Gabriele NEBE et Kristina SCHINDELAR

S-extremal strongly modular lattices

<http://jtnb.cedram.org/item?id=JTNB_2007__19_3_683_0>
S-extremal strongly modular lattices

par Gabriele NEBE et Kristina SCHINDELAR

Résumé. Un réseau fortement modulaire est dit s-économique, s'il maximise le minimum du réseau et son ombre simultanément. La dimension des réseaux s-économiques dont le minimum est pair peut être bornée par la théorie des formes modulaires. En particulier de tels réseaux sont extrémaux.

Abstract. S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.

1. Introduction.

Strongly modular lattices have been defined in [11] to generalize the notion of unimodular lattices. For square-free \(N \in \mathbb{N} \) a lattice \(L \subseteq (\mathbb{R}^n, (.,.)) \) in Euclidean space is called strongly \(N \)-modular, if \(L \) is integral, i.e. contained in its dual lattice

\[
L^* = \{x \in \mathbb{R}^n \mid (x, \ell) \in \mathbb{Z} \forall \ell \in L\}
\]

and isometric to its rescaled partial dual lattices \(\sqrt{d}(L^* \cap \frac{1}{d}L) \) for all \(d | N \). The simplest strongly modular lattice is

\[
C_N := \perp_{d|N} \sqrt{d}\mathbb{Z}
\]

of dimension \(\sigma_0(N) \), the number of divisors of \(N \). For

\[
N \in \mathcal{L} = \{1, 2, 3, 5, 6, 7, 11, 14, 15, 23\}
\]

which is the set of square-free numbers such that \(\sigma_1(N) = \sum_{d|N} d \) divides 24, Theorems 1 and 2 in [13] bound the minimum \(\min(L) := \min\{(\ell, \ell) \mid \)
of a strongly N-modular lattice that is rational equivalent to C_N^k by
\begin{equation}
\min(L) \leq 2 + 2\left\lfloor \frac{k}{s(N)} \right\rfloor, \text{ where } s(N) = \frac{24}{\sigma_1(N)}.
\end{equation}
For $N \in \{1, 3, 5, 7, 11\}$ there is one exception to this bound: $k = s(N) - 1$ and $L = S^{(N)}$ of minimum 3 (see [13, Table 1]). Lattices achieving this bound are called extremal.
For an odd strongly N-modular lattice L let
\[S(L) = L_0^* \setminus L^* \]
denote the shadow of L, where $L_0 = \{ \ell \in L \mid (\ell, \ell) \in 2\mathbb{Z} \}$ is the even sublattice of L. For even strongly N-modular lattices L let $S(L) := L^*$. Then the shadow-minimum of an N-modular lattice is defined as
\[\text{smin}(L) := \min\{N(x, x) \mid x \in S(L)\}. \]
In particular smin$(L) = 0$ for even lattices L. In this paper we show that for all $N \in \mathcal{L}$ and for all strongly N-modular lattices L that are rational equivalent to C_N^k
\[2\min(L) + \text{smin}(L) \leq k\frac{\sigma_1(N)}{2} + 2 \quad \text{if } N \text{ is odd and} \]
\[\min(L) + \text{smin}(L) \leq k\frac{\sigma_1(N/2)}{2} + 1 \quad \text{if } N \text{ is even} \]
with the exceptions $L = S^{(N)}$, $k = s(N) - 1$ ($N \neq 23, 15$ odd) where the bound has to be increased by 2 and $L = O^{(N)}$, $k = s(N)$ and N even, where the bound has to be increased by 1 (see [13, Table 1] for the definition of the lattices $S^{(N)}$, $O^{(N)}$ and also $E^{(N)}$). Lattices achieving this bound are called s-extremal. The theory of modular forms allows us to bound the dimension $\sigma_0(N)k$ of an s-extremal lattice of even minimum μ by
\[2k < \mu s(N). \]
In particular s-extremal lattices of even minimum are automatically extremal and hence by [12] there are only finitely many strongly N-modular s-extremal lattices of even minimum. This is also proven in Section 3, where explicit bounds on the dimension of such s-extremal lattices and some classifications are obtained. It would be interesting to have a similar bound for odd minimum $\mu \geq 3$. Of course for $\mu = 1$, the lattices C_N^k are s-extremal strongly N-modular lattices of minimum 1 for arbitrary $k \in \mathbb{N}$ (see [9]), but already for $\mu = 3$ there are only finitely many s-extremal unimodular lattices of minimum 3 (see [10]). The s-extremal strongly N-modular lattices of minimum $\mu = 2$ are classified in [9] and some s-extremal lattices of minimum 3 are constructed in [15]. For all calculations we used the computer algebra system MAGMA [2].
2. S-extremal lattices.

For a subset $S \subset \mathbb{R}^n$, which is a finite union of cosets of an integral lattice we put its theta series

$$\Theta_S(z) := \sum_{v \in S} q^{(v,v)}, \quad q = \exp(\pi i z).$$

The theta series of strongly N-modular lattices are modular forms for a certain discrete subgroup Γ_N of $SL_2(\mathbb{R})$ (see [13]). Fix $N \in \mathcal{L}$ and put

$$g_1^{(N)}(z) := \Theta_{CN}(z) = \prod_{d \mid N} \Theta_{\mathbb{Z}}(dz) = \prod_{d \mid N} \prod_{j=1}^{\infty} (1 - q^{2dj})(1 + q^{d(2j-1)})^2$$

(see [4, Section 4.4]). Let η be the Dedekind eta-function

$$\eta(z) := q^{1/24} \prod_{j=1}^{\infty} (1 - q^{2j})$$

and put $\eta^{(N)}(z) := \prod_{d \mid N} \eta(dz)$.

If N is odd define

$$g_2^{(N)}(z) := \left(\frac{\eta^{(N)}(z/2)\eta^{(N)}(2z)}{\eta^{(N)}(z)^2} \right)^{s(N)}$$

and if N is even then

$$g_2^{(N)}(z) := \left(\frac{\eta^{(N/2)}(z/2)\eta^{(N/2)}(4z)}{\eta^{(N/2)}(z)\eta^{(N/2)}(2z)} \right)^{s(N)}.$$

The meromorphic function $g_2^{(N)}$ generates the field of modular functions of Γ_N. It is a power series in q starting with

$$g_2^{(N)}(z) = q - s(N)q^2 + \ldots.$$

Using the product expansion of the η-function we find that

$$q^{-1}g_2^{(N)}(z) = \prod_{d \mid N} \prod_{j=1}^{\infty} (1 + q^{d(2j-1)})^{-s(N)}.$$

For even N one has to note that

$$q^{-1}g_2^{(N)}(z) = \prod_{d \mid N, d \neq N/2} \prod_{j=1}^{\infty} \left(\frac{1 + q^{4dj}}{1 + q^{dj}} \right)^{s(N)}$$

$$= \prod_{d \mid N, d \neq N/2} \prod_{j=1}^{\infty} (1 + q^{2d(2j-1)})^{-s(N)}(1 + q^{d(2j-1)})^{-s(N)}.$$.
By [13, Theorem 9, Corollary 3] the theta series of a strongly N-modular lattice L that is rational equivalent to C_N^k is of the form

\begin{equation}
\Theta_L(z) = g_1^{(N)}(z)^k \sum_{i=0}^{b} c_i g_2^{(N)}(z)^i
\end{equation}

for $c_i \in \mathbb{R}$ and some explicit b depending on k and N. The theta series of the rescaled shadow $S := \sqrt{N}S(L)$ of L is

\begin{equation}
\Theta_S(z) = s_1^{(N)}(z)^k \sum_{i=0}^{b} c_i s_2^{(N)}(z)^i
\end{equation}

where $s_1^{(N)}$ and $s_2^{(N)}$ are the corresponding “shadows” of $g_1^{(N)}$ and $g_2^{(N)}$ as defined in [13] (see also [9]).

If N is odd, then

\[
s_1^{(N)} = 2^{\sigma_0(N)} q^{\sigma_1(N)/4}(1 + q^2 + \ldots)
\]

and

\[
s_2^{(N)} = 2^{-s(N)\sigma_0(N)/2} (-q^{-2} + s(N) + \ldots).
\]

If N is even, then

\[
s_1^{(N)} = 2^{\sigma_0(N)/2} q^{\sigma_1(N)/2}(1 + 2q + \ldots),
\]

\[
s_2^{(N)} = 2^{-s(N)\sigma_0(N)/2} (-q^{-1} + s(N) + \ldots).
\]

Theorem 2.1. Let $N \in \mathcal{L}$ be odd and let L be a strongly N-modular lattice in the genus of C_N^k. Let $\sigma := \min(L)$ and let $\mu := \min(L)$. Then

\[
\sigma + 2\mu \leq k \frac{\sigma_1(N)}{4} + 2
\]

unless $k = s(N) - 1$ and $\mu = 3$. In the latter case the lattice $S^{(N)}$ is the only exception (with $\min(S^{(N)}) = 3$ and $\min(S^{(N)}) = 4 - \sigma_1(N)/4$).

Proof. The proof is a straightforward generalization of the one given in [6]. We always assume that $L \neq S^{(N)}$ and put $g_1 := g_1^{(N)}$ and $g_2 := g_2^{(N)}$. Let $m := \mu - 1$ and assume that $\sigma + 2\mu \geq k \frac{\sigma_1(N)}{4} + 2$. Then from the expansion of

\[
\Theta_S = \sum_{j=\sigma}^{\infty} b_j q^j = s_1^{(N)}(z)^k \sum_{i=0}^{b} c_i s_2^{(N)}(z)^i
\]

in formula (2.2) above we see that $c_i = 0$ for $i > m$ and (2.1) determines the remaining coefficients $c_0 = 1$, c_1, \ldots, c_m uniquely from the fact that

\[
\Theta_L = 1 + \sum_{j=\mu}^{\infty} a_j q^j \equiv 1 \pmod{q^{m+1}}.
\]
The number of vectors of norm \(k \frac{\sigma_1(N)}{4} + 2 - 2 \mu \) in \(S = \sqrt{N}S(L) \) is

\[
c_m(-1)^m 2^{-m \sigma_0(N)} s(N)/2 + k \sigma_0(N)
\]

and nonzero, iff \(c_m \neq 0 \). The expansion of \(g_1^{-k} \) in a power series in \(g_2 \) is given by

\[
g_1^{-k} = \sum_{i=0}^{m} c_i g_2^i - a_{m+1} q^{m+1} g_1^{-k} + * q^{m+2} + \ldots = \sum_{i=0}^{\infty} \tilde{c}_i g_2^i
\]

with \(\tilde{c}_i = c_i \ (i = 0, \ldots, m) \) and \(\tilde{c}_{m+1} = -a_{m+1} \). Hence Bürmann-Lagrange (see for instance [16]) yields that

\[
c_m = \frac{1}{m!} \frac{\partial^{m-1}}{\partial q^{m-1}} \left(\frac{\partial}{\partial q} (g_1^{-k})(q g_2^{-1})^m \right)_{q=0} = \frac{-k}{m} \left(\text{coeff. of } q^{m-1} \text{ in } (g_1'/g_1)/f_1 \right)
\]

with \(f_1 = (q^{-1} g_2)^m g_1^k \). Using the product expansion of \(g_1 \) and \(g_2 \) above we get

\[
f_1 = \prod_{d \mid N} \prod_{j=1}^{\infty} (1 - q^{2dj})^k (1 + q^{d(2j-1)})^{2k-s(N)m}.
\]

Since

\[
g_1'/g_1 = \sum_{d \mid N} \frac{\partial}{\partial q} \frac{\theta_3(dz)}{\theta_3(dz)}
\]

is alternating as a sum of alternating power series, the series \(P := g_1'/g_1/f_1 \) is alternating, if \(2k - s(N)m \geq 0 \). In this case all coefficients of \(P \) are nonzero, since all even powers of \(q \) occur in \((1 - q^2)^{-1}\) and \(g_1'/g_1 \) has a non-zero coefficient at \(q^1 \). Otherwise write

\[
P = g_1' \prod_{d \mid N} \prod_{j=1}^{\infty} \frac{(1 + q^{d(2j-1)})^{s(N)m-2k-2}}{(1 - q^{2dj})^{k+1}}.
\]

If \(2k - s(N)m < -2 \) then \(P \) is a positive power series in which all \(q \)-powers occur. Hence \(c_m < 0 \) in this case. If the minimum \(\mu \) is odd then this implies that \(b_\sigma < 0 \) and hence the nonexistence of an \(s \)-extremal lattice of odd minimum for \(s(N)m - 2 > 2k \). Assume now that \(2k - s(N)m = -2 \), i.e. \(k = s(N)m/2 - 1 \). By the bound in [13] one has

\[
m + 1 \leq 2 \left[\frac{k}{s(N)} \right] + 2 = 2 \left[\frac{m}{2} - \frac{1}{s(N)} \right] + 2.
\]

This is only possible if \(m \) is odd. Since \(g_1' \) has a non-zero constant term, \(P \) contains all even powers of \(q \) in particular the coefficient of \(q^{m-1} \) is positive. The last case is \(2k - s(N)m = -1 \). Then clearly \(m \) and \(s(N) \) are
odd and \(P = GH^{(m-1)/2} \) where
\[
G = g' \prod_{d | N} \prod_{j=1}^{\infty} (1 + q^{d(2j-1)})^{-1}(1 - q^{2dj})^{-(s(N)+1)/2}
\]
and
\[
H = \prod_{d | N} \prod_{j=1}^{\infty} (1 - q^{2dj})^{-s(N)}.
\]
If \(m \) is odd then the coefficient of \(P \) at \(q^{m-1} \) is
\[
\int_{c+1+iy_0}^{c-1+iy_0} e^{-(m-1)\pi i z} G(e^{\pi i z}) H(e^{\pi i z})^{(m-1)/2} dz
\]
which may be estimated by the saddle point method as illustrated in [8, Lemma 1]. In particular this coefficient grows like a constant times
\[
\frac{e^{(m-1)/2}}{m^{1/2}}
\]
where \(c = F(y_0), F(y) = e^{2\pi y} H(e^{-2\pi y}) \) and \(y_0 \) is the first positive zero of \(F' \). Since \(c > 0 \) and also \(F''(y_0) > 0 \) and the coefficient of \(P \) at \(q^{m-1} \) is positive for the first few values of \(m \) (we checked 10000 values), this proves that \(b_\sigma > 0 \) also in this case. \(\square \)

To treat the even \(N \in \mathcal{L} \), we need two easy (probably well known) observations:

Lemma 2.1. Let
\[
f(q) := \prod_{j=1}^{\infty} (1 + q^{2j-1})(1 + q^{2(2j-1)}).
\]
Then the \(q \)-series expansion of \(1/f \) is alternating with non zero coefficients at \(q^a \) for \(a \neq 2 \).

Proof.
\[
1/f = \prod_{j=1}^{\infty} (1 + q^{2j-1} + q^{2(2j-1)} + q^{3(2j-1)})^{-1} = \prod_{j=1}^{\infty} \sum_{\ell=0}^{\infty} q^{4\ell(2j-1)} - q^{(4\ell+1)(2j-1)}
\]
is alternating as a product of alternating series. The coefficient of \(q^a \) is non-zero, if and only if \(a \) is a sum of numbers of the form \(4\ell(2j-1) \) and \((4\ell + 1)(2j-1) \) with distinct \(\ell \). One obtains 0 and 1 with \(\ell = 0 \) and \(j = 1 \) and \(3 = 1(2 \cdot 2 - 1) \) and \(6 = 1 + 5 \). Since one may add arbitrary multiples of 4, this shows that the coefficients are all non-zero except for the case that \(a = 2 \). \(\square \)
Lemma 2.2. Let \(g_1 := g_1^{(N)} \) for even \(N \) such that \(N/2 \) is odd and denote by \(g_1' \) the derivative of \(g_1 \) with respect to \(q \). Then \(\frac{g_1'}{g_1} \) is an alternating series with non-zero coefficients for all \(q^a \) with \(a \neq 1 \mod 4 \). The coefficients for \(q^a \) with \(a \equiv 1 \mod 4 \) are zero.

Proof. Using the product expansion

\[
g_1 = \prod_{d|N} \prod_{j=1}^{\infty} (1 - q^{2jd})(1 + q^{2j-1}d^2)
\]

we calculate

\[
g_1' / g_1 = \sum_{d|N} \sum_{j=1}^{\infty} \frac{2(2j-1)dq^{d(2j-1)-1}}{1 - q^{d(2j-1)}} - \frac{2djq^{2dj-1}}{1 - q^{2dj}} - \frac{4djq^{adj-1}}{1 - q^{4dj}}
\]

\[
+ \frac{2(4j-2)dq^{d(4j-2)-1}}{1 - q^{d(4j-2)}}
\]

\[
= \sum_{d|N} \sum_{j=1}^{\infty} \frac{(4j-2)dq^{d(2j-1)d-1}}{1 + q^{d(2j-1)d}} - \frac{8djq^{adj-1}}{1 - q^{4dj}}
\]

\[
+ \frac{(4j-2)d(q^{d(4j-2)d-1} - 3q^{d(8j-4)d-1})}{1 - q^{d(8j-4)d}}
\]

\[
= \sum_{d|N} \sum_{j=1}^{\infty} \sum_{\ell=1}^{\infty} -8jdq^{4j\ell\ell-1} - 3(4j-2)dq^{d(8j-4)d\ell-1}
\]

\[
+ (4j-2)dq^{d(2j-1)d(4\ell-2)-1} - (-1)^\ell(4j-2)dq^{d(2j-1)d\ell-1}
\]

Hence the coefficient of \(q^a \) is positive if \(a \) is even and negative if \(a \equiv -1 \mod 4 \). The only cancellation that occurs is for \(a \equiv 1 \mod 4 \). In this case the coefficient of \(q^a \) is zero. \(\square \)

Theorem 2.2. Let \(N \in \mathcal{L} \) be even and let \(L \) be a strongly \(N \)-modular lattice in the genus of \(C^k_N \). Let \(\sigma := \text{smin}(L) \) and let \(\mu := \text{min}(L) \). Then

\[
\sigma + \mu \leq k \frac{\sigma_1(N/2)}{2} + 1
\]

unless \(k = s(N) \) and \(\mu = 3 \) where this bound has to be increased by 1. In these cases \(L \) is the unique lattice \(L = O^{(N)} \) (from [13, Table 1]) of minimum 3 described in [9, Theorem 3].

Proof. As in the proof of Theorem 2.1 let \(g_1 := g_1^{(N)} \) and \(g_2 := g_2^{(N)} \), \(m := \mu - 1 \) and assume that \(\sigma + \mu \geq k \frac{\sigma_1(N/2)}{2} + 1 \). Again all coefficients \(c_i \) in (2.2) and (2.1) are uniquely determined by the conditions that \(\text{smin}(L) \geq k \frac{\sigma_1(N/2)}{4} - m \) and \(\Theta_L \equiv 1 \mod q^{m+1} \). The number of vectors of norm
\[
k^{\sigma_1(N/2)} - m \text{ in } S = \sqrt{N}S(L) \text{ is } c_m(-1)^m 2^{\sigma_0(N)k/2-ms(N)}. \text{ As in the proof of Theorem 2.1 the formula of Bürmann-Lagrange yields that}
\]
\[
c_m = \frac{-k}{m} \text{ (coeff. of } q^{m-1} \text{ in } (g_1'/g_1)/f_1)\]

with \(f_1\) as in the proof of Theorem 2.1. We have
\[
f_1 = \prod_{d \mid N} f(dq)^{2k-s(N)m} \prod_{j=1}^{\infty} (1-q^{2dj})^k(1-q^{4dj})^k
\]

where \(f\) is as in Lemma 2.1. If \(2k - s(N)m > 0\) then \(1/f_1\) is alternating by Lemma 2.1 and \(g_1'/g_1\) is alternating (with a non-zero coefficient at \(q^3\)) by Lemma 2.2 and we can argue as in the proof of Theorem 2.1. Since \(k > 0\) all even coefficients occur in the product
\[
\prod_{j=1}^{\infty} (1-q^{2j})^{-k}
\]
hence all coefficients in \((g_1'/g_1)/f_1\) are non-zero. If \(2k - s(N)m = 0\) similarly the only zero coefficient in \((g_1'/g_1)/f_1\) is at \(q^1\) yielding the exception stated in the Theorem. Now assume that \(2k - s(N)m < 0\) and write
\[
P = (g_1'/g_1)/f_1 = g_1' \prod_{d \mid N} f(dq)^{s(N)m-2k-2} \prod_{j=1}^{\infty} ((1-q^{2dj})(1-q^{4dj}))^{k+1}.
\]

If \(2k - s(N)m < -2\) then \(P\) is a positive power series in which all \(q\)-powers occur and hence \(c_m < 0\). If the minimum \(\mu\) is odd then this implies that \(b_\sigma < 0\) and hence the nonexistence of an \(s\)-extremal lattice of odd minimum for \(s(N)m - 2 > 2k\). Assume now that \(2k - s(N)m = -2\), i.e. \(k = s(N)m/2 - 1\). Then again \(m\) is odd and since \(g_1'\) has a non-zero constant term \(P\) contains all even powers of \(q\). In particular the coefficient of \(q^{m-1}\) is positive. The last case is \(2k - s(N)m = -1\) and dealt with as in the proof of Theorem 2.1.

From the proof of Theorem 2.1 and 2.2 we obtain the following bound on the minimum of an \(s\)-extremal lattice which is sometimes a slight improvement of the bound (1.1).

Corollary 2.1. Let \(L\) be an \(s\)-extremal strongly \(N\)-modular lattice in the genus of \(C_N^k\) with odd minimum \(\mu := \min(L)\). Then
\[
\mu < \frac{2k+2}{s(N)} + 1.
\]
3. S-extremal lattices of even minimum.

In this section we use the methods of [8] to show that there are only finitely many s-extremal lattices of even minimum. The first result generalizes the bound on the dimension of an s-extremal lattice of even minimum that is obtained in [6] for unimodular lattices. In particular such s-extremal lattices are automatically extremal. Now [12, Theorem 5.2] shows that there are only finitely many extremal strongly N-modular lattices which also implies that there are only finitely many such s-extremal lattices with even minimum. To get a good upper bound on the maximal dimension of an s-extremal strongly N-modular lattice, we show that the second (resp. third) coefficient in the shadow theta series becomes eventually negative.

Theorem 3.1. Let $N \in \mathcal{L}$ and let L be an s-extremal strongly N-modular lattice in the genus of C^k_N. Assume that $\mu := \min(L)$ is even. Then

$$s(N)(\mu - 2) \leq 2k < \mu s(N).$$

Proof. The lower bound follows from (1.1). As in the proof of Theorem 2.1 we obtain the number a_μ of minimal vectors of L as

$$a_\mu = \frac{k}{\mu - 1} \text{ (coeff. of } q^{\mu-1} \text{ in } (g_1'/g_1)/f_2)$$

with

$$f_2 = (q^{-1} g_2)^\mu g_1^k.$$

If N is odd, then

$$f_2 = \prod_{d|N} \prod_{j=1}^\infty (1 - q^{2dj})^k(1 + q^{d(2j-1)})^{2k-s(N)\mu}$$

and for even N we obtain

$$f_2 = \prod_{d|\frac{N}{2}} f(dq)^{2k-s(N)\mu} \prod_{j=1}^\infty (1 - q^{2dj})^k(1 + q^{4dj})^k$$

where f is as in Lemma 2.1. If $2k - s(N)\mu \geq 0$ then in both cases $(g_1'/g_1)/f_2$ is an alternating series and since $\mu - 1$ is odd the coefficient of $q^{\mu-1}$ in this series is negative. Therefore a_μ is negative which is a contradiction. □

We now proceed as in [8] and express the first coefficients of the shadow theta series of an s-extremal N-modular lattice.

Lemma 3.1. Let $N \in \mathcal{L}$, $s_1 := s_1^{(N)}$ and $s_2 := s_2^{(N)}$. Then $s_1^k \sum_{i=0}^m c_i s_2^i$ starts with $(-1)^m 2^{\sigma_0(N)(k-\text{ms}(N)/2)}q^{k\sigma_1(N)/4-2m}$ times

$$c_m - (2^{s(N)\sigma_0(N)/2} c_{m-1} + (s(N)m - k)c_m)q^2.$$
if N is odd, and with $(-1)^m2^{\sigma_0(N)/2}q^{m\sigma_0(N)/4}\sigma_0(N)/q^{k\sigma_1(N/2)/2-m}$ times
\[
c_m - (2^{s(N)\sigma_0(N)/4}c_{m-1} + (s(N)m - 2k)c_m)q
+ (2^{s(N)\sigma_0(N)/2}c_{m-2} + 2^{s(N)\sigma_0(N)/4}(s(N)(m - 1) - 2k)c_{m-1}
+ (s(N)^2\frac{m(m-1)}{2}) - 2kms(N) + 2k(k - 1) + 2^{s(N)\sigma_0(N)/4}\frac{m(s(N)+1)}{4})c_m)q^2
\]
if N is even.

Proof. If N is odd then
\[
s_1 = 2^{\sigma_0(N)/2}q^{\sigma_1(N)/4}(1 + q^2) + \ldots
s_2 = 2^{-s(N)\sigma_0(N)/2}(-q^{-2} + s(N)) + \ldots
\]
and for even N
\[
s_1 = 2^{\sigma_0(N)/2}q^{\sigma_1(N/2)/2}(1 + 2q + 0q^2) + \ldots
s_2 = 2^{-s(N)\sigma_0(N)/4}(-q^{-1} + s(N)) - \frac{s(N)+1}{4}q + \ldots
\]
Explicit calculations prove the lemma. \qed

We now want to use [8, Lemma 1] to show that the coefficients c_m and c_{m-1} determined in the proof of Theorem 2.1 for the theta series of an s-extremal lattice satisfy $(-1)^jc_j > 0$ and c_m/c_{m-1} is bounded.

If L is an s-extremal lattice of even minimum $\mu = m + 1$ in the genus of C^k_N, then Theorem 3.1 yields that
\[k = \frac{s(N)}{2}(m - 1) + b\] for some $0 \leq b < s(N)$.

Let
\[
\psi := \psi^{(N)} := \prod_{j=1}^{\infty} \prod_{d|N}(1 - q^{2jd})\quad \text{and}\quad \varphi := \varphi^{(N)} := \prod_{j=1}^{\infty} \prod_{d|N}(1 + q^{(2j-1)d}).
\]

Then
\[
c_{m-\ell} = \frac{k}{m-\ell} \text{ coeff. of } q^{m-\ell-1} \text{ in } g^{\prime}_1\psi^{-k-1}\varphi^s(N)(m-\ell-1) - 2(k+1)
= \frac{k}{m-\ell} \text{ coeff. of } q^{m-\ell-1} \text{ in } G^{(b)}_\ell H^{m-\ell-1}
\]
where
\[
G^{(b)}_\ell = g^{(b)}_1\psi^{-b-1-\ell}s(N)/2\varphi^{-2b-2+(1-\ell)s(N)} = G^{(0)}_\ell(\psi^{-1}\varphi^{-2})^b
\]
and
\[
H = \psi^{-s(N)/2} = 1 + \frac{s(N)}{2}q^2 + \ldots
\]
In particular the first two coefficients of H are positive and the remaining coefficients are nonnegative. Since also odd powers of q arise in $G^{(b)}_\ell$ the coefficient $\beta_{m-\ell-1}$ of $q^{m-\ell-1}$ in $G^{(b)}_\ell H^{m-\ell-1}$ is by Cauchy’s formula
\[
\beta_{m-\ell-1} = \frac{1}{2} \int_{-1+iy}^{1+iy} e^{-\pi i(m-\ell-1)z} G^{(b)}_\ell(e^{\pi iz})H^{m-\ell-1}(e^{\pi iz})dz
\]
for arbitrary $y > 0$.

Put $F(y) := e^{\pi y} H(e^{-\pi y})$ and let y_0 be the first positive zero of F'. Then we check that $d_1 := F(y_0) > 0$ and $d_2 := F''(y_0)/F(y_0) > 0$. Now H has two saddle points in $[-1 + i y_0, 1 + i y_0]$ namely at $\pm 1 + i y_0$ and $i y_0$. By the saddle point method (see [1, (5.7.2)]) we obtain

$$\beta_{m-\ell-1} \sim d_1^{m-\ell-1} (G_{\ell}^{(b)}(e^{-\pi y_0}) + (-1)^{m-\ell-1} G_{\ell}^{(b)}(-e^{-\pi y_0})),$$

$$\times (2\pi(m - \ell - 1)d_2)^{-1/2}$$

as m tends to infinity. In particular

$$c_m \sim d_1 \frac{G_{\ell}^{(b)}(e^{-\pi y_0}) + (-1)^{m-1} G_{\ell}^{(b)}(-e^{-\pi y_0})}{G_{\ell}^{(b)}(e^{-\pi y_0}) + (-1)^m G_{\ell}^{(b)}(-e^{-\pi y_0})} c_{m-1}.$$

Lemma 3.2. For $N \in \mathcal{L}$ and $b \in \{0, \ldots, s(N)-1\}$ let $k := \frac{s(N)}{2}(m-1)+b = js(N)+b$, $G_{\ell}^{(b)}$, d_1, d_2, y_0 be as above where $m = 2j+1$ is odd. Then c_{2j+1}/c_{2j} tends to

$$Q(N, b) := \frac{d_1 G_{\ell}^{(b)}(e^{-\pi y_0}) + (-1)^{m-1} G_{\ell}^{(b)}(-e^{-\pi y_0})}{G_{\ell}^{(b)}(e^{-\pi y_0}) + (-1)^m G_{\ell}^{(b)}(-e^{-\pi y_0})} \in \mathbb{R}_{<0}$$

if j goes to infinity.

By Lemma 3.1 the second coefficient $b_{\sigma+2}$ in the shadow theta series of a putative s-extremal strongly N-modular lattice of even minimum $\mu = m+1$ in the genus of C_N^k ($k = \frac{s(N)}{2}(m-1)+b$ as above) is a positive multiple of

$$2^{s(N)} \frac{s_0(N)}{2} c_{m-1} + (s(N)m - k)c_m$$

$$\sim (2^{s(N)} \frac{s_0(N)}{2} + Q(N, b) \frac{s(N)(m + 1) - 2b}{2})c_{m-1}$$

when m tends to infinity. In particular this coefficient is expected to be negative if

$$\mu = m + 1 > B(N, b) := \frac{2}{s(N)} \left(b + \frac{2^{s(N)}s_0(N)/2}{-Q(N, b)} \right).$$

Since all these are asymptotic values, the actual value $\mu_-(N, b)$ of the first even minimum μ where $b_{\sigma+2}$ becomes negative may be different. In all cases, the second coefficient of the relevant shadow theta series seems to remain negative for even minimum $\mu \geq \mu_-(N, b)$.

For odd $N \in \mathcal{L}$ the values of $B(N, b)$ and $\mu_-(N, b)$ are given in the following tables:
\[
\begin{array}{cccccccccc}
N = 1 & b = 0 & b = 1 & b = 2 & b = 3 & b = 4 & b = 5 & b = 6 & b = 7 & b = 8 \\
Q(1,b) & -380 & -113 & -43.8 & -18.4 & -8 & -3.53 & -1.57 & -0.71 & -0.33 \\
B(1,b) & 0.9 & 3.1 & 7.96 & 18.8 & 43 & 97.1 & 217.4 & 480.4 & 1036.6 \\
\mu_-(1,b) & 6 & 6 & 12 & 20 & 44 & 96 & 216 & 478 & 1032 \\
k_-(1,b) & 48 & 49 & 122 & 219 & 508 & 1133 & 2574 & 5719 & 12368 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
N = 1 & b = 9 & b = 10 & b = 11 & b = 12 & b = 13 & b = 14 & b = 15 \\
Q(1,b) & -0.16 & -0.08 & -0.05 & -0.04 & -0.03 & -0.027 & -0.026 \\
B(1,b) & 2131.3 & 4012.4 & 6597.4 & 9240.4 & 11239.4 & 12433.6 & 13049.1 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
N = 1 & b = 16 & b = 17 & b = 18 & b = 19 & b = 20 & b = 21 & b = 22 & b = 23 \\
Q(1,b) & -0.026 & -0.025 & -0.025 & -0.025 & -0.025 & -0.025 & -0.025 & -0.025 \\
B(1,b) & 13342 & 13477 & 13538 & 13565 & 13577 & 13582 & 13585 & 13586 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
N = 3 & b = 0 & b = 1 & b = 2 & b = 3 & b = 4 & b = 5 \\
Q(3,b) & -15.6 & -2 & -0.45 & -0.2 & -0.16 & -0.15 \\
B(3,b) & 1.36 & 11 & 47.6 & 107.13 & 137.07 & 144.34 \\
\mu_-(3,b) & 6 & 12 & 44 & 100 & 126 & 130 \\
k_-(3,b) & 12 & 31 & 128 & 297 & 376 & 389 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
N = 5 & b = 0 & b = 1 & b = 2 & b = 3 & N = 7 & b = 0 & b = 1 & b = 2 \\
Q(5,b) & -5 & -0.73 & -0.31 & -0.25 & Q(7,b) & -2.88 & -0.51 & -0.32 \\
B(5,b) & 1.6 & 11 & 27 & 33.5 & B(7,b) & 1.85 & 11 & 17.8 \\
\mu_-(5,b) & 6 & 12 & 22 & 24 & \mu_-(7,b) & 6 & 10 & 12 \\
k_-(5,b) & 8 & 21 & 42 & 47 & k_-(7,b) & 6 & 13 & 17 \\
\end{array}
\]

\[
\begin{array}{cccccc}
N = 11 & b = 0 & b = 1 & N = 15 & b = 0 & N = 23 & b = 0 \\
Q(11,b) & -1.72 & -0.45 & Q(15,b) & -2.03 & Q(23,b) & -1.08 \\
B(11,b) & 2.33 & 9.8 & B(15,b) & 3.93 & B(23,b) & 3.69 \\
\mu_-(11,b) & 6 & 6 & \mu_-(15,b) & 6 & \mu_-(23,b) & 6 \\
k_-(11,b) & 4 & 5 & k_-(15,b) & 2 & k_-(23,b) & 2 \\
\end{array}
\]
For even \(N \in \mathcal{L} \) the situation is slightly different. Again \(k = b + \frac{s(N)}{2} (m - 1) \) for some \(0 \leq b < s(N) \). From Lemma 3.1 the second coefficient \(b_{\sigma+1} \) in the s-extremal shadow theta series is a nonzero multiple of \(2^{s(N)} \sigma_0(N)/4 c_{m-1} + (s(N) - 2b) c_m \) and in particular its sign is asymptotically independent of \(m \). Therefore we need to consider the third coefficient \(b_{\sigma+2} \), which is by Lemma 3.1 for odd \(m \) a positive multiple of

\[
-a^2 c_{m-2} + a(2k - s(m - 1)) c_{m-1} + (2km - s^2 m(m-1)/2 - 2k(k-1) - am s + 4) c_m
\]

where for short \(a := 2^{s\sigma_0(N)/4} \) and \(s := s(N) \). For \(k = \frac{s(N)}{2} (m - 1) + b \) this becomes

\[
-a^2 c_{m-2} + 2abc_{m-1} + (m(2b - s - 1) - a \frac{s + 4}{4} + s + 2) c_m + \frac{2s + s^2}{2} c_m.
\]

Since the quotients \(c_{m-1}/c_{m-2} \) and \(c_m/c_{m-2} \) are bounded, there is an explicit asymptotic bound \(B(N, b) \) for \(\mu = m + 1 \) after which this coefficient should become negative. Again, the true values \(\mu_-(N, b) \) differ and the results are displayed in the following table.

<table>
<thead>
<tr>
<th>(N = 2)</th>
<th>(b = 0)</th>
<th>(b = 1)</th>
<th>(b = 2)</th>
<th>(b = 3)</th>
<th>(b = 4)</th>
<th>(b = 5)</th>
<th>(b = 6)</th>
<th>(b = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B(2, b))</td>
<td>-4.9</td>
<td>10</td>
<td>52.5</td>
<td>170.1</td>
<td>382.6</td>
<td>575.9</td>
<td>677.7</td>
<td>725.7</td>
</tr>
<tr>
<td>(\mu_-(2, b))</td>
<td>10</td>
<td>22</td>
<td>34</td>
<td>166</td>
<td>374</td>
<td>564</td>
<td>666</td>
<td>716</td>
</tr>
<tr>
<td>(k_-(2, b))</td>
<td>56</td>
<td>81</td>
<td>210</td>
<td>659</td>
<td>1492</td>
<td>2253</td>
<td>2662</td>
<td>2863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N = 6)</th>
<th>(b = 0)</th>
<th>(b = 1)</th>
<th>(N = 14)</th>
<th>(b = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B(6, b))</td>
<td>1</td>
<td>33.58</td>
<td>(B(14, b))</td>
<td>2</td>
</tr>
<tr>
<td>(\mu_-(6, b))</td>
<td>10</td>
<td>28</td>
<td>(\mu_-(14, b))</td>
<td>10</td>
</tr>
<tr>
<td>(k_-(6, b))</td>
<td>8</td>
<td>27</td>
<td>(k_-(14, b))</td>
<td>4</td>
</tr>
</tbody>
</table>

3.1. Explicit classifications.

In this section we classify the s-extremal strongly \(N \)-modular lattices \(L_N(\mu, k) \) rational equivalent to \(C_N^k \) for certain \(N \) and even minimum \(\mu \). For \(N \in \{11, 14, 15, 23\} \) a complete classification is obtained. For convenience we denote the uniquely determined modular form that should be the theta series of \(L_N(\mu, k) \) by \(\theta_N(\mu, k) \) and its shadow by \(\sigma_N(\mu, k) \).

Important examples are the unique extremal even strongly \(N \)-modular lattices \(E^{(N)} \) of minimum 4 and with \(k = s(N) \) from [13, Table 1]. For odd
3.1 suggests to write \(k = \frac{s(N)(\mu - 2)}{2} + b \) for some \(0 \leq b \leq s(N) - 1 \) and we will organize the classification according to the possible \(b \). Note that for every \(b \) the maximal minimum \(\mu \) is bounded by \(\mu(N, b) \) above.

If \(N = 14, 15 \) or \(23 \), then \(s(N) = 1 \) and hence Theorem 3.1 implies that \(k = \frac{\mu - 2}{2} \). For \(N = 15, 23 \) the only possibility is \(k = 1 \) and \(\mu = 4 \) and \(L_N(4, 1) = E'(N) \). The second coefficient of \(\sigma_{14}(4, 1) \) and \(\sigma_{14}(8, 3) \) is negative, hence the only \(s \)-extremal strongly 14-modular lattice with even minimum is \(L_{14}(6, 2) \) of minimum 6. The series \(\sigma_{14}(6, 2) \) starts with \(8q^3 + 8q^5 + 16q^6 + \ldots \). Therefore the even neighbour of \(L_{14}(6, 2) \) in the sense of \([13, \text{Theorem 8}]\) is the unique even extremal strongly 14-modular lattice of dimension 8 (see \([14, \text{p. 160}]\)). Constructing all odd 2-neighbours of this lattice, it turns out that there is a unique such lattice \(L_{14}(6, 2) \). Note that \(L_{14}(6, 2) \) is an odd extremal strongly modular lattice in a jump dimension and hence the first counterexample to conjecture (3) in the Remark after \([13, \text{Theorem 2}]\).

For \(N = 11 \) and \(b = 0 \) the only possibility is \(\mu = 4 \) and \(k = 2 = s(N) \) whence \(L_{11}(4, 2) = E^{(11)} \). If \(b = 1 \) then either \(\mu = 2 \) and \(L_{11}(2, 1) = \left(\begin{array}{c} 21 \\ 16 \end{array} \right) \) or \(\mu = 4 \). An explicit enumeration of the genus of \(G_{11}^3 \) with the Kneser neighbouring method \([7]\) shows that there is a unique lattice \(L_{11}(4, 3) \).

Now let \(N = 7 \). For \(b = 0 \) again the only possibility is \(k = s(N) \) and \(L_7(4, 3) = E^{(7)} \). For \(b = 1 \) and \(b = 2 \) one obtains unique lattices \(L_7(2, 1) \) (with Grammatrix \(\left(\begin{array}{c} 21 \\ 14 \end{array} \right) \)) \(L_7(4, 4) \) and \(L_7(4, 5) \). There is no contradiction for the existence of lattices \(L_7(6, 7) \), \(L_7(6, 8) \), \(L_7(8, 10) \), \(L_7(8, 11) \), though a complete classification of the relevant genera seems to be difficult. For the lattice \(L_7(6, 8) \) we tried the following: Both even neighbours of such a lattice are extremal even 7-modular lattices. Starting from the extremal 7-modular lattice constructed from the structure over \(\mathbb{Z}[\sqrt{2}] \) of the Barnes-Wall lattice as described in \([14]\), we calculated the part of the Kneser 2-neighbouring graph consisting only of even lattices of minimum 6 and therewith found 126 such even lattices 120 of which are 7-modular. None of the edges between such lattices gave rise to an \(s \)-extremal lattice. The lattice \(L_7(10, 14) \) does not exist because \(\theta_7(10, 14) \) has a negative coefficient at \(q^{13} \).

Now let \(N := 6 \). For \(k = \mu - 2 \) the second coefficient in the shadow theta series is negative, hence there are no lattices \(L_6(\mu, \mu - 2) \) of even minimum \(\mu \). For \(k = \mu - 1 < 27 \) the modular forms \(\theta_6(\mu, \mu - 1) \) and \(\sigma_6(\mu, \mu - 1) \) seem to have nonnegative integral coefficients. The lattice \(L_6(2, 1) \) is unique and already given in \([9]\). For \(\mu = 4 \) the even neighbour of any lattice \(L_6(4, 3) \) (as defined in \([13, \text{Theorem 8}]\) is one of the five even extremal strongly
6-modular lattices given in [14]. Constructing all odd 2-neighbours of these lattices we find a unique lattice \(L_6(4,3) \) as displayed below.

For \(N = 5 \) the lattice \(L_5(4,4) = E^{(5)} \) is is the only s-extremal lattice of even minimum \(\mu \) for \(k = 2(\mu - 2) \), because \(\mu_-(5,0) = 6 \). For \(k = 2(\mu - 2) + 1 \) the shadow series \(\sigma_5(2,1) \), \(\sigma_5(4,5) \) and \(\sigma_5(6,9) \) have non-integral respectively odd coefficients so the only lattices that might exist here are \(L_5(8,13) \) and \(L_5(10,17) \). The s-extremal lattice \(L_5(2,2) = \left(\frac{21}{13} \right) \perp \left(\frac{21}{13} \right) \) is unique. The theta series \(\theta_5(2,3) \) starts with \(1 + 20q^3 + \ldots \), hence \(L_5(2,3) = S^{(5)} \) has minimum 3. The genus of \(C_5^6 \) contains 1161 isometry classes, 3 of which represent s-extremal lattices of minimum 4 and whose Grammatrices \(L_5(4,6)_{a,b,c} \) are displayed below. For \(k = 7 \) a complete classification of the genus of \(C_5^6 \) seems to be out of range. A search for lattices in this genus that have minimum 4 constructs the example \(L_5(4,7)_a \) displayed below of which we do not know whether it is unique. For the remaining even minima \(\mu < \mu_-(5, b) \) we do not find a contradiction against the existence of such s-extremal lattices.

For \(N = 3 \) and \(b = 0 \) again \(E^{(3)} = L_3(4,6) \) is the unique s-extremal lattice. For \(k = 3(\mu - 2) + 1 \), the theta series \(\theta_3(8, 19) \) and \(\theta_3(10, 25) \) as well as their shadows seem to have integral non-negative coefficients, whereas \(\sigma_3(4,7) \) and \(\sigma_3(6,13) \) have non-integral coefficients. The remaining theta-series and their shadows again seem to have integral non-negative coefficients. The lattices of minimum 2 are already classified in [9]. In all cases \(L_3(2, b) \) \(2 \leq b \leq 5 \) is unique but \(L_3(2,5) = S^{(3)} \) has minimum 3.

Now let \(N := 2 \). For \(b = 0 \) and \(b = 1 \) the second coefficient in \(\sigma_2(\mu, 4(\mu - 2) + b) \) is always negative, proving the non-existence of such s-extremal lattices. The lattices of minimum 2 are already classified in [9]. There is a unique lattice \(L_2(2,2) \cong D_4 \), no lattice \(L_2(2,3) \) since the first coefficient of \(\sigma_2(2,3) \) is 3, unique lattices \(L_2(2,b) \) for \(b = 4 \), 5 and 7 and two such lattices \(L_2(2,6) \).

For \(N = 1 \) we also refer to the paper [6] for the known classifications. Again for \(b = 0 \), the Leech lattice \(L_1(4,24) = E^{(1)} \) is the unique s-extremal lattice. For \(\mu = 2 \), these lattices are already classified in [5]. The possibilities for \(b = k \) are 8, 12, 14 \(\leq b \leq 22 \). For \(\mu = 4 \), the possibilities are either \(b = 0 \) and \(k = 24 \) or \(8 \leq b \leq 23 \) whence \(32 \leq k \leq 47 \) since the other shadow series have non-integral coefficients. The lattices \(L_1(4,32) \) are classified in [3]. For \(\mu = 6 \) no such lattices are known. The first possible dimension is 56, since the other shadow series have non-integral coefficients.

Since for odd \(N \) the value \(\mu_-(N,0) = 6 \) and the s-extremal lattices of minimum 4 with \(k = s(N) \) are even and hence isometric to \(E^{(N)} \) we obtain the following theorem.
Gabriele Nebe, Kristina Schindelar

Theorem 3.2. Let L be an extremal and s-extremal lattice rational equivalent to C_N^k for some $N \in \mathcal{L}$ such that k is a multiple of $s(N)$. Then $\mu := \min(L)$ is even and $k = s(N)(\mu - 2)/2$ and either $\mu = 4$, N is odd and $L = E(N)$ or $\mu = 6$, $N = 14$ and $L = L_{14}(6, 2)$.

For $N \in \{11, 14, 15, 23\}$ the complete classification of s-extremal strongly N-modular lattices in the genus of C_N^k is as follows:

<table>
<thead>
<tr>
<th>N</th>
<th>23</th>
<th>15</th>
<th>14</th>
<th>11</th>
<th>11</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>lattice</td>
<td>$E^{(23)}$</td>
<td>$E^{(15)}$</td>
<td>$E^{(14)}$</td>
<td>$L_{11}(2, 1)$</td>
<td>$E^{(11)}$</td>
<td>$L_{11}(4, 3)$</td>
</tr>
</tbody>
</table>

For the remaining $N \in \mathcal{L}$, the results are summarized in the following tables. The last line, labelled with # displays the number of lattices, where we display $-$ if there is no such lattice, ? if we do not know such a lattice, + if there is a lattice, but the lattices are not classified. We always write $k = \ell s(N) + b$ with $0 \leq b \leq s(N) - 1$ such that $\mu = \min(L) = 2\ell + 2$ by Theorem 3.1 and $\dim(L) = k\sigma_0(N)$.

For $N = 7$, $s(N) = 3$, $k = \ell s(N) + b$

<table>
<thead>
<tr>
<th>b</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>≥ 2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>min</td>
<td>≥ 4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

For $N = 6$, $s(N) = 2$, $k = \ell s(N) + b$

<table>
<thead>
<tr>
<th>b</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>≥ 1</td>
<td>0</td>
</tr>
<tr>
<td>min</td>
<td>≥ 4</td>
<td>2</td>
</tr>
<tr>
<td>#</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

For $N = 5$, $s(N) = 4$, $k = \ell s(N) + b$

<table>
<thead>
<tr>
<th>b</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>≥ 2</td>
<td>0</td>
</tr>
<tr>
<td>min</td>
<td>≥ 4</td>
<td>2</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>min</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Grammatrices of the new s-extremal lattices:

$$L_{14}(6,2) = \begin{pmatrix} 6 & 3 & 0 & 2 & 3 & 3 & 1 & 2 \\ 3 & 6 & 3 & 2 & 3 & 3 & 3 & 2 \\ 0 & 3 & 6 & 0 & 3 & 2 & 2 & 3 \\ 2 & 2 & 0 & 6 & 2 & 1 & 1 & 3 \\ -3 & 3 & 3 & 3 & 2 & 6 & 3 & 3 & 3 \\ 3 & 3 & 2 & 1 & 3 & 7 & 4 & 2 \\ -1 & 3 & 2 & 1 & 3 & 4 & 7 & 1 \\ -2 & 2 & 3 & 3 & 3 & 3 & 2 & 1 & 7 \end{pmatrix}, \quad L_{11}(4,3) = \begin{pmatrix} 4 & 0 & 0 & 2 & 2 & 1 \\ 0 & 4 & 0 & 2 & 2 & 1 \\ 0 & 0 & 4 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 \end{pmatrix}$$

$$L_{7}(4,4) = \begin{pmatrix} 4 & 0 & 0 & 2 & 2 & 2 & 2 & 1 \\ 0 & 4 & 0 & 2 & 2 & 1 & 2 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 & 1 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 & 1 & 2 \\ 2 & 2 & 2 & 0 & 5 & 2 & 1 & 0 \\ 2 & 2 & 2 & 0 & 5 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 & 5 & 1 & 5 & 1 \\ -2 & 2 & 3 & 3 & 0 & 1 & 5 & 3 & 1 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 5 & 1 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 5 & 1 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 5 & 1 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 5 & 1 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 5 & 1 \end{pmatrix}, \quad L_{7}(4,5) = \begin{pmatrix} 4 & 0 & 0 & 2 & 1 & 1 & 1 & 2 & 1 & 1 \\ 0 & 4 & 0 & 2 & 1 & 2 & 1 & 2 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 & 1 & 2 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 & 1 & 2 & 2 \\ 0 & 0 & 4 & 2 & 1 & 2 & 1 & 2 & 2 \\ 1 & 1 & 2 & 0 & 5 & 2 & 1 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 5 & 2 & 1 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 5 & 2 & 1 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 5 & 2 & 1 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 5 & 2 & 1 & 0 & 2 & 1 \\ 2 & 2 & 2 & 3 & 0 & 0 & 1 & 5 & 3 & 1 \\ 2 & 2 & 2 & 3 & 0 & 0 & 1 & 5 & 3 & 1 \\ 1 & 2 & 2 & 2 & 2 & 1 & 1 & 3 & 6 & 2 \\ 1 & 2 & 2 & 2 & 2 & 1 & 1 & 3 & 6 & 2 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 3 & 6 & 2 \\ -1 & 2 & 2 & 2 & 2 & 1 & 1 & 3 & 6 & 2 \end{pmatrix}$$
\[
L_b(4,3) = \begin{pmatrix}
4 & 1 & 2 & 1 & 0 & 1 & 1 & 1 & 1 & -2 & 2 & 0 & 0 & 1 \\
1 & 4 & 2 & 0 & 1 & 1 & 1 & 0 & 2 & 0 & 1 \\
-2 & 4 & 1 & 1 & -1 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 & -4 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 2 & 1 & 1 & 1 & -1 & 2 & -5 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 1 & 1 & 0 & 0 & 0 & 1 & 5 & 0 & 1 & 1 \\
-1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 0 & 1 & 2 & 1 & 0 \\
\end{pmatrix}, \quad L_5(4,6) = \begin{pmatrix}
4 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 2 \\
1 & 4 & 1 & 0 & 1 & 2 & 2 & 2 & 1 & 1 & 1 \\
0 & 2 & 0 & 4 & 0 & 4 & 1 & 2 & 2 & 2 & 2 \\
2 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
-1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 2 & 2 & 1 \\
\end{pmatrix}
\]

\[
L_5(4,6)_b = \begin{pmatrix}
4 & 1 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & -1 & 2 \\
1 & 4 & 1 & 2 & 1 & 1 & 1 & 0 & 1 & 0 & 2 \\
1 & 1 & 0 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 \\
0 & 2 & 0 & 4 & 0 & 1 & 1 & 2 & 0 & 0 & 2 \\
2 & 1 & 1 & 0 & 4 & 0 & 1 & 2 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 0 \\
0 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 5 & 1 & 2 \\
0 & 1 & 1 & 0 & 1 & 2 & 1 & 1 & 1 & 5 & 2 \\
-1 & 1 & 2 & 1 & 1 & 1 & 3 & 2 & 5 & 5 & 1 \\
2 & 2 & 2 & 2 & 1 & 0 & 0 & 0 & 0 & 2 & 2 \\
\end{pmatrix}, \quad L_5(4,6)_c = \begin{pmatrix}
4 & 2 & 0 & 0 & 1 & 2 & 0 & 2 & 0 & 2 & 2 & 0 \\
2 & 4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 2 & 2 & 2 & 0 & 0 \\
\end{pmatrix}
\]

\[
L_5(4,7)_a = \begin{pmatrix}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 2 & 0 & 0 \\
0 & 4 & 0 & 1 & 2 & 0 & 2 & 1 & 1 & 0 & 0 & 1 \\
0 & 4 & 0 & 0 & 2 & 0 & 2 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 \\
0 & 0 & 2 & 2 & 5 & 2 & 2 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 5 & 1 & 1 & 2 & 2 & 0 & 0 \\
0 & 0 & 2 & 2 & 1 & 2 & 1 & 2 & 5 & 1 & 2 & 2 \\
-2 & 2 & 0 & 1 & 1 & 0 & 1 & 2 & 5 & 5 & 1 & 1 \\
0 & 0 & 1 & 2 & 0 & 1 & 1 & 5 & 2 & 2 & 1 & 1 \\
-2 & 0 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 5 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 & 5 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 2 & 0 & 1 & 2 & 1 & 0 & 0 & 5 \\
0 & 0 & 2 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 5 \\
\end{pmatrix}
\]
S-extremal strongly modular lattices

Gabriele Nebe
Lehrstuhl D für Mathematik
RWTH Aachen
52056 Aachen, Germany
E-mail: nebe@math.rwth-aachen.de
URL: http://www.math.rwth-aachen.de/~Gabriele.Nebe/

Kristina Schindelar
Lehrstuhl D für Mathematik
RWTH Aachen
52056 Aachen, Germany
E-mail: schindelar@math.rwth-aachen.de