Nigel P. BYOTT

A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic p

<http://jtnb.cedram.org/item?id=JTNB_2011__23_1_59_0>

© Société Arithmétique de Bordeaux, 2011, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic p

par NIGEL P. BYOTT

1. Introduction

Let L/K be a finite Galois extension of fields with Galois group $G = \text{Gal}(L/K)$. The Normal Basis Theorem asserts that there is an element ρ of L whose Galois conjugates $\{\sigma(\rho) \mid \sigma \in G\}$ form a basis for the K-vector space L. Equivalently, L is a free module of rank 1 over the group algebra $K[G]$ with generator ρ. Such an element ρ is called a normal basis generator for L/K. The question then arises whether there is a simple condition on elements ρ of L which guarantees that ρ is a normal basis generator. Specifically, suppose that L is equipped with a discrete valuation v_L. (Throughout, whenever we consider a discrete valuation v_F on a field F, we assume it is normalised so that $v_F(F) = \mathbb{Z} \cup \{\infty\}$.) We may then ask whether there exists an integer b such that any $\rho \in L$ with $v_L(\rho) = b$
is automatically a normal basis generator for \(L/K \). We shall refer to any such \(b \) as an integer certificate for normal basis generators of \(L/K \). In the case that \(K \) has characteristic \(p > 0 \), and is complete with perfect residue field, this question was recently settled by G. Elder [4]. His result can be stated as follows:

Theorem 1 (Elder). Let \(K \) be a field of characteristic \(p > 0 \), complete with respect to the discrete valuation \(v_K \), and with perfect residue field. Let \(L \) be a finite Galois extension of \(K \) of degree \(n \) with Galois group \(G = \text{Gal}(L/K) \), let \(w = v_L(\mathcal{D}_{L/K}) \), where \(\mathcal{D}_{L/K} \) denotes the different of \(L/K \) and \(v_L \) is the valuation on \(L \), and let \(b \in \mathbb{Z} \).

(a) If \(L/K \) is totally ramified, \(n \) is a power of \(p \), and \(b \equiv -w - 1 \) (mod \(n \)), then every \(\rho \in L \) with \(v_L(\rho) = b \) is a normal basis generator for \(L/K \).

(b) The result of (a) is best possible in the sense that, if

(i) \(n \) is not a power of \(p \), or

(ii) \(L/K \) is not totally ramified, or

(iii) \(b \not\equiv -w - 1 \) (mod \(n \)),

then there is some \(\rho \in L \) with \(v_L(\rho) = b \) such that \(\rho \) is not a normal basis generator for \(L/K \).

The purpose of this paper is to show that Theorem 1, suitably interpreted, applies not just in the setting of classical Galois theory, but also in the setting of Hopf-Galois theory for separable field extensions, as developed by C. Greither and B. Pareigis [5]. A finite separable field extension \(L/K \) is said to be \(H \)-Galois, where \(H \) is a Hopf algebra over \(K \), if \(L \) is an \(H \)-module algebra and the map \(H \longrightarrow \text{End}_K(L) \) defining the action of \(H \) on \(L \) extends to an \(L \)-linear isomorphism \(L \otimes_K H \longrightarrow \text{End}_K(L) \). A Hopf-Galois structure on \(L/K \) consists of a \(K \)-Hopf algebra \(H \) and an action of \(H \) on \(L \) so that \(L \) is \(H \)-Galois. This generalises the classical notion of Galois extension: if \(L/K \) is a finite Galois extension of fields with Galois group \(G \), we can take \(H \) to be the group algebra \(K[G] \) with its standard Hopf algebra structure and its natural action on \(L \), and then \(L/K \) is \(H \)-Galois. A Galois extension may, however, admit many other Hopf-Galois structures in addition to this classical one, and many (but not all) separable extensions which are not Galois nevertheless admit one or more Hopf-Galois structures. Moreover, if \(L \) is \(H \)-Galois, then \(L \) is a free \(H \)-module of rank 1 (see the proof of [3, (2.16)]), and, by analogy with the classical case, we will shall refer to any free generator of the \(H \)-module \(L \) as a normal basis generator for \(L/K \) with respect to \(H \). Our main result is that Theorem 1 holds in this more general setting:
Theorem 2. Let S/R be a finite extension of discrete valuation rings of characteristic $p > 0$, and let L/K be the corresponding extension of fields of fractions. Let $n = [L : K]$, let v_L be the valuation on L associated to S, and let $w = v_L(D_{S/R})$ where $D_{S/R}$ denotes the different of S/R. Suppose that L/K is separable, and is H-Galois for some K-Hopf algebra H. Let $b \in \mathbb{Z}$.

(a) If L/K is totally ramified, n is a power of p, and $b \equiv -w - 1 \pmod{n}$, then every $\rho \in L$ with $v_L(\rho) = b$ is a normal basis generator for L/K with respect to H.

(b) The result of (a) is best possible in the sense that, if

(i) n is not a power of p, or
(ii) L/K is not totally ramified, or
(iii) $b \not\equiv -w - 1 \pmod{n}$,

then there is some $\rho \in L$ with $v_L(\rho) = b$ such that ρ is not a normal basis generator for L/K with respect to H.

In Theorem 2, we do not require K to be complete with respect to the valuation v_K on K associated to R, and we do not require the residue field of R to be perfect. Thus, even in the case of Galois extensions (in the classical sense), Theorem 2 is slightly stronger than Theorem 1.

We recall that the different $D_{S/R}$ is defined as the fractional S-ideal such that

$$D_{S/R}^{-1} = \{ x \in S \mid \text{Tr}_{L/K}(xS) \subseteq R \},$$

where $\text{Tr}_{L/K}$ is the trace from L to K. In the case that S/R is totally ramified and L/K is separable, let $p(X) \in R[X]$ be the minimal polynomial over R of a uniformiser Π of S. Then $D_{S/R}$ is generated by $p'(\Pi)$, where $p'(T)$ denotes the derivative of $p(T)$ [6, III, Cor. 2 to Lemma 2]. (This does not require L/K to be Galois, or the residue field of K to be perfect.) The formulation of Theorem 1(a) in [4] is in terms of $p'(\Pi)$.

If S (and hence L) is complete with respect to v_L, then $D_{S/R}$ is the same as the different $D_{L/K}$ of the extension L/K of valued fields occurring in Theorem 1. Theorem 2 also applies, however, if K is a global function field of dimension 1 over an arbitrary field k of characteristic p. In particular, if L is an H-Galois extension of K of p-power degree, and some place \mathfrak{p} of K is totally ramified in L/K, then Theorem 2(a) gives an integer certificate for normal basis generators of L/K with respect to H, in terms of the valuation v_L on L corresponding to the unique place \mathfrak{P} of L above \mathfrak{p} and the \mathfrak{P}-part of $D_{L/K}$. If, on the other hand, there is more than one place \mathfrak{P} of L above \mathfrak{p}, then the integral closure of R in L is the intersection S_0 of the corresponding valuation rings S of L [8, III.3.5]. Any one such S strictly contains S_0 and is therefore not integral over R. In particular, S is not finite over R and Theorem 2 does not apply in this case.
We briefly recall the background to the above results. In the (characteristic 0) situation where \(K \) is a finite extension of the field \(\mathbb{Q}_p \) of \(p \)-adic numbers, the author and Elder [2] showed the existence of integer certificates for normal basis generators in totally ramified elementary abelian extensions \(L/K \), under the assumption that \(L/K \) contains no maximally ramified subfield. This assumption is necessary, since there can be no integer certificate in the case \(L = K(\sqrt[p]{\pi}) \) with \(v_K(\pi) = 1 \): indeed, for any \(b \in \mathbb{Z} \), the element \(\pi^{b/p} \) has valuation \(b \) but is not a normal basis generator. (Here \(K \) must contain a primitive \(p \)th root of unity for \(L/K \) to be Galois.) We also raised the question of whether the corresponding result held in characteristic \(p > 0 \), where the exceptional situation of maximal ramification cannot arise. Our question was answered by L. Thomas [9], who observed that general properties of group algebras of \(p \)-groups in characteristic \(p \) allow an elegant derivation of integer certificates for arbitrary finite abelian \(p \)-groups \(G \). Her result was expressed in terms of the last break in the sequence of ramification groups of \(L/K \), but is equivalent to Theorem 1 for totally ramified abelian \(p \)-extensions \(G \). Finally, Elder [4] removed the hypothesis that \(G \) is abelian by expressing the result in terms of the valuation of the different, and also gave the converse result that no integer certificate exists if \(L/K \) is not totally ramified or is not a \(p \)-extension.

We end this introduction by outlining the structure of the paper. In §2, we review the facts we shall need from Hopf-Galois theory, and prove several preliminary results in the case of \(p \)-extensions. These show, in effect, that the relevant Hopf algebras behave similarly to the group algebras considered in [9]. In §3 we develop some machinery to handle extensions whose degrees are not powers of \(p \). In [4], such extensions were treated by reducing to a totally and tamely ramified extension. For Hopf-Galois extensions, it is not clear whether such a reduction is always possible. (Indeed, while a totally ramified Galois extension of local fields is always soluble, the author does not know of any reason why such an extension could not admit a Hopf-Galois structure in which the associated group \(N \), as in §2 below, is insoluble.) We therefore adopt a different approach, using a small part of the theory of modular representations. We complete the proof of Theorem 2 in §4. The ramification groups, which play an essential role in the arguments of [4] and [9], are not available in the Hopf-Galois setting, but their use can be avoided by working directly with the inverse different. Finally, in §5, we give an example of a family of extensions which are not Galois, but to which Theorem 2 applies.

2. Hopf-Galois theory for \(p \)-extensions in characteristic \(p \)

In this section, we briefly recall the description of Hopf-Galois structures on a finite separable field extension \(L/K \), and note some properties of the
Hopf algebras H which arise when $[L : K]$ is a power of $p = \text{char}(K)$. We do not make any use of valuations on K and L in this section.

Let E be a (finite or infinite) Galois extension of K containing L. Set $G = \text{Gal}(E/K)$ and $G' = \text{Gal}(E/L)$, and let $X = G/G'$ be the set of left cosets gG' of G' in G. Then G acts by left multiplication on X, giving a homomorphism $G \rightarrow \text{Perm}(X)$ into the group of permutations of X. The main result of [5] can be stated as follows: the Hopf-Galois structures on L/K (up to the appropriate notion of isomorphism) correspond bijectively to the regular subgroups N of $\text{Perm}(X)$ which are normalised by G. In the Hopf-Galois structure corresponding to N, the Hopf algebra acting on L is $H = E[N]^G$, the fixed point algebra of the group algebra $E[N]$ under the action of G simultaneously on E (as field automorphisms) and on N (by conjugation inside $\text{Perm}(X)$). The Hopf algebra operations on H are the restrictions of the standard operations on $E[N]$. We write 1_X for the trivial coset G' in X. Then there is a bijection between elements η of N and K-embeddings $\sigma : L \rightarrow E$, given by $\eta \mapsto \sigma_\eta$ where $\sigma_\eta(\rho) = g(\rho)$ with $\eta^{-1}(1_X) = gg'$. The action of H on L can be described explicitly as follows (see e.g. [1, p. 338]):

\begin{equation}
\left(\sum_{\eta \in N} \lambda_\eta \eta \right)(\rho) = \sum_{\eta \in N} \lambda_\eta \sigma_\eta(\rho) \text{ for } \sum_{\eta \in N} \lambda_\eta \eta \in H \text{ and } \rho \in L.
\end{equation}

Remark. In [5], E is taken to be the the Galois closure E_0 of L over K. In this case, the action of G on X is faithful. However, it is clear that one may take a larger field E as above: all that changes is that G need no longer act faithfully on X. (Indeed, the action of G on both X and L factors through $\text{Gal}(E/E_0)$.) In the proof of Lemma 3.1 below, it will be convenient to take E to be a finite extension of E_0.

Let L/K be H-Galois, where the Hopf algebra H corresponds to N as above. We define

$$t_H = \sum_{\eta \in N} \eta \in E[N].$$

We now show that t_H behaves like the trace element in a group algebra:

Proposition 2.1. We have $t_H \in H$ and, for any $h \in H$,

$$ht_H = t_H h = \epsilon(h)t_H,$$

where $\epsilon : H \rightarrow K$ is the augmentation. In particular, writing I_H for the augmentation ideal $\ker \epsilon$ of H, we have

$$I_H t_H = t_H I_H = 0.$$

Also, $t_H(\rho) = \text{Tr}_{L/K}(\rho)$ for any $\rho \in L$.

Proof. Since N is normalised by G, each $g \in G$ permutes the elements of N. Hence $t_H \in E[N]^G = H$. For any $h = \sum_{\nu \in N} \lambda_{\nu} \nu \in H$, we have

$$ht_H = \sum_{\nu, \eta} \lambda_{\nu} \nu \eta = \left(\sum_{\nu} \lambda_{\nu} \right) \left(\sum_{\eta} \eta \right) = \epsilon(h) t_H.$$

In particular, if $h \in I_H$ then $ht_H = \epsilon(h) t_H = 0$, so $I_H t_H = 0$. Similarly $t_H h = \epsilon(h) t_H$ and $t_H I_H = 0$. Finally, for $\rho \in L$ we have

$$t_H(\rho) = \sum_{\eta \in N} \sigma_{\eta}(\rho) = \text{Tr}_{L/K}(\rho).$$

Remark. Proposition 2.1 shows that $K \cdot t_H$ is the ideal of (left or right) integrals of H.

Corollary 2.2. If $\text{Tr}_{L/K}(\rho) = 0$ then ρ cannot be a normal basis generator for L/K with respect to H.

Proof. If ρ is a free generator for L over H, then the annihilator of ρ in H must be trivial. But if $\text{Tr}_{L/K}(\rho) = 0$ then ρ is annihilated by $t_H \neq 0$. □

We next show that [9, Proposition 7] still holds in our setting:

Lemma 2.3. If $[L : K] = p^m$ for some integer m, then any $\rho \in L$ with $\text{Tr}_{L/K}(\rho) \neq 0$ is a normal basis generator for L/K with respect to H.

Proof. We first observe that the augmentation ideal I_H is a nilpotent ideal of H, since $I_H = I_{E[N]} \cap H$ and the augmentation ideal $I_{E[N]}$ of $E[N]$ is a nilpotent ideal of $E[N]$ because $|N| = [L : K] = p^m$. Thus I_H is contained in (and in fact equals) the Jacobson radical J_H of H.

Now consider the H-submodule $M = H \cdot \rho + I_H \cdot L$ of L. Since L is a free H-module of rank 1, and $H/I_H \cong K$, the K-subspace $I_H L$ of L has codimension 1. But $\rho \notin I_H L$ since $\text{Tr}_{L/K}(I_H L) = (t_H I_H)L = 0$ by Proposition 2.1, so $M = L$. Since $I_H \subseteq J_H$, Nakayama’s Lemma shows that $H \cdot \rho = L$, and, comparing dimensions over K, we see that ρ is a free generator for the H-module L. □

The next result is immediate from Corollary 2.2 and Lemma 2.3

Corollary 2.4. If $[L : K] = p^m$ then $\rho \in L$ is a normal basis generator for L/K with respect to H if and only if $\text{Tr}_{L/K}(\rho) \neq 0$. In particular, the set of normal basis generators is the same for all Hopf-Galois structures on L/K.
3. The non-p-power case

As in Theorem 2, let S/R be a finite extension of discrete valuation rings, such that the corresponding extension L/K of their fields of fractions is H-Galois for some Hopf algebra H. We do not require S and R to be complete. Let v_L, v_K be the corresponding valuations on L, K.

Lemma 3.1. Suppose that $[L : K]$ is not a power of p. Then H contains nonzero orthogonal idempotents e_1, e_2 with $e_1 + e_2 = 1$, such that

$$v_L(e_j \rho) \geq v_L(\rho) \text{ for all } \rho \in L \text{ and } j = 1, 2.$$

Proof. Let $[L : K] = p^m r$ where $m \geq 0$ and where $r \geq 2$ is prime to p. We have $H = E[N]^G$ where $G = \text{Gal}(E/K)$ and, in view of the remark before Proposition 2.1, we may take E to be a finite Galois extension of K, containing L and also containing a primitive rth root of unity ζ_r. Let k' be the algebraic closure in E of the prime subfield \mathbb{F}_p. Thus $\zeta_r \in k'$.

Now let t be the number of conjugacy classes in N consisting of elements whose order is prime to p. As $|N| = [L : K]$ is not a power of p, we have $t \geq 2$. For any field F of characteristic p containing ζ_r, the group algebra $A = F[N]$ has exactly t nonisomorphic simple modules [7, §18.2, Corollary 3]. Let J_A denote the Jacobson radical of A. Then the semisimple algebra A/J_A has exactly t Wedderburn components, and therefore has exactly t primitive central idempotents. Since A is a finite-dimensional F-algebra, we may lift these idempotents from A/J_A to A. Thus A has exactly t primitive central idempotents, ϕ_1, \ldots, ϕ_t say, and hence has t maximal 2-sided ideals. One of these, say the ideal $(1 - \phi_1)A$ associated to ϕ_1, is the augmentation ideal I_A.

Taking $F = k'$ in the previous paragraph, we obtain orthogonal idempotents $\phi_1, \ldots, \phi_t \in k'[N]$. But $k' \subset E$, and taking $F = E$, we find that ϕ_1, \ldots, ϕ_t are again the primitive central idempotents in $E[N]$. The action of G on $E[N]$ permutes these idempotents, and fixes ϕ_1 since it fixes the augmentation ideal of $E[N]$. Hence $\phi_1 \in H$. Let $e_1 = \phi_1$ and $e_2 = 1 - \phi_1$. Then e_1, e_2 are orthogonal idempotents in $H \cap k'[N]$ with $e_1 + e_2 = 1$. Moreover $e_1 \neq 0$ by definition and $e_2 \neq 0$ since $t \geq 2$.

We now show that $v_L(e_j \rho) \geq v_L(\rho)$ for $j = 1, 2$ and for any $\rho \in L$. Since S/R is finite, S is the unique valuation ring of L containing R. Thus each valuation ring T of E containing R must also contain S. (There may be several such T if R is not complete.) Fix one of these valuation rings T of E, and let v_T be the corresponding valuation on E. Then any valuation v' on E with $v'(\mu) = v_T(\mu)$ for all $\mu \in K$ necessarily satisfies $v'(\rho) = v_T(\rho)$ for all $\rho \in L$. In particular, for each $g \in G$, the valuation $v_E \circ g$ on E must have the same restriction to L as v_E. Thus, for each $\eta \in N$, we have $v_E(\sigma_\eta(\rho)) = v_E(\rho)$ for all $\rho \in L$.

For \(j = 1 \) or \(2 \), let
\[
e_j = \sum_{\eta \in \mathcal{N}} \lambda_\eta \eta \quad \text{with} \quad \lambda_\eta \in k'.
\]
Then, as \(e_j \in H \), we have
\[
e_j(\rho) = \sum_{\eta \in \mathcal{N}} \lambda_\eta \sigma_\eta(\rho)
\]
by (2.1). But \(\lambda_\eta \) is algebraic over \(\mathbb{F}_p \), so either \(\lambda_\eta = 0 \) or \(v_E(\lambda_\eta) = 0 \). We then have
\[
v_E(e_j \rho) \geq \min_{\eta \in \mathcal{N}} (v_E(\lambda_\eta) + v_E(\sigma_\eta(\rho))) \geq 0 + v_E(\rho).
\]
As \(\rho \), \(e_j \rho \in L \), it follows that \(v_L(e_j \rho) \geq v_L(\rho) \) as required. \(\Box \)

We can now prove case (i) of Theorem 2(b).

Corollary 3.2. Let \(S/R \) be as in Theorem 2, and suppose that \([L : K]\) is not a power of \(p \). Then, for any \(b \in \mathbb{Z} \), there exists some \(\rho \in L \) with \(v_L(\rho) = b \) such that \(\rho \) is not a normal basis generator for \(L/K \) with respect to \(H \).

Proof. Take any \(\rho' \in L \) with \(v_L(\rho') = b \). With \(e_1, e_2 \in H \) as in Lemma 3.1, we have
\[
\rho' = e_1 \rho' + e_2 \rho', \quad v_L(e_1 \rho') \geq b, \quad v_L(e_2 \rho') \geq b.
\]
Both inequalities cannot be strict since \(v_L(\rho') = b \), so without loss of generality we have \(v_L(e_1 \rho') = b \). Set \(\rho = e_1 \rho' \). Then \(v_L(\rho) = b \) but \(\rho \) cannot be a normal basis generator with respect to \(H \), since \(e_2 \rho = (e_2 e_1) \rho' = 0 \). \(\Box \)

4. **Proof of Theorem 2**

For this section, the hypotheses of Theorem 2 are in force. In particular, \(S/R \) is a finite extension of discrete valuation rings of characteristic \(p > 0 \), and the corresponding extension of fields of fractions \(L/K \) is separable of degree \(n \). Also, \(L/K \) is \(H \)-Galois for some \(K \)-Hopf algebra \(H \).

By Corollary 3.2, we may assume that \(n = [L : K] \) is a power of \(p \). Let \(e \) be the ramification index of \(S/R \), let \(w = v_L(\mathcal{D}_{S/R}) \), and let \(\pi \) and \(\Pi \) be uniformisers for \(R \) and \(S \) respectively. By definition of the different, we have
\[
\text{Tr}_{L/K}(\Pi^{-w}S) \subseteq R, \quad \text{Tr}_{L/K}(\Pi^{-w-1}S) \not\subseteq R,
\]
and therefore
\[
\text{Tr}_{L/K}(\Pi^{e-w}S) \subseteq \pi R, \quad \text{Tr}_{L/K}(\Pi^{e-w-1}S) = R.
\]
Hence there is some \(x_1 \in L \) with \(v_L(x_1) = e - w - 1 \) and \(\text{Tr}_{L/K}(x_1) = 1 \). For
\[2 \leq i \leq e, \text{ pick } x_i' \in L \text{ with } v_L(x_i') = e - w - i, \text{ and set } x_i = x_i' - \text{Tr}_{L/K}(x_i')x_1. \]
Since \(\text{Tr}_{L/K}(x_i') \in R \) and \(v_L(x_i') < v_L(x_1) \), we have
\[(4.1) \quad v_L(x_i) = e - w - i \text{ for } 1 \leq i \leq e, \]
and clearly
\[(4.2) \quad \text{Tr}_{L/K}(x_i) = \begin{cases} 1 & \text{if } i = 1; \\ 0 & \text{otherwise.} \end{cases} \]

We first consider the totally ramified case \(e = n \). Then \(x_1, \ldots, x_n \) is a \(K \)-basis for \(L \), since the \(v_L(x_i) \) represent all residue classes modulo \(n \).

Let \(\rho \in L \) with \(v_L(\rho) \equiv -w - 1 \pmod{n} \). We may write
\[\rho = \sum_{i=1}^{n} a_i x_i \]
with the \(a_i \in K \). Then \(v_L(\rho) = \min_i \{nv_K(a_i) + (n - w - i) \} \). The hypothesis
on \(\rho \) means that the minimum must occur at \(i = 1 \). In particular, \(a_1 \neq 0 \). Then, by (4.2), we have
\[\text{Tr}_{L/K}(\rho) = \sum_{i=1}^{n} a_i \text{Tr}_{L/K}(x_i) = a_1 \neq 0, \]
and by Lemma 2.3, \(\rho \) is a normal basis generator for \(L/K \) with respect to \(H \). This completes the proof of Theorem 2(a).

Next let \(b \in \mathbb{Z} \) with \(b \not\equiv -1 - w \pmod{n} \). Then \(b = n(s + 1) - w - i \) with
\[2 \leq i \leq n \text{ and } s \in \mathbb{Z}. \]
Set \(\rho = \pi^s x_i, \) so \(v_L(\rho) = b \) by (4.1). But \(\text{Tr}_{L/K}(\rho) = 0 \) by (4.2), so that \(\rho \) cannot be a normal basis generator by Corollary 2.2.
This completes the proof of Theorem 2 for totally ramified extensions.

Finally, suppose that \(S/R \) is not totally ramified. Given \(b \in \mathbb{Z} \), write
\(b = e(s + 1) - w - i \) with \(1 \leq i \leq e \) and \(s \in \mathbb{Z} \). If \(i \neq 1 \) then \(\rho = \pi^s x_i \)
satisfies \(v_L(\rho) = b \) and \(\text{Tr}_{L/K}(\rho) = 0 \), so as before \(\rho \) cannot be a normal
basis generator. It remains to consider the case \(i = 1 \). Let \(l, k \) be the residue
fields of \(S, R \) respectively. Then \(l/k \) has degree \(f > 1 \) with \(ef = n \). (Note,
however, that \(l/k \) need not be separable.) Pick \(\omega \in l \) with \(\omega \not\in k \), let \(\Omega \in S \)
be any element whose image in \(l \) is \(\omega \), and set
\[\rho = \pi^s (\Omega - \text{Tr}_{L/K}(x_1 \Omega)) x_1. \]
Then \(\text{Tr}_{L/K}(x_1 \Omega) \in \text{Tr}_{L/K}(D_{S/R}^{-1}) \subseteq R \). Since \(\omega \) and \(1 \) are elements of \(l \)
which are linearly independent over \(k \), it follows that \(v_L(\Omega - \text{Tr}_{L/K}(x_1 \Omega)) = v_L(\Omega) = 0 \), and hence \(v_L(\rho) = es + v_L(x_1) = b \). But once more we have
\(\text{Tr}_{L/K}(\rho) = 0 \), so that \(\rho \) cannot be a normal basis generator for \(L/K \) with
respect to \(H \). This concludes the proof of Theorem 2.
5. An example

We end with an example of a family of extensions \(L/K \) which are \(H \)-Galois for a suitable Hopf algebra \(H \), but which are not Galois. Theorem 2 will give an integer certificate for normal basis generators in \(L/K \), although Theorem 1 is not applicable.

Fix a prime number \(p \), and let \(K = \mathbb{F}_p((T)) \) be the field of formal Laurent series over the finite field \(\mathbb{F}_p \) of \(p \) elements. Then \(K \) is complete with respect to the discrete valuation \(v_K \) such that \(v_K(T) = 1 \), and the valuation ring is \(R = \mathbb{F}_p[[T]] \). Take any integer \(f \geq 2 \), and set \(q = p^f \). Let \(b > 0 \) be an integer which is not divisible by \(p \), and let \(\alpha \in K \) be any element with \(v_K(\alpha) = -b \). The field we consider is \(L = K(\theta) \), where \(\theta \) is a root of the polynomial \(g(X) = X^q - X - \alpha \in K[X] \).

To see that \(L \) is not Galois over \(K \), consider the unramified extension \(F = \mathbb{F}_q K \) of \(K \) (where \(\mathbb{F}_q \) is the field of \(q \) elements), and let \(E = LF \). Then \(E \) is the splitting field of \(g \) over \(K \), and the roots of \(g \) in \(E \) are \(\{\theta + \omega \mid \omega \in \mathbb{F}_q\} \). Thus \(E \) is the Galois closure of \(L/K \), and it follows in particular that \(L/K \) is not Galois. We are therefore in the situation of §2, with \(G = \text{Gal}(E/K) \) of order \(fq \), and with \(G' = \text{Gal}(E/L) \cong \text{Gal}(F/K) \cong \text{Gal}(\mathbb{F}_q/\mathbb{F}_p) \) cyclic of order \(f \). Moreover, \(G' \) has a normal complement \(N = \text{Gal}(E/F) \cong \mathbb{F}_q \) in \(G \). Thus \(G \cong N \rtimes G' \) (and, since \(\mathbb{F}_q/\mathbb{F}_p \) has a normal basis, it is easy to see that any generator of \(G' \) acts on \(N \) with minimal polynomial \(X^f - 1 \)). In the terminology of [5, §4], \(L/K \) is an almost classically Galois extension. It therefore admits at least one Hopf-Galois structure, namely that corresponding to the group \(N \).

Now \(E/F \) is totally ramified of degree \(q \), and the ramification filtration of \(\text{Gal}(E/F) \) has only one break, occurring at \(b \). Hence, by Hilbert’s formula [6, IV, Prop. 4], \(v_E(D_{E/F}) = (b+1)(q-1) \). As \(E/L \) and \(F/K \) are unramified, it follows that \(L/K \) is totally ramified, and, using the transitivity of the different [6, III, Prop. 8], that \(v_L(D_{L/K}) = (b+1)(q-1) \). Thus Theorem 2(a) applies with \(w \equiv -1 - b \pmod{q} \). Hence any \(\rho \in L \) with \(v_L(\rho) \equiv b \pmod{q} \) is a normal basis generator with respect to any Hopf-Galois structure on \(L/K \).

Following a suggestion of the referee, we specialise this example further. Let us take \(b = q - 1 \) and \(\alpha = T^{1-q} \). Then \(v_L(\theta) = 1 - q \). We obtain a uniformising parameter for \(S \) by setting \(\eta = T \theta \). Then \(\eta \) is a root of the Eisenstein polynomial \(X^q - T^{q-1}X - T \), so \(D_{L/K} \) is generated by \(T^{q-1} \) and \(w \equiv 0 \pmod{q} \). Hence any element \(\rho \) of \(L \) with \(v_L(\rho) \equiv -1 \pmod{q} \) is a normal basis generator with respect to any Hopf-Galois structure on \(L/K \). This can easily be verified directly for \(\rho = \eta^{q-1} \) and the Hopf-Galois structure corresponding to \(N \) as above. Indeed, let \(\sigma_w \) be the element of \(N = \text{Gal}(E/F) \) corresponding to \(\omega \in \mathbb{F}_q \), so \(\sigma_w(\eta) = \eta + \omega T \). We first claim that \(\eta^{q-1} \) is a normal basis generator for the Galois extension \(E/F \),
or equivalently, that $F[N] \cdot \eta^{q-1} = E$. We have

$$\sigma_{\omega}(\eta^{q-1}) = (\eta + \omega T)^{q-1} = \sum_{i=0}^{q-1} \eta^{q-1-i}(-\omega T)^{i},$$

so the claim follows from the non-vanishing of the Vandermonde matrix $((-\omega)^i)_{\omega \in \mathbb{F}_q, 0 \leq i < q}$. Since the $F[N]$-module E is free on the generator η^{q-1}, and $H = F[N]^G$ is a K-subalgebra of $F[N]$, it follows that $H \cdot \eta^{q-1}$ has dimension $\dim_K(H) = q = [L : K]$ over K. But $\eta \in L$ and $H \cdot L = L$, so we must have $H \cdot \eta^{q-1} = L$. Thus η^{q-1} is a normal basis generator for L/K over H, as required.

Remark (Galois extensions). If we apply the preceding construction starting with $\mathbb{F}_q((T))$ rather than $\mathbb{F}_p((T))$ (that is, we just consider the extension E/F above) then we obtain a Galois (indeed, abelian) extension of degree q for which we have given a direct verification that η^{q-1} is a normal basis generator. This provides an explicit example of the situation considered in [9]

Remark (Global examples). We can easily adapt the above arguments to the case where K is not complete. Let K be a function field of dimension 1 with field of constants \mathbb{F}_p, and choose any valuation v_K on K which corresponds to a place of K with residue field \mathbb{F}_p. With q, b and α as above, let $L = K(\theta)$ where $\theta^q - \theta = \alpha$. Then the extension L/K has degree q and is a totally ramified at v_K. As before, L/K is not Galois but does admit at least one Hopf-Galois structure, and Theorem 2(a) shows that any $\rho \in L$ with $v_L(\rho) \equiv b \pmod{q}$ is a normal basis generator for L/K with respect to any Hopf-Galois structure on L/K.

References

Nigel P. Byott
Mathematics Research Institute
University of Exeter
Harrison Building
North Park Road
Exeter EX4 4QF, UK
E-mail: N.P.Byott@ex.ac.uk