
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

GEORGES H. GUIRGUIS

MAX D. GUNZBURGER
On the approximation of the exterior Stokes
problem in three dimensions
Modélisation mathématique et analyse numérique, tome 21, no 3
(1987), p. 445-464
<http://www.numdam.org/item?id=M2AN_1987__21_3_445_0>

© AFCET, 1987, tous droits réservés.

L’accès aux archives de la revue « Modélisation mathématique et analyse
numérique » implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=M2AN_1987__21_3_445_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


MATHEMATICA! MOOEUJMGAHOHUMERICALANALYSJS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol.* 21, n° 3, 1987, p. 445 à 464)

ON THE APPROXIMATION OF THE EXTERIOR STOKES PROBLEM IN THREE
DIMENSIONS (*)

by Georges H. GuiRGUis (*) and Max D. GUNZBURGER (2)

Communicated by R. TEMAM

Abstract. — We approximate the Stokes operator on an exterior domain in three dimensions
by a truncated problem on a finite subdomain. Boundary conditions at the artificially introduced
boundary are presented. Approximation results are discussed, both concerning the error in the
solution oftheproblemposed over the truncated domain and the error due to the discretization by
finite éléments techniques.

Résumé. — Vopérateur de Stokes dans un domaine extérieur de R3 est approximé par un
problème tronqué dans un sous-domaine fini. Les conditions aux limites à la frontière artificielle
sont présentées. Des résultats d'approximation sont étudiés, résultats concernant Verreur pour la
solution du problème dans le domaine tronqué, et ceux concernant Verreur due aux techniques de
discrétisation par éléments finis.

1. INTRODUCTION

So far, the study of numerical approximations to incompressible viscous
flows has been largely restricted to the case of bounded domains. The
rigorous mathematical study of the governing équations, known as the
Navier-Stokes équations, is not an easy task to achieve even in bounded
domains. Our goal in this paper is to discuss methods of approximating the
linear model of viscous incompressible flow which is known as the Stokes
problem. Let Ax be a bounded star shaped set with respect to the origin in
R3. Let Cl be the complement of its closure in R3. Let x = (JC1? x2, x3) dénote
a generic point in R3 and let |x| dénote the distance from the origin, given
by:

1*1 = (*? + A + A )1/2-
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446 G. H. GUIRGUIS, M. D. GUNZBURGER

The problem, we consider, will be denoted in the sequel as the continuons
problem and is given by :

- A M +Vj? = ƒ in H (1.1)

d i v u - 0 in a (1.2)
M\m = 0 (1.3)

lim M(JC) = 0 (1.4)
\X\ ^ 0 0

or symbolically, S(u,p) = F where S dénotes the Stokes operator.
First, we will need a suitable function space in which to pose the problem

(1.1)-(1.4) and establish the existence, uniqueness and regularity of the
solution. A variational formulation of the problem is more suitable if the
problem is to be approximated later by a finite element method. This has
been accomplished in [8]. Also, the continuous problem is not immediately
suitable for discretization due to the fact that a finite sized grid would yield
an infinité number of unknowns. Thus, we approximate the continuous
problem by another problem defined on a finite subdomain QR of the
original domain H given by :

where B (0 ; R ) dénotes the sphère of radius R centered at the origin. We
will dénote this problem as the truncated problem. Let hüR dénote the
boundary introduced by the construction of the truncated domain. Then the
truncated problem is given by :

- AuR + VpR = fR in O,R

div uR = 0 in £lR

uR = 0 on bft

or symbolically, SR(uR,pR) = FR, where p ( . , . ) dénotes an artificial
boundary condition to be imposed at the artificial boundary hflR.

Finally, the truncated problem can be approximated by any method using
finite éléments or finite différence. It is required to choose the boundary
condition at the large boundary such that :

(i) The approximating operator SR is invertible.

(ii) S^1 is a good approximation to S"1 Le., there exists a constant
C ;> 0 independent of the truncation parameter R and a positive constant ô
such that :

where || • || .n is a suitable norm [8].
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APPROXIMATION OF THE EXTERIOR STOKES PROBLEM 447

The various methods of approximating exterior problems will differ in
their accuracy upon the particular choice of boundary condition at the
boundary bflR. Ultimately, if 8 = oo, we have what is known as capacitance
matrix methods or exact boundary conditions. We would like to point out
that this has been applied to the exterior Helmholtz équation [15, 16] and
the Laplace équation [17] and [18]. Also this has been done for the exterior
Stokes problem in two dimensions [19] and three dimensions [9]. Also for
8 <: QO, we mention the work in [10], [3] and [7]. We shall consider in this
paper two types of artificial boundary conditions for the Exterior Stokes
problem. The first, presented in Section 3, could be physically understood
in the sense of the conservation of mass and is given by :

The second, discussed in Section 4, is given by :

= ~PRÜ + n . grzd uR + -uR .

It will be pointed in Section 4 that the term l/RuR could be dropped from
the artificial boundary condition. At that time the boundary condition could
be understood in the sense of conservation of momentum. Then, in
SectionS, we approximate the truncated problem by finite éléments.
Finally, combined error estimâtes will allow the balance of the discretization
error with the « truncation » error [7].

2. PRELIMINAIRES

Let X = (Xx, X2, X3) with X,-, / = 1, 2, 3, non-negative integers be a
multiindex. Let |X| = \x + X2 + X3. We use the weighted Sobolev spaces of
Hanouzet [11]. For m a non-negative integer and a e R we define the
weighted Sobolev space :

Wm'a(fL)= J u e D ' ( f t ) : f ( l + r 2 ) a " m + IM \DX u\2 dx < o o , | X | ̂  m l .

We briefly mention some of the properties that are needed in the analysis.
The details can be found in [11] and [9].

1. Wm'a(ft) is a Hubert space equipped with the inner product

(w,«)m,«;n = I ( f (1 + r2)*-m+M Dx uD* v dx\

and norm,
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448 G. H. GUIRGUIS, M. D. GUNZBURGER

2. The following imbeddings are continuous :

3. There exists a linear boundary operator 7 = (70, yx, ..., 7m_i) with

7:Wm 'a(O)-> / f\ Wm-J'~V2

such that

yu = (w(8£î), du/dn(hSï)9 ..., aM1"

where 8fl dénotes the boundary of the domain H, and d/dn dénotes the
distributional normal derivative and Wm~'~1/2>a(8n) dénote the trace
spaces associated with the weighted Sobolev spaces WPm";~1/2)Ot(ri) previ-
ously defined. The operator 7 is onto.

4. 7-x(0) = W™' a ( a ) dénotes the completion of C0°°(n) in the Wm

norm and we will dénote its dual space by W"m '~a(fi) with the norm

II U II - SUD
HMH-m,-a;n ~ SUP

5. For an exterior domain Wm'j~m

6. Cè°°(n) is dense in Wm>a(Q,), where C£°(a) is the set of infinitely
differentiable fonctions with bounded support in fi.

7. Let WOiO(Q) = L2(fl) be the space of square integrable fonctions over
the domain £1. We define the space LQ(£1) to be :

L0
2(a)= LeL2((l) | f udx =

We will also need the following approximation resuit.

PROPOSITION 2.1 : Let u e C°°(n) n Wl*°(£l) be such that u = 0(r~a)
for a :> 1/2 and r ^ R. Let fl^ — £l\ÙR dénote the open domain exterior to
flR. Then we have the following :

- 1 / 2 , J - 1

0

0

1/2

1/2.

(2.1)

(2.2)

(2.3)

(2.4)
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Remarks :
1. It is easy to establish the result (2.1) of the proposition by direct

intégration for s an integer, then proceed by interpolation for s fractional. In
a similar way, (2.3) can be established. Finally, (2.2) and (2.4) can be
obtained using duality arguments.

2. The proposition shows that all the seminorms converge to their limit
on the unbounded domain ft^ at the same rate.

We state the existence theorem for the continuous problem (1.1)-(1.4).
The proof can be found in [8, 9]. As in the case of bounded domains, the
variational formulation of the problem reduces to a Brezzi type saddle point
problem [2].

THEOREM 2.2: The variational form of (1.1)-(1.4) given by : seek
(u>p) ^ [Wl>°(&)f x L2(ft) such that :

a(w, v) + b(p, v) = f(v) V* e [Wl>°(n)f (2.5)

b(q, u) = 0 VqfeL2(ft) (2.6)

where,

a(ë, v) = grad u : grad v dx
JÙ

and

b(p, v) = - pdiw v dx
Ja

has a unique solution pair (u,p) for f e [Wr"1'°(H)]3. Furthermore, there
exists a constant C > 0 such that :

Remarks :
1. If the support of ƒ is notjcompact ia.Xl, then, the truncated problem-

that will be considered will correspond to an external force fR with the
support of fR in £lR and fR being a good approximation of ƒ. In that case we
have the following initial approximation : let {u^p^ represent the solution
pair of the variational problem (2.5)-(2.6) with fR replacing ƒ. In that case
we will need the intermediate estimate :

and therefore, it is not a loss of generality to consider only the case of the
support of ƒ compact in U?3.
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450 G. H. GUIRGUIS, M. D. GUNZBURGER

2, For the purpose of estimating errors between the solution of the
truncated problem and the solution of the continuous problem, we need to
be aware of the dependence of every constant in every estimate on the
truncation parameter R. Thus, in spite of the équivalence of the weighted
Sobolev space [Wlt0(£lR)]3 and the usual space [^(H^)]3 , we will still pose
the truncated problem on the weighted Sobolev space rather than the
regular one due to the fact that the constant existing in the Hardy inequality
does not depend on the truncation parameter R while the Poincaré
inequality holds with a constant dependent on R.

3. THE FIRST ARTIFICIAL BOUNDARY CONDITION

In this section, we study the approximation of the problem (1.1)-(1.4) by
a truncated problem with zero velocity at the artificial interface ônR : this
approximation will be denoted by the first truncated problem. We pose the
problem with the boundary condition :

In this case the variational formulation of the first truncated problem is :
seek (uR,pR) 6 [W l ï 0(n^)]3 x L$(Q,R) such that :

= fR(vR) V ^ G [W 1 ' 0^)] 3 (3.1)

b(qR,uR) = 0 V ^ e L 2 ( f l ) . (3.2)

3.1. Existence of the solution

First, we will need to establish the existence of the solution of the first
truncated problem (3.1)-(3.2). We intend to omit the details similar to the
work in [8, 9], and we refer the reader to these références. The only
exception to the work in [9] will be the handling of the tangential component
of the velocity at the large boundary hftR where it will be essential to
establish estimâtes independent of the truncation parameter R. The
following lemmas are essential for the stability condition [2] of the form
b(.,.)onL2

0((lR)x [W^\nR)f.

L E M M A 3.1 : Given a e [Wm'°(§£lR)]3
9 a.n = 0i there exists at least one

v2e [Wl-°((lR)]3 such that:

div v2 = 0 in ClR

v2 = 0on 8IÎ
v2 = a on h£lR
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Furthermore, there exists a constant C > 0, independent of R such that :

0 ; n R ^ C II*II 1/2,0:«o,-

Proof: This is a constructive proof. First, we would like to point out that
the similar resuit for bounded domains has been established in [20] by using
compactness arguments which are not applicable in our case. In addition,
we would like to study whether the estimâtes are independent of the
truncation parameter R. Without loss of generality, we show the resuit for
§Q,R the surface of a sphère. Also we will assume that dj O (1 is not empty.

Step 1 : Let g{x) — a{Rxl2) for x e Sn2. We can immediately show that :

Step 2: Given g(x)e [W1/2'°(ÔO2)]
3, by using the similar resuit for

bounded domains, there exists at least one vector j>2 e [ W 1 ' 0 ^ ) ] 3 with

div v2 = 0

v2 = g on 8O2

v2 can be chosen to have support outside fi1. We now have the foliowing
estimate :

Step 3 : Now define U2(x) = v2(x/2 R) for 1 ̂  |x| =s= 2. We can easily see
that

div v2 = 0

and we have the following estimate :

1 / 2 « Ê 2 | | l 0 ; f i 2 (3-5)

for some constant C independent of R. Finally, combining the estimâtes
(3.3), (3.4) and (3.5), we get :

which complètes the proof.
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COROLLARY 3.2 : Given a e W1/2'°(Ôfl U bflR) with a . rç|6nu5n , there

exists v2 G [Wl>°(ClR)]3 with :

div v2 = 0 in ftR

v2 = a on 8ÜU 811 ̂

with the estimate,

with C independent of R.

Proof: See [8, 9]. •

LEMMA 3.3 : Given p e LO(£IR), there exists at least one v e
and a constant C > 0, independent of R, such that :

div v = — p in ClR

Proof: See [8, 9]. •

We are now ready to study the existence of the solution of the first
truncated problem= This is clarified in the following resuit.

COROLLARY 3.4 :

SUP IMI*' 1 0 * C ll^l'o o-n,

Remark : The coercivity of the form «(. , . )

also follows from the Hardy inequality [8, 9, 14] with a constant C
independent of R.

THEOREM 3.5 : The variational form of (3.1)-(3.2) has a unique solution
pair (uR,pR)e [Wl>°(nR)fxLfcnR)forfe [W-l>0(SlR)]\ Furthermore,
there exists a constant C independent of R such that :
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3.2. Ërror of the truncated problem

We are now ready to consider the approximation properties of the first
truncated problem. Let eR = u — uR and |x^ = p — pR dénote the error in
the velocity and the pressure respectively. Then the pair (eR, \xR) satisfies :

AfK + V|xK = 0 in ftR (3.7)
div eR = 0 in nR (3.8)

eR = 0 on 5H (3.9)
eR = u on §£lR . (3.10)

Let ux be any velocity vector satisfying :

«! = 0 on SU
ux = u on hÇiR .

It follows immediately that the pair (eR, \xR) satisfies the variational
formulation :

Seek (eR - ul9 [LR) e [Wh0(CtR)]3 x L$(ClR) such that :

e [ W 1 ' 0 ^ ) ] 3 (3.11)

(3.12)

and therefore we have the following estimate :

i l^ l l 1 > 0 ; a , + U^llo,OiftJl
ssC ll̂ iII 1,0j

since ux is arbitrary we obtain :

•OSfl ( 3 - 1 3 )
«1 = « I 6%

where again the constants are independent of R. It is known [14] that, for
ƒ with compact support, the solution pair (u,p) is 0(/?~\ R~2). Therefore,
we have the following approximation resuit.

THEOREM3.6 :

> » R > » R R

m
vol. 21, n* 3, 1987
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Remarks :
1. In the estimate (3.14) it is important to note that the différence

pR~p is not measured in L2(ftR) but rather it is measured in L Q ( ^ ) .
Similar to bounded domains, the first truncated problem is posed on
LQ(£IR) : the pressure pR is uniquely determined up to a constant while the
pressure p of the continuous problem is determined in L2(H) = L2(fl)/[R
(constants are not in L2(O)). The following argument explains how the
séquence of spaces LQ(CIR), as a function of the truncation parameter R,
does not converge to L2(Q) as R -• oo. Let meas (£lR) dénote the volume of
the domain £lR. The constant C that takes any p e L2(Ù) wtopR G LQ(O,R)

can be written as :

j a

pKRdx

meas

where K^ dénotes the characteristic function of the domain flR. Define the
map,

by,

we obtain,

. 2 \\P\\lo;n

and therefore,

which does not necessarily converge to zero as R -• oo for a gênerai
p G L2(H). When p e L2(H) n L 2 " e (n ) with 0 < e < 1, estimâtes of the
type (3.16) will yield

*llo,o;nJl
aS IUiL2-.(n)[meas VR)]2^ (3.17)

thus showing convergence. When the support of ƒ is compact in O, the
pressure p = 0(R~2) (i.e., p could be in L2 = e(fl) for e = 1/2). Hence the
constant C will be 0(R~2) and
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2. Theorem 3.6 shows that for supp (ƒ) compact in fl the convergence

rate is only of order of R'm, which is not satisfactory. Improving the
approximating behavior of the truncated problem can be achieved only
through the use of higher order boundary conditions. This is considered in
the next section.

4. THE SECOND ARTIFICIAL BOUNDARY CONDITION

Again, we consider only the case where ƒ with compact support in
Ü,R. As in the previous case we discuss first the existence of the solution of
the truncated problem which we dénote by the second truncated problem.
We pose the problem with the boundary condition :

R + -uR onhCLR.

In this case the variational formulation of the problem is sought in the
following space for the velocity :

where K^ dénotes the characteristic function of the domain flR. For the
pressure we will use L2(ClR). In this case the variational formulation of the
problem is given by :

Seek (uR9pR) e WR(nR) x L2(O,R) such that :

,vR)= fR(vR) VvReWR(nR) (4.1)
2 (4.2)

where ax{. , . ) is given by :

ff f 1
«ï (UR, VR) = grad w* : grad vR dx + | -uR.vRdS .

Remark : The second term in the form ax{ . , . ) is added to preserve the
coercivity of the form ax (. , . ) if the bounded star shaped set Ax becomes
empty. We note the importance of this term if the constants in the coercivity
estimâtes o n a ^ . , . ) are to be independent of R. This term may be left out
in when Ax ^ <ï> and zero Dirichlet boundary conditions are applied on 8fi.
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456 G. H. GUIRGUIS, M. D. GUNZBURGER

4.1. Existence of the solution

P R O P O S I T I O N 4 . 1 : Equipped with the norm || . \\x o . n , WR(O,R) is a

Hubert space, •

PROPOSITION 4.2 :

WR{VLR)= [ue [H\aR))3, u\hn = 0 } . •

Remark : The proofs of the Propositions 4.1 and 4.2 use the équivalence
of the weighted and the unweighted norms on the bounded domain
" a [11].

When the bounded set At ^ <ï> and Dirichlet boundary conditions are
considered on 5H we have the following :

P R O P O S I T I O N 4.3 : The seminorm \ . \x o . n , defined by :

1/2

is a norm on WR(QR) equivalent to the usual unweighted norm.

Proof: We use the inequality [4] (équation (4.1) chapterl, section3)

\v\2dxLJ@ ( 1 + \x\f j®

where 0 is an unbounded domain, and where :

=
J L

with L a line segment [^o?*]* x e ©. Now we can easily establish the
inequality on the domain CLR for the set :

u e K = {u = KR grad i|/5 I|I e Cf(tl)}

where now x0 is any point outside the support of i|/. Then the resuit can be
extended to WR(Q,R) by using the density of K in WR(ClR). •

When Ax = <ï>, we need instead the following proposition :

PROPOSITION 4.4 : For u e [WltQ(flR)]3 we have :
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Proof :

i er. ndS = div e, dx

r2u2

aR r- •" L U + r )

(2 + r2) u2

2)m
dx

f* 2 t 2
— ï L _ rfjc ^ c M d5

JnR (1 + r2) J 8 % (1 + r2)172

2 H1/2

H ar

1/2

:dS

J + i f f r ^

for 0 « = e < l . Finally, by collecting similar terms, we complete the
proof. •

COROLLARY 4.5 ; The symmetrie bilinear form % ( . , . ) defined on
WR(£lR) x WR(QR) is strongly coercive Le., there exists a constant C
independent of R such that ;

The bilinear form & ( . , . ) & now defined on L2(QR) x WR((1R). The
continuity of the form on the above spaces is clear, so we proceed to show
the stability condition.

LEMMA 4.6 : Given p E L2(flR), there exists at least one vR e W i ?(OR) and
a constant C > 0, independent of R, such that :

div vR = — p in flR

Proof; We extend p by zero outside ftR and dénote the result by v? then

v e L 2 (O)
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and

Now using the techniques of [9] we can find at least one vector
vs [ # ' 0 ( n ) ] 3 such that:

div v = - v in Cl

with the estimate

Now choosing vR to be the restriction of v to fiR, i.e.,

£R = KR ^

we get the required vector and estimate. This complètes the proof.

We now have the following resuit :

LEMMA 4.7 :

>ve /lave established the coercivity o f the form a(., .) on
a ) x W*( f t R ) 05 we// as the stability o f the form & ( . , . ) on

L2(fli?) x WR(£lR). Now it is possible to establish the resuit similar to
Theorem 3.5.

THEO REM 4.8 : The variational form o f (4.1)-(4.2) has a unique solution
pair (uR,pR)eWR(nR)xL2(QR) for fR e [ W " 1 ' 0 ^ ) ] 3 . Furthermorey

there exists a constant C independent o f R such that :

4.2. The error in the truncated problem

LEMMA 4.9 [14] : For R large enough, the solution pair (u,p) o f the
exterior Stokes problem, with support of ƒ compact in H, satisfies :
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As introduced earlier, we let eR = u~ uR and \x,R = p — pR dénote the error
in the velocity and the pressure respectively. Then the pair (eR, \xR) satisfies :

-AeR + VixR = 0R in ïlR (4.4)

div eR = 0 in £lR (4.5)

eR = 0 on OU (4.6)

P2(«>/0 on 812*. (4.7)

The problem of estimating the pair (eR, \x,R) can be formulated variationally
as follows :

Seek (eR, [xR) e WR(ClR) x L2(D,R) such that :

nR)= f (4.8)

(4.9)

Remark : It is important to note that équation (4.7) holds in the sense of

THEO REM 4.10 : For supp (ƒ) compact in XI we have :

where again the constants are independent of R.

Proof: Using the estimate (4.3) and Proposition 2.1, (4.10) can be
established. •

5. DISCRETIZATION OF THE TRUNCATED PROBLEM

In this section we consider the approximation of the truncated problem by
finite éléments. We assume that flR is a polygonal domain in R3. Let
{T^} be a family of regular triangulizations [9] of £lR such that :

ÙR= U K

where K dénotes a simplex in R3. We use a notation similar to the notation
used in [6]. Let h(K) be defined to be the maximum length of an edge
belonging to the simplex K and let h be defined to be :

h = maxh(K).
KETh
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Let V and 5 dénote the velocity and pressure spaces associated^with any of
the truncated problems in Section 3 or Section 4. Let Vh and Sh dénote finite
dimensional subspaces of V and S, respectively. Define Zh to be the null
space associated with the form b (., . ) and is given by :

ZH = {Vrh *Vh\b(qrh, vrh) = 0 V9ff t 6 Sh).

The variational form of the discrete problem is now given by :

Seek (urh,prh) e Vh x Sh such that :

a(urh, vrh) + b(prh, vrh) = frk(vrh) Vvrh e Vh (5.1)

Vrh) = 0 V ^ e 5 , . (5.2)

Again, in this section, we still use the weighted norms since our final goal is
to dérive estimâtes where the constants depend neither on the truncation
parameter R nor the discretization parameter h. The most important
question to address is the approximation properties in finite dimensional
subspaces of the weighted spaces. Do we still obtain the same qualitative
results as in [1, 4, 5, 6, 13, 20] ? The answer to this question is given in the
next lemma.

LEMMA 5.1 : There exists a map denoted by Uh

such that

for v = 0, 1 and v + 1 === |x ^ m.

Proof : Such a map exists for the unweighted Sobolev spaces [4] with the
well-known estimate

We dénote the unweighted norms and seminorms by ||. || m. n and
|. | m. a respectively. Now we can immediately write :

which complètes the proof. •
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