The cubics which are differences of two conjugates of an algebraic integer

par TOUFIK ZAIMI

1. Introduction

Let \(K \) be a number field, \(\beta \) an algebraic number with conjugates \(\beta_1 = \beta, \beta_2, \ldots, \beta_d \) over \(K \) and \(L = K(\beta_1, \beta_2, \ldots, \beta_d) \) the normal closure of the extension \(K(\beta)/K \). In [2], Dubickas and Smyth have shown that \(\beta \) can be written \(\beta = \alpha - \alpha' \), where \(\alpha \) and \(\alpha' \) are conjugates over \(K \) of an algebraic number, if and only if there is an element \(\sigma \) of the Galois group \(G(L/K) \) of the extension \(L/K \), of order \(n \) such that \(\sum_{0 \leq i \leq n-1} \sigma^i(\beta) = 0 \). In this case \(\beta = \alpha - \sigma(\alpha) \), where \(\alpha = \sum_{0 \leq i \leq n-1} (n-i-1)\sigma^i(\beta)/n \) is an element of \(L \) and the trace of \(\beta \) for the extension \(K(\beta)/K \), namely \(Tr_{K(\beta)/K}(\beta) = \beta_1 + \beta_2 + \ldots + \beta_d \), is 0. Furthermore, the condition on the trace of \(\beta \) to be 0 is also sufficient to express \(\beta = \alpha - \alpha' \) with some \(\alpha \) and \(\alpha' \) conjugate over \(K \) of an algebraic number, when the extension \(K(\beta)/K \) is normal (i. e. when \(L = K(\beta) \)) and its Galois group is cyclic (in this case we say that the extension \(K(\beta)/K \) is cyclic) or when \(d \leq 3 \).
Let D be a positive rational integer and $P(D)$ the proposition: For any number field K and for any algebraic integer β of degree $\leq D$ over K, if β is a difference of two conjugates over K of an algebraic number, then β is a difference of two conjugates over K of an algebraic integer.

In [1], Smyth asked whether $P(D)$ is true for all values of D. It is clear that if $Tr_{K(\beta)/K}(\beta) = 0$ and $\beta \in \mathbb{Z}_K$, where \mathbb{Z}_K is the ring of integers of K, then $\beta = 0 = 0 - 0$ and $P(1)$ is true. For a quadratic extension $K(\beta)/K$, Dubickas showed that if $Tr_{K(\beta)/K}(\beta) = 0$, then β is a difference of two conjugates over K of an algebraic integer of degree ≤ 2 over $K(\beta)$ [1]. Hence, $P(2)$ is true. In fact, Dubickas proved that if the minimal polynomial of the algebraic integer β over K, say $Irr(\beta, K)$, is of the form $P(x^m)$, where $P \in \mathbb{Z}_K[x]$ and m is a rational integer greater than 1, then β is a difference of two conjugates over K of an algebraic integer.

Consider now the assertion $P_c(D)$: For any number field K and for any algebraic integer β of degree $\leq D$ over K such that the extension $K(\beta)/K$ is cyclic, if $Tr_{K(\beta)/K}(\beta) = 0$, then β is a difference of two conjugates over K of an algebraic integer.

The first aim of this note is to prove:

Theorem 1. The assertions $P(D)$ and $P_c(D)$ are equivalent, and $P(3)$ is true.

Let \mathbb{Q} be the field of rational numbers. In [5], the author showed that if the extension N/\mathbb{Q} is normal with prime degree, then every integer of N with zero trace is a difference of two conjugates of an integer of N if and only if $Tr_{N/\mathbb{Q}}(\mathbb{Z}_N) = \mathbb{Z}_Q$. It easy to check that if $N = \mathbb{Q}(\sqrt{m})$ is a quadratic field (m is a squarefree rational integer), then $Tr_{N/\mathbb{Q}}(\mathbb{Z}_N) = \mathbb{Z}_Q$ if and only if $m \equiv 1[4]$. For the cubic fields we have:

Theorem 2. Let N be a normal cubic extension of \mathbb{Q}. Then, every integer of N with zero trace is a difference of two conjugates of an integer of N if and only if the 3–adic valuation of the discriminant of N is not 4.

2. Proof of Theorem 1

First we prove that the propositions $P(D)$ and $P_c(D)$ are equivalent. It is clear that $P(D)$ implies $P_c(D)$, since by Hilbert’s Theorem 90 [3] the condition $Tr_{K(\beta)/K}(\beta) = 0$ is sufficient to express $\beta = \alpha - \alpha'$ with some α and α' conjugate over K of an algebraic number. Conversely, let β be an algebraic integer of degree $\leq D$ over K and which is a difference of two conjugates over K of an algebraic number. By the above result of Dubickas and Smyth, and with the same notation, there is an element $\sigma \in G(L/K)$, of order n such that $\sum_{0 \leq i \leq n-1} \sigma^i(\beta) = 0$. Let $< \sigma >$ be the cyclic subgroup of $G(L/K)$ generated by σ and $L^{< \sigma >} = \{ x \in L, \sigma(x) = x \}$ the fixed field of $< \sigma >$. Then, $K \subset L^{< \sigma >} \subset L^{< \sigma >}(\beta) \subset L$, the degree of β over $L^{< \sigma >}$ is
and by Artin’s theorem [3], the Galois group of the normal extension \(L/L^{<\sigma>} \) is \(<\sigma>\). Hence, the extensions \(L/L^{<\sigma>} \) and \(L^{<\sigma>}(\beta)/L^{<\sigma>} \) are cyclic since their Galois groups are respectively \(<\sigma>\) and a factor group of \(<\sigma>\). Furthermore, the restrictions to the field \(L^{<\sigma>}(\beta) \) of the elements of the group \(<\sigma>\) belong to the Galois group of \(L^{<\sigma>}(\beta)/L^{<\sigma>} \) and each element of \(G(L^{<\sigma>}(\beta)/L^{<\sigma>}) \) is a restriction of exactly \(d \) elements of the group \(<\sigma>\), where \(d \) is the degree of \(L/L^{<\sigma>} \). It follows that

\[
d\operatorname{Tr}_{L^{<\sigma>}(\beta)/L^{<\sigma>}}(\beta) = \operatorname{Tr}_{L^{<\sigma>}}(\beta) = \sum_{0 \leq i \leq n-1} \sigma^i(\beta) = 0,
\]

and \(\beta \) is a difference of two conjugates over \(L^{<\sigma>} \) of an algebraic number. Assume now that \(\mathcal{P}_c(D) \) is true. Then, \(\beta \) is difference of two conjugates over \(L^{<\sigma>} \), and a fortiori over \(K \), of an algebraic integer and so \(\mathcal{P}(D) \) is true.

To prove that \(\mathcal{P}(3) \) is true, it is sufficient to show that if \(\beta \) a cubic algebraic integer over a number field \(K \) with \(\operatorname{Tr}_{K(\beta)/K}(\beta) = 0 \) and such that the extension \(K(\beta)/K \) is cyclic, then \(\beta \) is a difference of two conjugates of an algebraic integer, since \(\mathcal{P}(2) \) is true and the assertions \(\mathcal{P}(3) \) and \(\mathcal{P}_c(3) \) are equivalent. Let

\[
\operatorname{Irr}(\beta, K) = x^3 + px + q,
\]

and let \(\sigma \) be a generator of \(G(K(\beta)/K) \). Then, \(p = \operatorname{Tr}_{K(\beta)/K}(\beta \sigma(\beta)) \) and the discriminant \(\operatorname{disc}(\beta) \) of the polynomial \(\operatorname{Irr}(\beta, K) \) satisfies

\[
\operatorname{disc}(\beta) = -4p^3 - 3q^2 = \delta^2,
\]

where \(\delta = (\beta - \sigma^2(\beta)) (\sigma(\beta) - \beta) (\sigma^2(\beta) - \sigma(\beta)) \in \mathbb{Z}_K \). Set \(\gamma = \beta - \sigma^2(\beta) \). Then, \(\gamma \) is of degree 3 over \(K \) and

\[
\operatorname{Irr}(\gamma, K) = x^3 + 3px - \delta.
\]

As the polynomial \(-27t + x^3 + 3px - 26\delta \) is irreducible in the ring \(K(\beta)[t, x] \), by Hilbert’s irreducibility theorem [4], there is a rational integer \(s \) such that the polynomial \(x^3 + 3px - (26\delta + 27s) \) is irreducible in \(K(\beta)[x] \). Hence, if \(\theta^3 + 3p\theta - (26\delta + 27s) = 0 \), then

\[
\operatorname{Irr}(\theta, K(\beta)) = x^3 + 3px - (26\delta + 27s) = \operatorname{Irr}(\theta, K),
\]

since \(\operatorname{Irr}(\theta, K(\beta)) \in K[x] \). Set \(\alpha = \frac{\gamma}{3} + \frac{\theta}{3} \). Then, \(\frac{\sigma(\gamma)}{3} + \frac{\theta}{3} \) is a conjugate of \(\alpha \) over \(K(\beta) \) (and a fortiori over \(K \)) and

\[
\beta = \frac{\gamma}{3} + \frac{\theta}{3} = \left(\frac{\sigma(\gamma)}{3} + \frac{\theta}{3} \right).
\]

From the relations \(\left(\frac{\theta}{3} \right)^3 + \frac{p}{3} \left(\frac{\theta}{3} \right) - \frac{26\delta + 27s}{27} = 0 \) and \(\left(\frac{\gamma}{3} \right)^3 + \frac{p}{3} \left(\frac{\gamma}{3} \right) = \frac{\delta}{27} \), we obtain that \(\alpha \) is a root of the polynomial

\[
x^3 - \gamma x^2 + \left(\frac{\gamma^2 + p}{3} \right) x - (\delta + s) \in K(\beta)[X]
\]
and \(\alpha \) is an algebraic integer (of degree \(\leq 3 \) over \(K(\beta) \)) provided \(\frac{\gamma^2 + p}{3} \in \mathbb{Z}_{K(\beta)} \). A short computation shows that from the relation \(\gamma(\gamma^2 + 3p) = \delta \), we have \(\text{Irr}(\frac{\gamma^2}{3}, K) = x^3 + 2px^2 + p^2x - \frac{\text{disc}(\beta)}{27} \) and \(\frac{\gamma^2 + p}{3} \) is a root of the polynomial \(x^3 + px^2 + q^2 \) whose coefficients are integers of \(K \).

Remark 1. It follows from the proof of Theorem 1, that if \(\beta \) is a cubic algebraic integer over a number field \(K \) with zero trace, then \(\beta \) is a difference of two conjugates over \(K \) of an algebraic integer of degree \(\leq 3 \) over \(K(\beta) \). The following example shows that the constant \(3 \) in the last sentence is the best possible. Set \(K = \mathbb{Q} \) and \(\text{Irr}(\beta, \mathbb{Q}) = x^3 - 3x - 1 \). Then, \(\text{disc}(\beta) = 3^4 \) and the extension \(\mathbb{Q}(\beta)/\mathbb{Q} \) is normal, since \(\beta^2 - 2 \) is also a root of \(\text{Irr}(\beta, \mathbb{Q}) \). By Theorem 3 of [5], \(\beta \) is not a difference of two conjugates of an integer of \(\mathbb{Q}(\beta) \) (the \(3 \)-adic valuation of \(\text{disc}(\beta) \) is 4) and if \(\beta = \alpha - \alpha' \), where \(\alpha \) is an algebraic integer of degree 2 over \(\mathbb{Q}(\beta) \) and \(\alpha' \) is a conjugate of \(\alpha \) over \(\mathbb{Q}(\beta) \), then there exists an element \(\tau \) of the group \(G(\mathbb{Q}(\beta, \alpha)/\mathbb{Q}(\beta)) \) such that \(\tau(\beta) = \beta, \tau(\alpha) = \alpha', \tau(\alpha') = \alpha \) and \(\beta = \tau(\alpha - \alpha') = \alpha' - \alpha = -\beta \).

Remark 2. With the notation of the proof of Theorem 1 (the second part) we have: Let \(\beta \) be a cubic algebraic integer over \(K \) with zero trace and such that the extension \(K(\beta)/K \) is cyclic. Then, \(\beta \) is a difference of two conjugates of an integer of \(K(\beta) \), if and only if there exists \(a \in \mathbb{Z}_K \) such that the two numbers \(\frac{a^2 + p}{3} \) and \(\frac{a^2 + 3pa + 5}{27} \) are integers of \(K \). Indeed, suppose that \(\beta = \alpha - \sigma(\alpha) \), where \(\alpha \in \mathbb{Z}_{K(\beta)} \) (if \(\beta = \alpha - \sigma^2(\alpha) \), then \(\beta = \alpha + \sigma(\alpha) - \sigma(\alpha + \sigma(\alpha)) \)). Then, \(\alpha - \sigma(\alpha) = \frac{a}{3} - \sigma(\frac{a}{3}) \), \(\alpha - \frac{\gamma}{3} = \sigma(\alpha - \frac{\gamma}{3}) \), \(\alpha - \frac{\gamma}{3} \in K \) and there exists an integer \(a \) of \(K \) such that \(3\alpha - \gamma = a \). Hence, \(\gamma + \frac{\alpha}{3} = \alpha \in \mathbb{Z}_{K(\beta)} \), \(\text{Irr}(\frac{\gamma + \alpha}{3}, K) = x^3 - ax^2 + \frac{a^2 + p}{3}x - \frac{a^3 + 3pa + 5}{27} \in \mathbb{Z}_K[x] \) and so the numbers \(\frac{a^2 + p}{3} \) and \(\frac{a^3 + 3pa + 5}{27} \) are integers of \(K \). The converse is trivial, since \(\beta = \frac{\gamma + a}{3} - \sigma(\frac{\gamma + a}{3}) \) for all integers \(a \) of \(K \). It follows in particular when \(\frac{\text{disc}(\beta)}{\Delta^3} \in \mathbb{Z}_K \), that \(\beta \) is a difference of two conjugates of an integer of \(K(\beta) \) (\(a = 0 \)). Note finally that for the case where \(K = \mathbb{Q} \) a more explicit condition was obtained in [5].

3. **Proof of Theorem 2**

With the notation of the proof of Theorem 1 (the second part) and \(K = \mathbb{Q} \), let \(N \) be a cubic normal extension of \(\mathbb{Q} \) with discriminant \(\Delta \) and let \(v \) be the \(3 \)-adic valuation. Suppose that every non-zero integer \(\beta \) of \(N \) with zero trace is a difference of two conjugates of an integer of \(N \). Then, \(N = \mathbb{Q}(\beta) \) and by Theorem 3 of [5], \(v(\text{disc}(\beta)) \neq 4 \). Assume also \(v(\Delta) = 4 \). Then, \(v(\text{disc}(\beta)) > 4 \) and hence \(v(\text{disc}(\beta)) \geq 6 \), since \(\frac{\text{disc}(\beta)}{\Delta^3} \in \mathbb{Z}_Q \) and \(\text{disc}(\beta) \) is a square of a rational integer. It follows that \(\frac{\gamma}{3} \) is an algebraic
integer, since its minimal polynomial over \mathbb{Q} is $x^3 + \frac{2}{3}x - \frac{5}{27} \in \mathbb{Z}[X]$ and β can be written $\beta = \alpha - \sigma(\alpha)$, where $\alpha = \frac{2}{3}$ is an integer of N with zero trace. Thus, $\nu(disc(\alpha)) \geq 6$ and there is an integer η of N with zero trace, such that $\alpha = \eta - \sigma(\eta)$. It follows that $\beta = \eta - \sigma(\eta) - \sigma(\eta - \sigma(\eta)) = \eta - 2\sigma(\eta) + \sigma^2(\eta) = -3\sigma(\eta)$ and $\frac{\beta}{3}$ is also an integer of N with zero trace.

The last relation leads to a contradiction since in this case $\frac{\beta}{3n} \in \mathbb{Z}_N$ for all positive rational integers n. Conversely, suppose $\nu(\Delta) \neq 4$. Assume also that there exists an integer β of N with zero trace which is not a difference of two conjugates of an integer of N. Then, $N = \mathbb{Q}(\beta)$ and by Theorem 1 of [5], we have $Tr_{N/Q}(\mathbb{Z}_N) = 3\mathbb{Z}$, since $Tr_{N/Q}(1) = 3$ and $Tr_{N/Q}(\mathbb{Z}_N)$ is an ideal of \mathbb{Z}. If $\{e_1, e_2, e_3\}$ is an integral basis of N, then from the relation $\Delta = det(Tr(e_ie_j))$, we obtain $\nu(\Delta) \geq 3$ and hence $\nu(\Delta) \geq 6$, since Δ is a square of a rational integer. The last inequality leads to a contradiction as in this case we have $\nu(disc(\beta)) \geq 6$ and $\beta = \frac{2}{3} - \sigma(\frac{2}{3})$ where $\frac{2}{3} \in \mathbb{Z}_N$.

This work is partially supported by the research center (N° Math/1419/20).

References

Toufik Zaimi
King Saud University
Dept. of Mathematics P. O. Box 2455
Riyadh 11451, Saudi Arabia
E-mail : zaimitou@ksu.edu.sa