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A FORMULATION OF STOKES'S PROBLEM
AND THE LINEAR ELASTICITY EQUATIONS SUGGESTED
BY THE OLDROYD MODEL FOR VISCOELASTIC FLOW (*)

L BARANGER (X), D. SANDRI O

Communicated by R. TEMAM

Abstract. — We propose a three fields formulation of Stokes' s problem and the équations of
linear elasticity, allowing conforming finite element approximation and using only the classical
inf-sup condition relating velocity and pressure. No condition ofthis type is needed on the « non
Newtonian » extra stress tensor. For the linear elasticity équations this method gives uniform
results with respect to the compressibility.

Résumé. — On propose une formulation à trois champs du problème de Stokes et des
équations de V élasticité linéaire, permettant des approximations par éléments finis conformes et
ne nécessitant que la classique condition inf-sup en vitesse pression à V exclusion de toute
condition sur le tenseur « non Newtonien » des extra contraintes. Sur les équations de V élasticité
linéaire la méthode est uniforme par rapport à la compressibilité.

0. INTRODUCTION

A version of Stokes's problem with three unknown fields : a extra stress
tensor, u velocity and p pressure has been used in numerical finite element
simulation, partly motivated by the study of viscoelastic fluids obeying
Maxwell constitutive équation. Finite element approximation of this prob-
lem are known (see [8]) to converge if two Babuska-Brezzi (BB) conditions
are satisfied : the classical one on {u, p) and an other one on (o-, M). ,

Regarding the équation of linear isotropic elasticity the ability of the
method to perform independently of compressibility (particularly near the
incompressible limit) is a major concern. Recently a method has been
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332 J. BARANGER, D. SANDRI

proposed [12] to solve a three unknown fields version of the problem
(o- extra stress, u displacement, p pressure) without the two BB conditions ;
but this necessitate the addition of least squares terms. In a sensé the
(er, u, p) équations studied are of Maxwell type.

The purpose of this paper is to show that the use of a modified version of
the problem with three fields (<x, u, p), suggested by the use of Oldroyd
model for viscoelastic fluids, allows to suppress the BB condition on
(cry u). This result applies to Stokes's problem and the linear elasticity
équation uniformly with respect to the compressibility.

1. AN « OLDROYD VERSION » OF STOKES'S PROBLEM

We use the following notations : u velocity vector, p pressure, Vu gradient
velocity tensor ((VM) I7 = utj), d(u) = (1/2)(VM + V«') rate of strain ten-
sor, w(u) = (1/2) (Vu - Vu*) vorticity tensor, <xtot stress tensor, ƒ body
force, (V . er )• = cr^j divergence of a tensor, crt time derivative of
a.

The viscoelastic fluid is flowing in /2, bounded open domain in
RN with Lipschitzian boundary F ; F is partitioned in F{ and F2 with meas
(Fx) # 0 ; n is the outward unit normal to F.

For a e [— 1, 1] one defines an objective derivative of a tensor
er by :

— - = <rt + (M . V ) er + ga{<7, Vu)
dt

ga{cr, Vu) = o-w(u) - w{u) a - a(d(u) a + ad(u)) .

We use ihe dimensionless Reynolds number Re, Weissenberg number
We and a(a may be considered as the quotient of the retardation time by
the relaxation time or the part of viscoelastic viscosity in the total viscosity).

The équations of the Oldroyd model under considération are obtained
from the momentum équation :

Re (M,+ (u.V)u)- V.crtot = ƒ .

Writing aiQi = ~pI + aN + (T wJiere a and aN are respectively the non
Newtonian and Newtonian part of the extra stress tensor <rtot + pi,
<rN is defined by : aN = 2(1 - a) d(u). Substituting aN in the momentum
équation one gets :

R e ( K , + ( M . V)U) ~ 2 ( 1 - a) V ,d(u) + Vp - V . a = f .

The non Newtonian extra stress tensor a satisfies the constitutive
équation :

a + We— -2ad(u) = 0. (1.0)
dt
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ON THE OLDROYD MODEL FOR VISCOELASTIC FLOW 333

In the following we consider the case of a stationary creeping flow
(everything is independent of t and (u . V ) u is neglected). A numerical
method for a truly viscoelastic fluid (We > 0) must perform equally well in
the limit We = 0 in (1.0).

The équations for this case are :

er - 2 a d(u) =
- V.o- - 2(1 -
V.M = 0
M = 0
(er + 2(1 - a)

-- 0
- «V

d(K)

F . d ( w ) H

- / ? ƒ ) . n

h Vp

= 9

= f
in
in
in
on
on

n,
n,
n,
rlt
r2.

The third équation is the incompressibility condition and the last two are
boundary conditions.

We dénote by ( ., . ) the L2(f2) scalar product of functions, vectors and
tensors and by (., . )p2 the L2(r2) scalar product ; we also define :

T= {T = ( T , 7 ) ; TU= r j i ; T I 7 G L 2 ( / 2 ) ; l * i , j * z N } ,

V = {v = (vi);vie

; f q - o | i
J/2 J

Q = \qeL2(f2); f q - o | ifmeas (A) = 0 ; Q =L 2 ( /2 )e l se .

V T

V»
V Ö

E

e

e

T,

Q •

(1
( i
( i

• i )

•2)
•3)

Then the five équations above have the following weak formulation
(Oldroyd version of Stokes's problem) :

Problem (SO) :
Find (o-, u, p) eT xV x O such that :

(a,r)-2a(d(u)ir) = 0
(er, </(!?)) + 2 ( 1 - a)(d(u)9 d(v))- (p, V . ü ) = <f, P
(V.M, 9 ) = 0

For some years the numerical solution of the viscoelastic problem (1.0)
(1.2) (1.3) with convenient boundary conditions on er was limited to
relatively small Weissenberg number because the hyperbolic character of
(1.0) was not taken into account. In the pioneering works [7] and [14] this
character was considered, suppressing the high Weissenberg number
problem. In [7] (1.0) is solved by a discontinuous FEM of Lesaint Raviart,
so er is approximated in a space Th of tensors with discontinuous
components ; in [14] it is solved by a continuous FEM, so er is approximated
in a space Th of tensors with continuous components.
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334 J. BARANGER, D. SANDRI

In both cases the study is made on the Maxwell model corresponding to
a = 1. The numerical analysis of the corresponding Stokes model ((SO)
with a = 1 better called SM !) has been made in [8],

Given finite element spaces Th<zzT, Vh cz V, Qh<^ Q, a finite element
approximation of problem (SO) is :

Problem (SO)A :

Find (o-A, uh9 ph) e Th x Vh x Qh such that :

, rh)-2a(d(uh)J rA) = 0 Vrfc G Th , (LI),

, d(i7A)) + 2(1 - a)(d{uh\ d(vh)) (1.2),

It is proved in [8] that when a — 1 problem (SO)/z is well posed and that
its solution approximate the solution of problem (SO) if the following
conditions are satisfied :
Cl : Inf-sup condition on (u, p) :

inf sup ^ p > 0 .

I ü l k l
C2 : Inf-sup condition on (o-, u) : either ^(V/j) cz Th (case of discontinuous
TA) or « the number of interiors degrees of freedom for rh in each
K is greater or equal to the number of all the degrees of freedom of
vh in each K » (case of continuous rA).

We show in § 4 that the use of problem (SO)A with 0 < a < 1 (excluding
Maxwell case) aiiows to suppress condition C2 greatly eniarging the possible
choices of approximations for the viscoelastic non Newtonian extra stress
tensor er.

2. LINEAR COMPRESSIBLE AND INCOMPRESSIBLE ELASTICITY

We dénote by <rtot the stress tensor, u the displacement and
s(u) = (utj + Ujti)/2 the strain tensor. The elastic isotropic solid has a
référence configuration 12, open bounded domain in ^ , (N = 2 o r 3 ) ,
with Lipschitzian boundary F partitioned as in the preceding paragraph.
v dénotes the Poisson ratio and yu is the shear modulus. The constitutive
équation of linear isotropic elasticity is then :

<rm = 2/ui{e(u)+ (W(l - 2 v)) V . ui } .

W e introducé a parameter £ = ( 1 — 2 v)/2 v ^ 0 and for s :> 0 the pressure

p by :
sp + V . u = 0 .
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ON THE OLDROYD MODEL FOR VISCOELASTIC FLOW 335

As suggested by problem (SO) we introducé a scaled « Newtonian » extra
stress tensor <rN = 2(1 — a) s(u) and a scaled « non Newtonian » extra
stress tensor er = 2 a e{u) .

The momentum équation is then written :

- V . < r - 2 ( l - a ) V . e ( M ) + V p = / ,

with ƒ = f*'1 f' where ƒ ' is the body force.
The équations are :

o- - 2 ae{u) = 0 in O ,
- V . a - 2(1 - a) V . ^ (M) H- Vp = ƒ in O ,
V . w -f- £p = 0 in i l ,
tt = 0 on rx ,
(<r -f 2(1 - CL) e(u) -pi) .n = g on T2 .

Using the functional spaces 7, V, Q previously defined and with the obvious
formai change e .-= d, the five équations above have the following weak
formulation (Oldroyd version of linear elasticity) :

Problem (EO) :

Find (o-, u, p) e T x V x Q such that ;

(o-, T ) - 2 a{d{u\ r ) = 0 VTGT7 (2.1)
(o-, d(i?)) + 2(l - a)(d(M), d( t?))- ö?,V.i?)= <£, u> Vv e V , (2.2)
(V.ii, ? ) + e ( p , ^ ) - 0 V g e g . (2.3)

Problem (EO) is a généralisation of problem (SO), the last one being the
incompressible limit of the first one (e = 0 corresponding to v — 1/2). A
version of this problem with a = 1 has been introduced in [9, 11].

Given finite element spaces ThczT, ^ c V , Qh<^Q we define an
approximate problem :

Problem (EO )h :

Find (crh9 uh, ph)eThxVhxQh such that :

(ah, rh) - 2a(d(uh\ rh) = 0 Vr, e Th , (2.1),

("h> d(vh)) + 2(1 - a)(d(uh), d(vh)) (2.2),

(V . ufc, ^ ) + e(ph9 qh) - 0 VqheQh. (2.3),

We show in § 4 that when 0 < a < 1 under the inf-sup condition Cl on
(w, p) only, problem (EO ), is well posed and approximate the solution of
problem (EO) uniformly with respect to e e [0, e0] (note that the incom-
pressible limit e - 0 is included).

vol. 26, n° 2, 1992



336 J. BARANGER, D. SANDRI

Recent works have been dedicated to the development of FEM perform-
ing independently of compressibility for linear elasticity. Let us quote here
[6, 10, 12] where Galerkin least squares methods are used on (M, p),
(°"tot> u) anc* (T = atot + pi, p, u) models, [9, 11] where the same method
is applied to a four field (d, T, p, u) model (d = d(u)) is considered as an
independent variable) and [1, 16] where a non conforming approximation of
u is used, possibly with a post processing technique.

3. EXISTENCE AND UNIFORM CONTINUITY OF SOLUTIONS OF PROBLEM (EO)

We prove in this paragraph that problem (EO) admits a unique solution
x = (er, u, p) and that x is an uniformly continuous function of î with
respect to e. This prépare the uniform FE approximation resuit of § 4.

The space T of symmetrie tensors with L2(f2) components is equiped with

the scalar product (<x, r ) = a : T = \ atj r i ; with associated norm
Jn Jn

| r | 0 ; V is equiped with the scalar product (u, V)V = (d(u), d(v)) with
associated norm \v\r= (d(u), d(u))m which is a norm by Korn's inequali-
ty ; Q = L 2(f2 ) if meas (JT2) ̂  0 is equiped with the usual scalar product
and Q = LQ(I2) if F2 = 0 is equiped with the quotient scalar product,
both denoted by (p, q) with associated norm |#|0 .

H = T xV x Q is equiped with the scalar product given by :

x = O , M, p), y = (r, v, q) ,

(x, y) - O , r ) + (M, v)v + {p, q)

with corresponding norm \\x\\.
The variational formulation of problem (EO) can be written in the

following abstract form :

Problem (EO)' :
Find x G H such that :

B(x,y)= {t,y) VyeH, (3.1)

where B is the bilinear symmetrie form :

B(x,y)= (cr, r)-2a(d(u), r)-2a(d(v), a)
- 4 a ( l - <*)(d(u), d(v))
+ 2 a (V . v, p ) + 2 a (V . u, q ) + 2 a s{p, q) (3.2)

and where {? ', y) = - 2 a { f , v) \fy e H.
This formulation is obtained by multiplying équation (2.2) by —2 a,

équation (2.3) by 2 a and by adding the three équations obtained.
For the study of this variational formulation we use the following abstract

resuit [2] :

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
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THEOREM 3.1 : Let Hbe a real Hubert space and 2' e H\ topological dual
space of H, and let B be a bilinear form on H satisfying the following three
hypotheses :

(Hl) There exists a constant rj >- 0 such that :

B(x,y)^v \\x\W\y II Vx,yeH.

(H2) There exists a constant y :> 0 such that :

sup ^ Y
xeH \\X\\

(H3) There exists a constant y ' :> 0 such that :

sup ^ i - Z ) & y ' | M | Vxetf.

Then problem (EO )' has a unique solution x e H such that

We remark that hypotheses (H2) and (H3) are equivalent when
B is symmetrie.

We now show that these hypotheses are satisfied for the form
B, with constants independent of s when se [0, s0].

THEOREM 3.2 : The bilinear symmetrie form B given by (3.2) satisfies the
hypothesis (Hl) of Theorem 3.1 with constant independent of e for
s G [0, s0] and the hypotheses (H2) and (H3) with constants independent of
e.

Proof:

(Hl) B(xyy)^\a\0\T\0 + 2a\T\0\u\l + 2a\<r\Q\v\l

with Co independent of s0 and then (Hl) is satisfied with 17 = C 0 ( l + £0)*
Before proving (H2) (H3) we recall the following result.

THEOREM 3.3 : For eachp e Q there exists av E V such that V . v = p and

\v\ 1 ==£ C \p\Q with C independent of p . (3.3)

When r2 = 0 this result is a conséquence of ([13], Corollary 2.4, p. 24).
We give below a sketch of the proof when meas (^2) ̂  0.

vol. 26, n° 2, 1992



338 J. BARANGER, D. SANDRI

Let VXBV such that V . vx > O (v1 exists because meas (F2) ¥= 0) and

f
J/2

Let p e g , we have p = P\+ P2 where pj = meas ( /2)"1 p . Then
J/3

there exists a Ü2 e V such that v2\r = 0 satisfying V . v2 = P2
11?21 ^ C2 |P2|O with C 2 independent of p . Then it is easy to check that :

v = 2/?! meas (/2) Cf1!^ + (1 + meas (4?

satisfies :

f pV.vi* \p\l
J n

and
I v I x =s C \p \ 0 with C independent of p .

The desired result is then a conséquence of ([3], Theorem 0.1). D
Proof of (H3) : For each x G H select y e H such that :

r = er ,

v = - u+ ( l /2)C" 2w, (3.4)

where ü satisfies V . M = /?, | M | j =£ C |/? 10 with C independent of p.
Then

| ^ | 2 + 4 a ( 1 _ a ) | w | 2 + ( 2 a £ + a C - 2 ) | p | 2 _ C - l a | C 7 | o | p | o

- 2 C - 1 a ( l - a ) | M L |pL

i C " 2 « 2 + 2 a e

, M, p ) | | 2 , (3.5)
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with aö = min j - , 3 a(l - a) , - C~ 2 a 2 l independent of e.

On the other hand :

\p\ \

p|2 (becausefrom(3.3)C-1

(3.6)

From (3.5) and (3.6) we deduce that (H2) and (H3) are satisfied with :

y = y' = ao(N/2 + 2)-m.

Remark 3.1 : We can also consider fox a 6 [0, 1[ (including a = 0) the
non symmetrie bilinear form B defined by :

B(x, y) = (er, r) - 2a(d(«) , r) + (d(ü), er) + 2(1 - a)(d(u\ d(v))
- (V . V9 p ) + (V . M, ̂  ) + e(p s r̂) 9

then ^ satisfies also the continuity condition (Hl) and the inf-sup conditions
(H2) (H3). We give the beginning of a proof, which can be adapted to the
discrete case, for (H2) and (H3) :

(H3) Let x G ƒƒ, select y e H such that :

T = a + 2(a - 1) <f> ,

Ï; = 2 M - (1/3) C " 2
 M , (3.7)

^ = 2 / 7 ,

where ü is choosen as in (3.4) and where <f> e T satisfies (<f>, r) =
(d(u), T) Vr e T (in the continuous case <f> = <i(w) is the unique solution
because d(V ) c 7). Then a straightforward computation gives (H3) with :

y ' = C 3 ( l - a ) ,

with C 3 independent of £ and a.

(H2) In the same way, let y G H ; we take x E H such that :

er =4 T + 4 ( 5 a - 1) 4>' ,
M = 10 u + C - V , (3.8)
P = 1 0 ^ ,
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340 J. BARANGER, D. SANDRI

where v' and <£>' are choosen in the same manner (relatively to
q, r ) as in (3.7), then we obtain (H2) with :

r = C 4 ( l - a ) ,

with C4 independent of a and E.
Then the inf-sup conditions are uniformly satisfied for a e [0, a0],

a0 < 1, including a = 0 corresponding to the classical Stokes formulation.
In the same way it is possible to verify that inf-sup conditions are satisfied

with constants independent of a G [0, 1] and s if we use the fact that

Remark 3,2 : The idea that there is no need of an inf-sup condition on
(er, u) provided 0 < a <: 1 can be seen on (SO) problem by using a non
symmetrie global formulation without the pressure variable.

Let K = {v G V ; V . i? = 0} and consider the product space T x K. Then
problem (SO) is equivalent to :

Problem (SO)' :

Find (a, u) G K such that :

A ((o-, M) , ( T , t>)) = 2 a < f , i>> V ( r , i 0 e tf, (3.9)

where A is the bilinear form :

, u), (r, !>)) = (er, r ) - 2 a ( d ( M ) , r)
), o-) + 4 a(l - a)(d(u), d(v)) .

Then it obvious that A is ̂ T-elliptic and then frorn Lax & Milgram Theorem,
(3.9) admits a unique solution (o-, M) G K. Besides from theory of saddle-
point problem [3] it is easy to show that there exists a unique p e Q such that
(er, M, p) is the unique solution of (SO).

4. FINITE ELEMENT APPROXIMATION

Given a closed subspace Hh a H, with équation (3.1) we associate the
discrete problem :

Find xh G Hh such that :

B(xh,yh)= (e\yh) VyheHh. (4.1)

Then the following resuit holds [2] :

THEOREM 4.1 : Assume that hypotheses of Theorem 3.1 are satisfied. Let
x e H be the solution of (3.1). Assume also the following :
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(H2 )h There exists a constant yh>0 such that :

S U P —ü—7T~ s* r h II y h II vyh
 G #* *

(H3 )A TTiere exists a constant yr
h > 0

;* r * II ** II
\\yh\\

Then équation (4.1) admits a unique solution xh G Hh such that :

Consider now three finite element subspaces ThczT, V h cz V and
Qh c Q. Then problem (EO )' is approximated by :

Problem (EO )'h :

Find x̂  = (o-k, uk9 ph) e Hh = Th x Vh x Qh satisfying (4.1) with the
bilinear form B associated with problem (EO)' and defined by (3.2).

The purpose of this section is to establish the following : problem
(EO yh has a unique solution xh which converges in H uniformly with respect
to e G [0, SQ\ towards the unique solution x of problem (EO )', provided the
FEM satisfies a velocity-pres sure inf-sup condition (note that no inf-sup
condition relating the viscoelastic extra stress and the velocity is needed).

This resuit is a conséquence of Theorem 4.1 and the following :

THEOREM 4.2 : Assume that the following velocity-pressure inf-sup
condition holds :

inf sup ^ ' ^ f ^ j S ^ O , (4.2)
vkeVh \vh\1\4h\0

with 13 independent of h, then the hypotheses (H2)^ and (H3)A are satisfied
with constants independent of h and s.

Proof : The proof is analogous to the proof of Theorem 3.2 and it suffices
to check (H3 )h ; this can be done in the following way :

vol. 26, n° 2, 1992



342 J BARANGER, D SANDRI

Let xh e Hh, select yh e H^ such that :

Th = °-h »

vh =-uh+(l/2)f32 uh,

<Ih =Ph,

with ûh e V h satisfying :

( V . uh,qh)^ (ph,qh)

The existence of üh is given by (4.2) and ([3], Theorem 0.1). Proceeding as
in Theorem 3.2 we obtain :

1 / 2 { l i 2 2 j D

Remark 4.1 : A discrete version of Remark 3.1 is valid.

Remark 4.2 : It is possible to build up a Galerkin least squares
formulation of problem (EO )' following the ideas of [12]. Due to the fact
that a <r 1 the least squares terms are different.

In order to give an example of finite element spaces for which
convergence is obtained, we introducé the following notations : f2 is
assumed to be polygonal in M2. Let Xh — {K} be a reguiar triangulation of
O by triangles. As usual h dénotes the size of the mesh. Let Pk(K) dénote
the space of polynomials of degree less than or equal to k on K E Xh. We
choose for Hh :

Th= {TheT;rh\KePm(K)\ K e Xh} , m^O

or

Th = {TllBTnC°(n)4;rh\KGPm(K)\ K e Xh] , m * l ,

Qh={q„eQ;qh\KePt(K), K e Sh) , 1*0,

o r

Qh= { q h e Q n C 0 ( f 2 ) ' 9 q h \ K e P ( ( K ) 9 K e Xh] , f&l.

Assume k^ 2, m -= k - 1, î^ k - 1 and Qh <z C°(/3). If F2 = 0 , it's a
known fact that under suitable hypotheses on Xh the inf-sup condition (4.2)
is satisfied (see [13, 15, 17]), If meas (F2) ^ 0 it is possible, with an

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modellmg and Numerical Analysis



ON THE OLDROYD MODEL FOR VISCOELASTIC FLOW 343

argument simüar to the proof of Theorem 3.3, to show that this condition is
also satisfied for a reasonable mesh. Then combining Theorem 4.1 with
Standard interpolation theory [4,5] and assuming that <reHk(f2)4,

k l 2 and p e Hk{ü), we get :

with C independent of e when s e [0, e0].

Remark 4.3 : In this example the approximation of p being continuous, if
we choose Th <= C°(/5)4, then from

and
e(u) = (1/2 a ) er ,

we obtain a continuous approximation of atoi and e(u) by :

with C ' independent of s when e e [0, e0].

Re mark 4.4 : Other families of éléments satisfying (4.2) are possible ; for
example the « Mini » Finite Element for the displacement with P x continu-
ous approximation for the pressure [13] and P\ continuous or PQ discontinu-
ous approximation of the tensors, Finite Element using discontinuous
pressure [13], etc...

Remark 4.5 : When Th c C0(i7)4, problem (EO/,)' can be solved by a
fixed point method if a < 1/2 ;

Given {(ern, un, Pn)}nSs0 ^ Hh9 (crn + l, un+l, pn+l) is defined by :

(a„ d(v)) + 2(1 - a)(d(un + l \ d(v))-(pn+l,V.v)= <f, v) Vt; e Vh ,

(4.3)

( V . u n +19 q ) + e(pn + l , q ) = 0 V q e Q h , (4.4)
and

(<ra + 1, r)-2a(d(un+lX r ) = 0 VreTh. (4.5)

Let (ah, uh, ph) be the solution of problem (EOA)'. We deduce from
(4.4) and (4.5) that :
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Then from (4.3), (4.6) and (4.7) we obtain :

2(l-a)\un + l-uh\l^2a\un-uh\l (4.8)

and then :

Otherwise (4.3) gives :

+ 2(1 ~a

and then if the discrete inf-sup condition (4.2) holds, we obtain

Then for a -< 1/2 the convergence of the method is obtained. D
If an itérative method is used to solve (4.3) (4.4), the cost of the global

fixed point itération will be approximately proportional to the cost of
solving (4.3) (4.4).
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