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DEFECT CORRECTION METHODS FOR CONVECTION DOMINATED
CONVECTION-DIFFUSION PROBLEMS (*)

O. AXELSSON () and W. LAYTON (%)

Communicated by J. DESCLOUX

Abstract. — Standard Galerkin methods for elliptic problems applied on convection domi-
nated convection-diffusion equations give poor approximations and may even not converge. We
prove local and global error estimates for a defect correction method proposed by Hemker and
show how the convergence depends on solution regularity, types of layers present and
domains/subdomains on which the error is measured.

In particular, we point out the global regularity associated with problems with characteristic
layers alone, and the effect of this on the numerical methods.

Résumé. — Les méthodes d’éléments finis standard pour des probléemes elliptiques de
convection-diffusion dominés par la diffusion donnent de mauvaises approximations et peuvent
ne pas converger. Nous établissons des estimations d’erreur locales et globales pour une méthode
de « defect correction » proposée par Hemker. Nous analysons la dépendance de la convergence
par rapport a la régularité de la solution, aux types de couches limites et aux domaines ou U'erreur
est considérée.

En particulier, nous mettons en évidence la régularité globale pour des problémes de couches
limites caractéristiques et ses conséquences pour les méthodes numériques.

1. INTRODUCTION

This paper considers the approximate solution of singularly perturbed,
convection diffusion equations

Lou=—eAu+ v(x) . Vu+gx)u=f(x), xeQ,e=0, (1.1)
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424 O. AXELSSON, W. LAYTON

where Qc R/, (=1,2,3) is a regular (*) domain with boundary T,
v(x) is a smooth vector field and g(x) a smooth function on Q. Let
n(x) be the outward unit normal on I'. The boundary T is partitioned into
three sets

. = {xel;v(x).n<0},

b = {xeT;v(x).n=0},

', = {xel'; v(x).n =0},

corresponding to the inflow, characteristic and outflow boundaries, respect-
ively. Dirichlet boundary conditions are imposed on the inflow portion of T,

u(x) =0, xel_. (1.2)

The boundary conditions chosen on I'y and I', influence the size and nature
of the boundary layers occurring in the problem. The method considered
herein can be used for various kinds of boundary conditions but to be
specific we take Dirichlet boundary conditions on the characteristic
boundary and Neuman or Dirichlet boundary conditions on the outflow
boundary, i.e.,

u(x) =0, xel,
1.3
Vu.n=0, xeTl, (1.3a)
or
u(x) =0, xelly UL, . (1.3b)

In addition, we shall assume that I’ is either a general boundary curve of a
regular domain, a convex polygon or very smooth (e.g., C®). Throughout
the discussion we will assume that all the integrals involved are evaluated
exactly and the finite element space is conforming.

The solution of (1.1), (1.2), and (1.3) is characterized by the following
weak formulation. u € H'(Q) satisfies

B, (u,v) = (f,w), Yue H'(Q). (1.4)
Here H'(Q) denotes the subspace of the Sobolev space H!(Q) = W2 (Q)

of functions vanishing on I'_ U I’y in case (1.3a¢) and on I’ in case (1.35), and
B, is the bilinear form

B (u, w) :J- [eVu.Vw+ (v(x)-Vu+gq (x)u)w]dx. (1.5)
Q

(*) A regular domain is one for which the divergence theorem is true.
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CONVECTION-DIFFUSION PROBLEMS 425

If $" denotes a finite dimensional subspace of ﬁ‘(Q), the usual Galerkin
method gives an approximation U € S* to u through the equations

B.(U,w)=(f,w), YweS". (1.6)

In the above formulation, $” is typically a finite element space consisting of
piecewise polynomial functions on a subdivision of Q with maximum
element size /. '

Standard finite element methods are not appropriate when ¢ < 0(/4) for
the following two reasons. A generic finite element method for (1.1), (1.2),
(1.3) satisfies : for € > 0 there is an 4y(e) such that for & < /(&) the method
is stable and the error u — U satisfies

lu—Ull < C(e)h " ull,,,, h<hole),
where k£ + 1 is the order of accuracy of the method and || ||kf1 is the
wh+1 = H**! norm. Here hy(e) —» 0 and C(e) - o0 as & — 0, essentially
because B, is not coercive in H' uniformly in .

The second problem associated with the numerical solution of (1.1),
(1.2), (1.3) for e < 0(4) is approximation theoretic. The solution to (1.1),
(1.2), (1.3) is characterized by sharp boundary layers along I, and
I, . It is observed that unless the mesh density around Iy U I, is much
greater- than in the interior of (), the resulting piecewise polynomial

j approximation is highly oscillatory even in regions in which the true solution
is smooth. The global estimates of the form : error = O (A**! &~ ") for some
positive y = vy, are a generic feature of methods for (1.1), (1.2), (1.3) and
any appropriate numerical method faces the problem of resolution of layers.

The method studied herein is a combination of defect correction with an
artificial viscosity approximation. It computes a sequence {U’} = S” by the
following equations : let ey = max {&, &},

B, (U,w)=(f,w), VYweS"
B (U*' - U,w)=(f,w)-B,(U,w), VweS". (1.7)

If ¢ < A, then, in general, U' is only a first order accurate approximation to
u. At each correction step the residual is computed and a correction to the
current approximation is calculated using the (first order) viscosity approxi-
mation with B, .

Defect correction methods of this type have been studied experimentally
by e. g., Hemker [6], [7]. He indicated that for problems with layers, the
defect corrections produces an acceptable approximation in the interior of
after a few correction steps, but eventually the numerical approximation
approaches the Galerkin solution with its bad oscillatory behavior and
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426 O. AXELSSON, W. LAYTON

deteriorated accuracy. For the analysis he uses « local mode analysis » on a
simple model problem.

In this paper we derive local and global error estimates for (1.7) which
agree with the observed behavior of the error. We prove detailed global
error estimates in section 4, for problems with layers, in R?, R®, which are of
the general form: (v = 0,1)

I —v

lu- 0, =@ (h 7 4 (o))

without any stability restrictions on /4 w. r. t. €. In these, we account for the
dependence of C (&) upon the various possible types of layers which arise.

In the preliminary section 3 we consider the periodic problem in
1 — D with the aim of setting the stage for the later analysis and validating
the results of « local-mode-analysis ». The convergence results of section 3
are clearly overly optimistic in a global sense. However, in section 5 we
study 2 — D problems and we show that, modulo a term of infinite order
accuracy which is nonuniform in e, the convergence in subdomains
sufficiently far from layers is analogous to the rates suggested by « local-
mode-analysis ». Indeed it is observed in finite element implementations of
(1.7) that the error in the method in such subdomains behaves like
0(h*+ (g9 —eY), where k :=formal order of accuracy of the method.
Further, it is observed that as j increases we must move to successive
subdomains farther from the boundary layers (see [5], [7]) along I' for the
interior estimates above to hold. Under numerous assumptions upon {2,
v etc., we show (see Theorem 5.1) that for a subdomain (), sufficiently far
from the characteristic and outflow portions of T, the error in H'is of the
observed form 0(2*+ (gy— €)) uniformly in & ; up to a term of infinite
order accuracy in 4 which is nonuniform in &, for every s > 0:

= U1, g, = Ci(s FI*+ (g9 —e)) + Cale) h*.

We also give an L*()) error estimate which is suboptimal by 0(4'%), which
is typical for these problems.

It is noteworthy that, to achieve this accuracy we must move further
inside € as we iterate further. This increase in the pollution as we iterate
was noticed by Hemker [7]. See also Ervin and Layton [6 ; section 4], for an
example in which this effect appears. Computationally attractive modifi-
cations of the basic algorithm have been suggested in e.g., Hemker [6], [7],
Axelsson (2], Ervin and Layton [4], which seem to slow the spread of the
region in which convergence cannot be demonstrated. We consider herein
only the basic method, but we believe that several of the modifications can
be analyzed by suitably adapting our techniques.
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CONVECTION-DIFFUSION PROBLEMS 427

The «streamline diffusion » method represents an entirely different
approach to (1.1), (1.2), (1.3) which has been analyzed in, e.g., Navert [12],
Johnson and Navert [8], Johnson, Schatz and Wahlbin [10] and Johnson
Navert and Pitkaranta [9]. See also Axelsson [1] for a combination of defect
correction with this latter method.

2. A PRIORI ESTIMATES

Associated with (1.1), (1.2), (1.3) is the adjoint problem
LEFu*=—ceAu*—div 0(X)u*)+gx)u*=f, xe
u*=0on I'_ UTI,, and either 2.1
u* =0 on I', if (1.3b), or (¢ Vu* + vu®).n =0 on I', if (1.3a).
Note that
J LF*u*wdQ =B _ (w,u*) Ywe H'(Q).
0

Note also that the convection in the adjoint problem is driven by a velocity
field (— v(x)) in the opposite direction to the original problem and
u* will, in general, have a strong boundary layer along I'_ of width
O(z).

We can distinguish between some practical cases of various degrees of
smoothness as € — 0. As usual, C denotes a generic constant, independent
of u, ¢ and A.

LEMMA 2.1: Assume that q — —l-div V=qy=>0, xe Q, p=2. Then the
p

solution u of (1.1), (1.2), (1.3) satisfies

flu] ) = s Q) > 2=p=w, (2.2a)
e dul + e ull, + Jul < CIfI (2.2b)

and if p is either a convex polygon or smooth and we have pure Dirichlet
boundary conditions

ePlull, + e ull, + Jul <C /], (2.2¢)

Proof : To prove a), multiply (1.1) by ' and integrate. By use of
Green’s formula on the first two terms and a Holder inequality on the right
hand side (¢f. Schatz and Wahlbin [13]) we arrive at a). The L® estimate
follows by letting p — 0. Similarly, for p=2 we get

e|ull, + |ul| =C|f]- From the differential equation (1.1) we get then

elfAull < Cllle. V|| + lull + [/1]=<Ce 2| 1]

vol. 24, n° 4, 1990



428 O. AXELSSON, W. LAYTON

and b) follows. If 3Q is smooth, or a convex polygon, and we have pure
Dirichlet boundary conditions fju{|, < C[||Au| + ||u| ], and ¢) follows. O

Remark 2.1 : Note that (2.2a) implies that | ;| ,»is bounded uniformly

in ¢ for any p = 2, i.e., we have stability with respect to given data in any
such norm. This result is already known for p =2 and p = o0, see for
instance Miranda [11]. The powers &% ¢'2 occurring in part b) can be
shown to be sharp by considering simple examples in one dimension.

LEMMA 2.2 : If g — %div (V) = gy =0 if f € H*~(Q) and T is smooth the
solution to (1.1), (1.2), (1.3b) satisfies ue H*(Q) N U bid (Q) and

- 2 k +1/2
Plull,=C {11+ P10, + S V2 PSS

Proof : Since u satisfies

Au=e '"{f —qu—v.Vu) =1,
the «shift theorem » implies that ||uf|, ,=<C ||f]|s, s=0. Thus,

ellully, =< CLI N+ Nullg, )

The result follows by beginning with Lemma 2.1 and proceeding inductively
using the above. 0O

In the following u, denotes the unnormalized directional derivative
(streamline derivative) along v, u, =v . Vu.

Generalized Periodic Boundary Value Problem : The boundary value
problem (1.1) is said to be gencralized periodic if the data are such that (the
trace of) the solutions and its derivatives satisfy
ulp — u]F+ =Vu. ’llr, —Vu. ’l|r+ = 0, and similarly for v, in the sense
that boundary integrals like J Vu. nu, u,dl' vanishes. This is valid in

r.nr,

particular if I'"_ and I', are congruent and these functions are equal at
corresponding points of I'_ and I', . An example is illustrated in figure 2.1.

"o

To

Figure 2.1. — A Generalized Periodic Boundary Value Problem.
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CONVECTION-DIFFUSION PROBLEMS 429
LEMMA 2.3 : Assume that u € H*(Q), that (||f,| + | f]) exists and that
q— %div V=q9>0, xeQ. If () T_ UT, is empty or (ii) the boundary

value problem is generalized periodic, then
elldul +eull, + Ju, || + lull <CLIL) + 1711, @5a)

If, in addition, T" is smooth or a convex polygon and we have pure Dirichlet
boundary conditions then

ellully + € Plull, + Jull + lull < CULl+ 1711 (2.56)
If, in addition, T is smooth and f € H*~*(Q)
e ull, < CL 2N Mg+ e IS+ 1Ll + 11} - @50

Proof : Note at first that u = 0 on I'y implies #, = 0 on I'y. For notational
simplicity, we consider now only the case n = 2 and we denote x; = x,
x, = y. By direct calculations, (qu), = g, u + qu, and

L (u;) =

=Leu)y—e[2V0,. Vu, +2 Vo,. Vu, + A(v) u, + A(0y) uy)] —quu,
where we have L (u),=f, Since by assumption ue H*(Q) and
f» € L,(€2), the right hand side of the above equation is square integrable

and Lemma 2.1 is applicable. Multiplying by u, and integrating and using
partial integration of some of the terms, such as

J Vo, . Vu,u,dd = — J [uyu,Avy + Vu, . Vo, u,] dQ +
Q 0

+§ Vo,.nu,u,d’,
r_ur,

we get, as in Lemma 2.1,
2 2 2
elluglly + lluol” < CLILSN™ + Nuell® + e flugfl Nully + € [luliF]. (2.6)

Note namely that the boundary integral on I'; is zero because #, = 0 and (in
case (il)) the boundary integrals, such as

§ n.Vu,u,dl’,
F_uT,

vanish because of the generalized periodic boundary conditions. By the
usual inequalities, by (2.4a) and by the differential equation, we then get
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430 O AXELSSON W LAYTON

(2 5a) (2 5c¢) follows from the shift theorem and (2 5b) as in Lem-
ma 22 O

Remark 22 Note that in case (1) and case (1) of Lemma 2 3 only a
characteristic layer can occur (in case (1) the outflow boundary 1s even non-
existent) Case (1) occurs n interior fluid flow problems and case (1) can
occur 1n a (long) channel flow problem, where the inflow and outflow
boundaries have the same shape and area

2.1. Local regularity

Next we give a local regulanty result from Navert [12] which we use
extensively 1n deriving local error estimates First we present the notations
used

The notation we use 1s all standard |.|, ,, D < R? denotes the
H*(D) norm (if D = Q then we shall omit D) and |.|, p the corresponding
semmorm Given a weight function $(x), [w|| w0 denotes the usual

12
weighted L*(D) norm defined as (j w2 dx) Q 1s assumed to be a
D

convex polygon m R?> We define a fimte element space
S = SMQ) < A (Q) by first covering  with an edge to edge triangulation
{7;} which 1s assumed to be quasiuniform We shall assume S"|7, contains
polynomials of degree =< k so that the usual interpolation result holds for
all ue H*+'(Q) N H'(Q)

u—1,() |+ klu—I,@)|,<Ch  Nul,, | o 27
where 7,(u) € S* 1s the interpolant of u If D 1s a subdomain whose
boundary consists of edges of the tmangulation {7,} we denote by
S"(D) the restricion of S" to D We shall use the quastumiformity
assumption upon {7,} 1n the form of the usual inverse estimates for
Slz

For a subdomain Qj, we let I‘j*, Fj‘ , T 10 denote, respectively, the outflow,
inflow and characteristic portions of 3(2,

I ={xed|v.n =0}, I'[] = {xed =T,|v.n <0},
"= {(xeaq, =T,|v.n =0}

Here n, denotes the outward umt normal to (),

As we will be dealing with interior estimates 1n section 5, 1t 1s useful to
briefly collect some of the basic properties of the cutoff functions i,
introduced 1n Johnson and Navert [8], Navert [12], which we will use In this
work ([8], [12]) the crucial role of subdomains which exclude upstream
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CONVECTION-DIFFUSION PROBLEMS 431

cutoff was first point out and exploited. For the definition of g, see
Lemma 2.1.

DEFINITION 2.1 [Néavert [12: p. 19]}: A smooth function ¢ is g, = o
compensating in Q' < Q if =1 in Q' and there is a constant p € [0, 1], with

p=>0ifqy=0, such that—gaa\bap\y in Q.

Note that ¢ can be viewed as a generalization of the exponential weight
function used in Axelsson [2] to get a bilinear form which is coercive
uniformly in e.

DEFINITION 2.2. A subdomain Q" < Q) is said to « exclude upstream

cutoff » if all points upstream w.r.t. v of a point in Q" belongs to
Q" lLe, (') cT.

In Navert [12 ; Lemma 2.1, p. 20] and Johnson and Navert [8] (see also
[9] and [10]), appropriate cutoff functions are constructed for subdomains
which exclude upstream cutoff. We recall, for later reference, their
properties by quoting the following result :

LEMMA 2.4 [Nivert [12 ; Lemma 2.1, pp. 20, 21]): Let Q" be a subdomain
of Q with piecewise smooth boundary T'" such that (I'")" <TI'. Letc, s, d, v
and M be positive numbers with d <1/2, y=1 and M an integer. Assume
that all points upstream (w.r.t. v) a point on (I'")? lie on (T")° and that
[v.n"| =c on (") U (I'")", where n" is the outward unit normal to
0Q". Then, there are constants C, = C (s, M, v, Q"), C, = C,(s, M, v, Q")
and C = C(v, Q") such that if Q' is any subdomain of Q" at a distance of at
least CyvydlIn ( c—ll ) and Cy vy \/;lln < ‘—li ) from (L")t and (T")° respect-
ively, there exists a cutoff function ¥ which is g, = a compensating in
Q' with the following properties :

v=1in Q, (2.8a)

v=0in Q-Q", (2.8b)

aill\bso,inﬂ, (2.8¢)

YETD e i (el =cdy.  @sd

max ————=C, in X € X) = s .

|Z|s'yd ll.l()_C)
— Yy (x+ y)

max ———— <C, in {x€Q|-¥,(x)=Cd*}, (2.8¢)
sl st~ Yel®)

|Dyw|<C{y'd "y +d} inQif0<m<M. (2.81)
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432 O. AXELSSON, W. LAYTON

For any v* with v* . v =0, |v*| =0(1),

1
—=| X
ID,;‘L\jilsC{‘y"d 2! '\p_d‘-w ¢E+d"'} in Q, (282
if0< |\ <M.
| Dy Dy | =C(—y'd " My, +d) in Q,  (28h)

f0<m+ |\ <M.
Here Dy differentiation in the § direction, Dy w =§.Vw etc., m=0 is an
integer and N = (\y, ..., N ,) is a multi-index of length |\| = Y \;. O

DEFINITION 2.3 [Névert [12 ; Definition 2.2, p. 25]] : A cutoff function s
satisfying the conditions of Lemma 2.4 is said to be q, = o compensating and
smooth of order (d, ¥,s) on (', Q").

THEOREM 2.1 [Nivert [12; Theorem 2.3, p.26]]: Assume that either
v has no closed arcs in Q or that q, > C (v) where C depends upon the first
derivatives of v. Let ', Q" satisfy Lemma 2.4, let ¢, s, m be positive numbers
with m an integer and let (') < I~ and I'" is part of one of the faces of §)
(a polygon). Suppose Q is a convex polygon in R%, (I'")™ N T+ is empty.
Then, there are constants C, = C (s, m, v, Q"), C, = C,(s, m, v, ") and
C=C(v,q,Q", Q) such that if the distance from Q' to (I'")* and

14 ] 1 1 .
(T")° is at least C,gyln (;0 ) and C, \/s‘oln (?0 ) respectively, the

solution of :
Lyu,=/f inQ, w=g onl, 2.9
with f e H™(Q") and g = 0, satisfies

Nell,, 00 + N%ell, o < C U M ar + 88l /1o O (2.10)

3. THE PROBLEM IN ONE SPACE DIMENSION

In this preliminary (introductory) section the problem in one space
dimension will be considered. The aims of this section are threefold : to
make the « local mode analysis », discussed in the introduction, rigorous, to
introduce the basic ideas underlying the method in a simplified context, and
to provide, as a point of comparison for later sections, an analysis of the
basic method when the critical effects of boundary conditions and directional
bias do not influence the scheme.
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CONVECTION-DIFFUSION PROBLEMS 433
Therefore, the equation
Lou=—csu"(x)+vu' (x)+qu(x)=f(x), O<x<2m 3.1
is considered subject to periodic boundary conditions
u()—uCw)=u'"(0)-u'2n)=0. (3.2)

Assume that v and p are constants such that v #0, g =0 is satisfied.
f(x) is a 2 w-periodic, smooth, known forcing term.

Regularity

In this section, periodic functions will be considered as functions from 7'
(the unit circle) —» R. There is a natural identification between 2 w-periodic
functions : R — R and functions : T — R and we shall pass from one to the
other without comment. The Sobolev spaces H*(T), — 0 < s < 00, are
defined in the usual manner. Thus, w € H°(T) (considered as a periodic
function) if

w(x) =Y we’, w = (we”)

j€Z

Iwi2= ¥ (1 +i)|w, |’ <.
JEZ

LEMMA 3.1: Assume f € H(T) and v # 0. Then, the solution u to (3.1),
(3.2) is in H**}(T) and

elully+ lull, <CIfll,, Oss<o

where C is independent of «.

Proof : Expanding f in a Fourier series, the solution to (3.1), (3.2) can
easily be calculated

u(x) = Y [ef>+0ij +q17" f, e, f,=(f,e").

JjeZ

Thus (for the ef|u||,,, term proceed in the same manner),

lul2,, = F (1 +7 (&7 + )+ v S

J1€Z

< ¥ QA+ P+ ISP =Clfl,- D

Jje”Z

Note that the above regularity result holds for both the equation for
L, and for its adjoint L* (with v replaced by — v in L,). This is true in the
periodic case.

vol 24, n° 4, 1990



434 O AXELSSON, W LAYTON

Convergence of the Method
In the periodic case the equation (3.1), (3.2) has the weak formulation

B.(ww)=(f,w), Ywe H'(T)
2w
Bs(u,w):f [eu' w' +vu' w+ quw ] dx.
0

Using this weak formulation, the defect correction iterations (1.7) will be
considered. Let S” denote a subspace of H'(T) and &, = max {e, h}. Then,
the iterations (1.7) can be rewritten in the following form that is convenient
for analysis :

B (U, w)=(f,w), Ywe S",
(R,w)= (f,w) =B (U,w), VYweS", 3.3)
B, (E\w)= (R,w), Vwe S"
U= U+ EY, j=1,2 ..,

where, of course, R’ is the residual and E’ the artificial viscosity approxi-
mation to the error. Associated with the discrete sequences (3.3) are
continuous defect corrections sequences u/, ¢/, # defined in an analogous
manner,

L ou'=f, ri=f—-L.u,
© (3.4)
Loe=r, w'*'=u+e, j=1,2,..

dk J J dk J J
2 @(0) W @m) =5 ((0) ~e/2m) =0, k=0.1.

In addition, another auxiliary sequence will be necessary. Define
¢ e S" as the artificial viscosity projection of e, into S":

B, (¢ —&,w)=(",w)-B, (§,w)=0, VYweS". (3.5)

The sequences (3.3), (3.4), (3.5) will be used in the subsequent sections to
analyze the method in the more general context. (Of course, L.,
L., B, and B, are to be interpreted in the appropriate manner for the
problem under consideration.)

The basic convergence theorem in the periodic case is then

THEOREM 3.1 : Assume q >0, v # 0 and that S" satisfies the approxi-
mation assumption (AA) given below. Then, the error in the defect correction
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