Noam D. ELKIES, Daniel M. KANE et Scott Duke KOMINERS

Minimal S-universality criteria may vary in size

<http://jtnb.cedram.org/item?id=JTNB_2013__25_3_557_0>
Minimal S-universality criteria may vary in size

par Noam D. Elkies, Daniel M. Kane et Scott Duke Kominers

Résumé. Nous donnons des exemples simples d’ensembles S de formes quadratiques qui ont des critères d’universalité minimaux de plusieurs cardinalités. Nous donnons ainsi une réponse négative à une question de Kim, Kim et Oh [KKO05].

Abstract. In this note, we give simple examples of sets S of quadratic forms that have minimal S-universality criteria of multiple cardinalities. This answers a question of Kim, Kim, and Oh [KKO05] in the negative.

1. Introduction

A quadratic form Q represents another quadratic form L if there exists a \mathbb{Z}-linear, bilinear form-preserving injection $L \rightarrow Q$. In this note, we consider only positive-definite quadratic forms, and assume unless stated otherwise that every form is classically integral (equivalently: has a Gram matrix with integer entries). For a set S of such forms, a quadratic form is called (classically) S-universal if it represents all quadratic forms in S.

Denote by \mathbb{N} the set $\{1, 2, 3, \ldots\}$ of natural numbers. In 1993, Conway and Schneeberger (see [Bha00, Con00]) proved the “Fifteen Theorem”: $\{ax^2 : a \in \mathbb{N}\}$-universal forms can be exactly characterized as the set of forms which represent all of the forms in the finite set

$$\{x^2, 2x^2, 3x^2, 5x^2, 6x^2, 7x^2, 10x^2, 14x^2, 15x^2\}.$$

This set is thus said to be a “criterion set” for $\{ax^2 : a \in \mathbb{N}\}$. In general, for a set S of quadratic forms of bounded rank, a form Q is S-universal if it represents every form in S; an S-criterion set is a subset $S_* \subset S$ such that every S_*-universal form is S-universal. Following the Fifteen Theorem, Kim, Kim, and Oh [KKO05] proved that, surprisingly, finite S-universality criteria exist in general.

Theorem 1.1 (Kim, Kim, and Oh [KKO05]). Let S be any set of quadratic forms of bounded rank. Then, there exists a finite S-criterion set.
Kim, Kim, and Oh [KKO05] observed that there may be multiple S-criterion sets $S_* \subset S$ which are minimal in the sense that for each $L \in S_*$ there exists a Q that is $(S_* \setminus \{L\})$-universal but not S-universal.\(^{1}\)

Given this observation, they asked the following question:

Question (Kim, Kim, and Oh [KKO05]; Kim [Kim04]). Is it the case that for all sets S of quadratic forms (of bounded rank), all minimal S-criterion sets have the same cardinality? Formally, is

$$|S_*| = |S'_*|$$

for all minimal S-criterion sets S_* and S'_*?

In this brief note, we give simple examples that answer this question in the negative. In each case we choose some quadratic form A, and let S be the set of quadratic forms represented by A, so that $S_* = \{A\}$ is a minimal S-criterion set. We then exhibit one or more $S'_* \subset S$ that are finite but of cardinality 2 or higher, and prove that S'_* is also a minimal S-criterion set.

We first give an example where A is diagonal of rank 3 and S'_* consists of one diagonal form of rank 2 and one of rank 3. We then give even simpler examples of higher rank where each $L \in S'_*$ has rank smaller than that of A, often with $A = \oplus_{L \in S_*} L$.

It will at times be convenient to switch from the terminology of quadratic forms to the equivalent notions for lattices; we shall do this henceforth without further comment. For example we identify the form $\langle 1 \rangle$ with the lattice \mathbb{Z}.

2. An example of rank 3

Let $A := \langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 2 \rangle$; that is, let A be the orthogonal direct sum of two copies of the form $\langle 1 \rangle$ and one copy of the form $\langle 2 \rangle$. Let $B := \langle 1 \rangle \oplus \langle 1 \rangle$ and $C := \langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle 2 \rangle$. Let S be the set of quadratic forms represented by A.

Theorem 2.1. Both $\{A\}$ and $\{B, C\}$ are minimal S-criterion sets.

Theorem 2.1 provides an example of two minimal S-criterion sets of different cardinalities.

Proof of Theorem 2.1. Clearly, $\{A\}$ is a minimal S-criterion set. Moreover, it is clear that while $B, C \in S$, neither $\{B\}$ nor $\{C\}$ is an S-criterion set since neither B nor C can embed A. It therefore only remains to show that $\{B, C\}$ is an S-criterion set. To show this, it suffices to prove that any quadratic form Q that represents both B and C also represents A.

\(^{1}\)Kim, Kim, and Oh [KKO05] gave a simple example of a set of quadratic forms S with multiple minimal S-criterion sets: $S = \{\langle 2^i \rangle \oplus \langle 2^j \rangle \oplus \langle 2^k \rangle : 0 \leq i, j, k \in \mathbb{Z}\}$, which has S-criterion sets $\{\langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 1 \rangle, \langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 2 \rangle\}$ and $\{\langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 1 \rangle, \langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle 2 \rangle\}$.
First, we note that any vector v of norm 2 in an integer-matrix quadratic form Q that is not a sum of two orthogonal Q-vectors of norm 1 must be orthogonal to all Q-vectors of norm 1. Indeed, if $v, w \in Q$, $(v, v) = 2$, $(w, w) = 1$, and $(v, w) \neq 0$, then we may assume that $(v, w) = 1$ (by Cauchy-Schwarz, (v, w) is either 1 or -1, and in the latter case we may replace w by $-w$). Then $v = w + (v - w)$, where w and $v - w$ are orthogonal vectors of norm 1.

Suppose for sake of contradiction that Q is a quadratic form that represents B and C but not A. Since Q represents B but not A, there is no norm-2 vector of Q orthogonal to all norm-1 vectors of Q. Since Q represents C, it must contain three orthogonal norm-1 vectors, u, v, and w. By the above observation, we may write u as a sum of norm-1 vectors, say $u = x + y$ for some orthogonal norm-1 vectors $x, y \in Q$.

Now, each of v and w is orthogonal to u but not orthogonal to both x and y (since otherwise we could embed A as the span of $\{x, y, v\}$ or $\{x, y, w\}$). We claim that this implies that both v and w are of the form $\pm(x - y)$: Since v is not orthogonal to both x and y, we may assume without loss of generality that v is not orthogonal to x. Perhaps replacing v with $-v$, we may assume that $(v, x) = 1$. We then have $v = x + z$ for some unit vector z orthogonal to x. We have

$$0 = (u, v) = (x + y, x + z) = (x, x) + (x, z) + (y, x) + (y, z) = 1 + (y, z),$$

hence $(y, z) = -1$. Since both y and z are unit vectors, this implies that $z = -y$, hence $v = x - y$. An analogous argument shows that w is of the form $\pm(x - y)$.

Finally, if both v and w are of the form $\pm(x - y)$, then $(v, w) \in \{2, -2\}$, contradicting the fact that v and w are orthogonal. \qed

3. Examples of higher rank

We begin with a simple example of rank 9. We give two proofs of the correctness of this example, each of which suggests a different generalization.

Proposition 3.1. Let $A = E_8 \oplus \mathbb{Z}$, and let S be the set of quadratic forms represented by A. Then both $\{A\}$ and $\{E_8, \mathbb{Z}\}$ are minimal S-criterion sets.

Proof. As in the proof of Theorem 2.1, we need only prove that any quadratic form Q that represents both E_8 and \mathbb{Z} also represents $E_8 \oplus \mathbb{Z}$.

First argument. Fix a copy of E_8 in Q. Choose any copy of \mathbb{Z} in Q, that is, any vector $v \in Q$ with $(v, v) = 1$. Let $\pi : Q \to E_8 \otimes \mathbb{Q}$ be orthogonal projection. Then, $(\pi(v), w) = (v, w) \in \mathbb{Z}$ for all $w \in E_8$, so $\pi(v) \in E_8^\ast$. But E_8 is self-dual, and has minimal norm 2. Since $(\pi(v), \pi(v)) \leq (v, v)$, it follows that $\pi(v) = 0$, that is, v is orthogonal to E_8. Hence Q contains $E_8 \oplus \mathbb{Z}$ as claimed.
Second argument. Since E_8 and Z are unimodular, they are direct summands of Q (again because $\pi(v) \in E_8$ for all $v \in Q$, and likewise for the projection to $Z \otimes \mathbb{Q}$). But E_8 and Z are indecomposable, and any positive-definite lattice is uniquely the direct sum of indecomposable summands. Hence $Q = \bigoplus_k Q_k$ for some indecomposable $Q_k \subset Q$, which include E_8 and Z, so again we conclude that Q represents $E_8 \oplus Z$. \qed

The first argument for Proposition 3.1 generalizes as follows.

Proposition 3.2. Let $A = L \oplus L'$, where L' is generated by vectors v_i of norms (v_i, v_i) less than the minimal norm of nonzero vectors in the dual lattice\(^2\) L^\ast. Let S be the set of quadratic forms represented by A. Then, both $\{A\}$ and $\{L, L'\}$ are minimal S-criterion sets.

Proof. As before, it is enough to show that if Q represents both L and L' then it represents $L \oplus L'$. Let π be the orthogonal projection to $L \otimes \mathbb{Q}$. Then $\pi(v_i) \in L^\ast$ for each i, whence $\pi(v_i) = 0$ because
\[
(\pi(v_i), \pi(v_i)) \leq (v_i, v_i) < \min_{v \in L^\ast, v \neq 0} (v, v).
\]
Thus, the copy of L' generated by the v_i is orthogonal to L. This gives the desired representation of $L \oplus L'$ by Q. \qed

Examples. We may take $L' = \mathbb{Z}^n$ for any $n \in \mathbb{N}$, and $L \in \{E_6, E_7, E_8\}$; choosing $L = E_6$ and $n = 1$ gives an example of rank 7, the smallest we have found with this technique. We may also take L to be the Leech lattice; then L' can be any lattice generated by its vectors of norms 1, 2, and 3. There are even examples with neither L nor L' unimodular — indeed, such examples may have arbitrarily large discriminants. For instance, let Λ_{23} be the laminated lattice of rank 23 (the intersection of the Leech lattice with the orthogonal complement of one of its minimal vectors); this is a lattice of discriminant 4 and minimal dual norm 3. So we can take $L = \Lambda_{23}^n$ for arbitrary $n \in \mathbb{N}$, and choose any root lattice for L'.

The second argument for Proposition 3.1 generalizes in a different direction. We use the following notations. For a collection Π of sets, let $U(\Pi)$ be their union $\bigcup_{P \in \Pi} P$; and for a finite set \mathcal{P} of lattices, let $P(\mathcal{P})$ be the direct sum $\bigoplus_{L \in \mathcal{P}} L$. Say that two lattices L, L' are coprime if they have no indecomposable summands in common.

Proposition 3.3. Let $A = P(\mathcal{P})$, where \mathcal{P} is a finite set of pairwise coprime, unimodular lattices; and let Π be a family of subsets of \mathcal{P} such that $U(\Pi) = \mathcal{P}$. Then $S'_* := \{P(R) : R \in \Pi\}$ is an S-criterion set for the set S

\(^2\)This dual lattice is the only lattice we consider that might fail to be classically integral.
of quadratic forms represented by \(A \). Moreover, \(S' \) is a minimal \(S \)-criterion set if and only if \(U(\Pi \setminus \{ \mathcal{R} \}) \) is smaller than \(\mathcal{P} \) for each \(\mathcal{R} \in \Pi \).

Proof. We repeatedly apply the observation that if \(\mathcal{P} \) is a set of pairwise coprime lattices, each of which is a direct summand of a lattice \(Q \), then \(\mathcal{P}(\mathcal{P}) \) is also a direct summand of \(Q \). Since any unimodular sublattice of an integer-matrix lattice is a direct summand, it follows that \(Q \) represents \(\mathcal{P}(\mathcal{R}) \) for each \(\mathcal{R} \in \Pi \) \(\iff \) \(Q \) represents each lattice in \(U(\Pi) = \mathcal{P} \iff \) \(Q \) represents \(\mathcal{P}(\mathcal{P}) = A \). That is, \(S' \) is a criterion set for \(A \). Moreover, replacing \(\Pi \) by any subset \(\Pi' = \Pi \setminus \{ \mathcal{R} \} \) shows that \(\{ \mathcal{P}(\mathcal{R}) : \mathcal{R} \in \Pi' \} \) is a criterion set for \(\mathcal{P}(U(\Pi')) \). Thus \(S' \) is minimal if and only if \(U(\Pi \setminus \{ \mathcal{R} \}) \subset \mathcal{P} \) for each \(\mathcal{R} \in \Pi \). \(\square \)

Examples. We may take for \(\Pi \) any partition of \(\mathcal{P} \), and then \(A = \mathcal{P}(S') = \bigoplus_{L \in S'} L \). Proposition 3.1 is the special case \(\mathcal{P} = \{ E_8, \mathbb{Z}^8 \}, \Pi = \{ \{ E_8 \}, \{ \mathbb{Z}^8 \} \} \). (The similar case \(\mathcal{P} = \{ E_8, \mathbb{Z}^8 \}, \Pi = \{ \{ E_8 \}, \{ \mathbb{Z}^8 \} \} \) was in effect used already by Oh [Oh00, Theorem 3.1] and the third author [Kom08a] in the study of 8-universality criteria.) Since \(|\mathcal{P}| \) can be any natural number \(n \), Proposition 3.3 produces for each \(n \) a lattice \(A \) for which \(S \) has minimal criterion sets of (at least) \(n \) distinct cardinalities.

4. Remarks

The examples presented here show that minimal \(S \)-criterion sets may vary in size. Further examples can be obtained by mixing the techniques of Theorem 2.1 and Propositions 3.2 and 3.3; for instance, \[
\langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 2 \rangle \oplus E_8 \oplus \Lambda_{23} \] and \[
\langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle 2 \rangle \oplus E_8, \Lambda_{23} \]
are both minimal criterion sets for the set of lattices represented by \(\langle 1 \rangle \oplus \langle 1 \rangle \oplus \langle 2 \rangle \oplus E_8 \oplus \Lambda_{23} \). However, it is unclear (and appears difficult to characterize in general) for which \(S \) this phenomenon occurs.

For the sets \(S_n \) of rank-\(n \) quadratic forms, criterion sets are known only in the cases \(n = 1, 2, 8 \) (see [Bha00, Con00], [KKO09], and [Oh00], respectively). Few criterion sets beyond those for \(S_n \) (\(n = 1, 2, 8 \)) have been explicitly computed.

Meanwhile, in the cases \(n = 1, 2, 8 \), the minimal \(S_n \)-criterion sets are known to be unique (see [Kim04], [Kom08b], and [Kom08a]), in which case the answer to the question we examine is (trivially) affirmative. But there is not yet a general characterization of the \(S \) that have unique minimal \(S \)-criterion sets (see [Kim04]). It seems likely that such a result would be essential in making progress towards a general answer to the question of Kim, Kim, and Oh [KKO05] that we studied here.
Acknowledgements

While working on this paper, Elkies was supported in part by NSF grants DMS-0501029 and DMS-1100511, Kane and Kominers were supported in part by NSF Graduate Research Fellowships, and Kominers was also supported in part by an AMS–Simons Travel Grant.

References

Minimal S-universality criteria may vary in size

Noam D. Elkies
Department of Mathematics
Harvard University
One Oxford Street
Cambridge, MA 02138
E-mail: elkies@math.harvard.edu

Daniel M. Kane
Department of Mathematics
Stanford University
Building 380, Sloan Hall
Stanford, California 94305
E-mail: dankane@math.stanford.edu
E-mail: aladkeenin@gmail.com

Scott Duke Kominers
Society of Fellows
Dpt of Economics
Program for Evolutionary Dynamics
Center for Research on Computation and Society
Harvard University
One Brattle Square, Suite 6
Cambridge, MA 02138-3758
E-mail: kominers@fas.harvard.edu
E-mail: skominers@gmail.com