational approximation of the exponential with certain accuracy and
stability properties. Related work includes [13] where similar time stepping
schemes were used for the construction of mixed finite element fully discrete
schemes for the équations of elasticity, and [1] where an implicit scheme is
investigated for the two dimensional analogue of the Maxwell System con-
sidered hère. For some computational results with edge/face éléments of the
type discussed hère see [12, 11].

2. PRELIMINAIRES

In this section we shall summarize the construction and properties of
Nédélec's first family of edge finite éléments on a tetrahedral mesh [15]. We
note that other families of edge éléments can also be constructed, and could
be used for Maxwell's équations including Nédélec's second family on
tetrahedra and the first family on cuboid meshes [15, 16].
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First let us define some notation. Whs(Q) will dénote the standard Sobolev
space of functions in LS(Q) having derivatives in LS(Q). Similarly
HP(Q) is the standard Sobolev space of functions with p derivatives in
L2(Q). In gênerai we shall dénote the norm on a metric space X by || • \\x

where X can be a space of vector functions. In the case of H(curl ; Q) (see
(7)) the norm is defined by

+ II ̂  X ll||

In our analysis, we are going to use some weighted L2 spaces. We define
L2{Q) and L^- \{Q) to be the Standard L2 spaces with weights e and JJ~ l

respectively. We will dénote their inner products by

( u, v )fi = eu • v dV and ( u, v ) -1 = I fj~ l u • v dV

and the corresponding norms by

[|u||,?(fi) = ( u , u ) f and | | U | | L ; . I ( O ) = ( U , U ) ^ . .

Note that a conséquence of the propertLes of e and JJ~ x is that these norms are
equivalent with the Standard L2 norm. We have already defined some spaces
of vector functions in the introduction and so will not repeat them here.

Let { T ^ > 0 be a family of tetrahedral meshes of Q where h is the maximum
diameter of the tetrahedra in zh. We assume the meshes are regular and
quasi-uniform [4].

In order to define the curl conforming space of Nédélec, we let Pr dénote
the standard space of polynomials of total degree less than or equal to r, and
let PF dénote the space of homogeneous polynomials of order r. Now we
define Sr e (P,.)3 and Rr <= (P r)

3 by

For ex ample, if r = 1 then a polynomial p G R} has the form
p(x) = a + f x x where a and p are constant vectors [16]. Following [15],
for positive integer r, we define

K ={nh e H(cuû;Q)\uh\Ke Rr V/^e xh] .

vol. 29, n° 2, 1995
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To define the degrees of freedom in U^ we defme the following moments. If
K G rh with genera! edge e and face ƒ and if t is a unit vector parallel to e :

u-tqds Vqe Pr_x{e) for the six edges e of K >, (10)

Mf(u) = \ | u x n q c M Vq e (P r _ 2 ( / ) ) 2 for all four faces ƒ of K \ ,

(11)

V q e (Pr_3(K))3\. (12)

u) = \ uxn-

These moments are defmed if u G ( WM( /(:) )3 for some s > 2. Nédélec [15]
shows that the above three sets of degrees of freedom are Rr- uni sol vent and
curl conforming. Using these degrees of freedom we can defïne an interpolant
denoted r^ u e U^ for any function u for which (1Ö)-(12) are deflned. On each
K e xh we piek rh n\K G Rr such that

Me(u - rh u ) = Mf(u - rh u) = MK(n - rh u) = {0} .

To approximate functions in ^0(curl ; Q) we define

U£° = { u , E U ; | n x % = 0 on r] . (13)

The constraint n x u^ = 0 on f is easily implemented by taking the degrees
of freedom associated with edges or faces on ƒ" to be zero [8].

The following estimate is known for r^ [15] (for other estimâtes including
estimâtes using weaker norms see [8, 5, 14]) : if u G (Hr* l(Q))3 then

\\v-TkV\\mcuAiO)* Chr\\u\\iHr+i{Q))>. (14)

Of crucial importance in our analysis is the fact U£° admits a discrete
Helmholtz décomposition. Let

xh, <f>h\r = 0 } . (15)

Then V S ^ c U j 0 , and

; ) x (16)
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Next we deflne a space of divergence conforming fini te éléments. These
facial éléments are the Raviart-Thomas-Nédélec spaces [15]. Let

then we define

Ke Dr VZ e rh} .

An appropriate set of degrees of freedom for this space are the following
which are defined for any function v e ( / / ! ( ^ ) ) 3 where K e xh :

^(u)=\ u-nqds VqePr_x(f) for all four faces f of K [ ,
J

(17)

MD
K(u)= U^uqdx V q e (Pr_2(K)fy. (18)

These degrees of freedom are H( div ; Q ) conforming and unisolvent. Thus we
can define an interpolation operator wh : ( H

l ( Q ) )3 —» V^ by requiring that on
each K e zh

This interpolant satisfies the error estimate that if u e (Hr(Q))3 then (see
[15])

(19)

Furthermore, if u is smooth enough that both interpolants are defined, than
w / ) Vxu = Vxr / i u.

An important property of the space U£ ° and Yr
h is that

We define V£ = V x U^ ° and then can define the space V£± by the
orthogonal décomposition

v; = v ; e M - . v ^ . (20)

vol. 29, n° 2, 1995
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where the orthogonality is with respect to the L2- i(Q) inner product. This is
another discrete Helmholtz décomposition. Note that by virtue of the connec-
tion between w^ and rA, if u is divergence free then wh u is divergence free.

We remark that V^ is a good space for approximating the magnetic flux B
but it is usually more convenient to compute with the larger space \r

h.
Nevertheless, we shall carry out some of our analysis in Vr

h . This is possible
since by (20) we can write

where Bh e Yr
h and B^ e V£ ± . Substituting this expansion in (9a) and (9b),

and using the orthogonality properties of Bh, we can see that
( EA, Bh ) e U£ ° x V^ satisfles

, yh) - (ft' l B„ V x V A ) = ( J, vA) V V A e U^° (21a)

( ^ ' B ^ ^ + t V x E , ^ - 1 ^ ^ V * A e V ; . (216)

In the same way, we can see that

É£, = 0 sothat B ^ ( r ) = B ^ ( 0 ) for all t. (22)

In view of (22) we will see that it sufïïces to carry out the error analysis for
the approximation (21) to (8).

The error analysis of the semi-discrete and fully discrete problems rests on
the use of a suitable pair of projections in to the spaces U£ ° and \h. Following
[14] we define first TIh : H( curl ; Q ) —> U£ ° by requiring that if
u G //(curl ; Q), then TIh u e U£ is the unique solution of

1 V V A e V , (23a)

( nh u, V0„ ) = ( u, V(j>h X V0A e S;- ° . (236)

(Here 77̂  corresponds to the solution operator for an appropriate discrete static
problem.) Existence and error estimâtes for projections of this type (with
constant coefficients) have been studied in [15, 6, 7, 14]. Existence and
uniqueness are proved by using the Babuska-Brezzi theory of mixed problems
where we must use the Freidrichs type inequality proved in [9] for the
continuous problem. This inequality can also be proved for the discrete
problem following Nédélec's analysis [15] provided the domain and coeffi-
cients are such that the following problem of computing w G H( curl ; Q )
such that
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V x w = V x f in Q (24a)

V - (ew) = 0 in Q (24b)

w x n = 0 on r (24c)

has a unique solution obeying the a priori estimate

(25)

for 2 ^ s =£ sQ where s0 > 2, In this case the constant coefficient results
also hold for the variable coefficient problem. Our assumptions on E and ju
(continuous differentiability) are suffîcient for (25) to hold, but are probably
not minimal. The result of this theory is that the following estimâtes hold :

(26)

In proving this estimate we use the estimate for the interpolant in (14). We
remark that an almost optimal estimate of this type, but with an improved
norm on the right hand side can be proved (see [14]) but we will not examine
that case here.

We also need a projection into the space of magnetic fïuxes. So we derkie
Ph : L*- i ( Q ) -» V^ to be the L*- i ( Q ) projection onto V^ so that for any
v e L2- \(Q), the function Ph v e V^ satisfies

Pk v, yA) = (AT ' V, V A ) V V A e % . (27)

We are only interested in the approximation properties of Ph on divergence
free vector fields so we shall only analyze this case. Let V =
V x HQ(curl ; Q) then if v e V there is a function u e HQ(curl ; Q) such

that v = V x u . In view of the fact that Ph v e V£, we know that there is
a function uh e U£° such that Ph v = V x u^ , we conclude that (27) may
be rewritten as

( V x uh , V h V i = ( V x u, yh V i , ^

which is exactly (23a). Thus if we make the arbitrary choice that uh will also
satisfy the divergence condition (23&), we may conclude that if v e V, then

vol. 29, n° 2, 1995
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By virtue of the fact that w^ maps V n (Hr(Q))3 into Vj, we may estimate
the error in the projection Ph using (19) as follows

(28)

3. ERROR ESTIMATES FOR THE SEMI-DISCRETE PROBLEM

It will prove convenient (when we come to analyze the fully discrete
scheme) to convert the variational équations (9) to operator form. For this we
introducé two discrete operators C and C as follows :
Let C ; H(curl ;O) -> Vh be deflned by

(Cu, <t>„V i = ( V x u, 4>A V ' V4>* G K - (29)

Since V x U j ° c V^, we have that

Cuh = V x uh if uh e lij;0 , (30)

and so

CV?hz%, VVA eVf . (31)

Let C : L2~ i (Q) —» U^° be the operator defined as follows : for
^ ( O ) , the function Cve U '̂° is the solution of the variational

problem

( Cv, 4>A) = ( v, V x <j>, V . V0A E ü f . (32)

Note that we have used the Standard (L2(Ü) )3 inner product on the left hand
side here. Using the weighted inner-product notation as above we may write
(91?) as

( * M , v * V i + (v x E A ,v*V • = o , ;t

Hence using (29) and (30), we obtain the operator équation

Kt +CEA = 0 . (33)

To obtain an operator form for (9a) we need two more projection operators.
Let Ph be the standard (L2(Q) )3 orthogonal projection onto U£° . We define
A„ :Vr

h° -»U?° by

K un =P^mh)' w h e r e uh e vh° •
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(Note hère that we can extend Ah : (L2
e(Q) )3 -» U£° as A^ u = PA(eu) for

ue (L](L
written as
u G (L2(Q))3 .) Using A^ and the curl operator C, équation (9a) can be

A f t E , , -CBh =PhJ (34)

and for simplicity we define Jh = Ph J.
From the above analysis, we conclude that the semidiscrete problem (9) can

be written as :

\Kr -CBh=Jh, (35a)

Bht +CEh = 0 , (35b)

where Eh(t) e U£° and Bh(t) e V^ for each t.
Analogously, using the fact that CEh e V^ and the fact that CÈ^= y we

obtain the operator form of (21) : find (EA , Bh) : [0, T] -» U^'° x V^ such
that

Bh t + CEh = O . (36Z?)

To write the above équations more compactly, let the operator matrix %h

) A"1 C\

c o )• (37>

The operator %h maps U£ x V^ into itself, and because of the orthogonality
in the définition of V^ (see (31)), we can conclude that

We may now rewrite (35) as

H Bh ) = ( h i ' (38)

and rewrite (36) as

A | ^ J _ C g J „ A j _ | h h \ ^ty

The operator %h has useful properties that we describe next. In order to
do this, we defme the following inner product on vector functions

), /= 1,2 by
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