On sum-sets and product-sets of complex numbers

par JÓZSEF SOLYMOSI

RéSUMÉ. On donne une preuve simple que pour tout ensemble fini de nombres complexes A, la taille de l’ensemble de sommes $A + A$ ou celle de l’ensemble de produits $A \cdot A$ est toujours grande.

Abstract. We give a simple argument that for any finite set of complex numbers A, the size of the sum-set, $A + A$, or the product-set, $A \cdot A$, is always large.

1. Introduction

Let A be a finite subset of complex numbers. The sum-set of A is $A + A = \{a + b : a, b \in A\}$, and the product-set is given by $A \cdot A = \{a \cdot b : a, b \in A\}$. Erdős conjectured that for any n-element set the sum-set or the product-set should be close to n^2. For integers, Erdős and Szemerédi [7] proved the lower bound $n^{1+\varepsilon}$.

$$\max(|A + A, |A \cdot A|) \geq |A|^{1+\varepsilon}.$$

Nathanson [9] proved the bound with $\varepsilon = 1/31$, Ford [8] improved it to $\varepsilon = 1/15$, and the best bound is obtained by Elekes [6] who showed $\varepsilon = 1/4$ if A is a set of real numbers. Very recently Chang [3] proved $\varepsilon = 1/54$ to finite sets of complex numbers. For further results and related problems we refer to [4, 5] and [1, 2].

In this note we prove Elekes’ bound for complex numbers.

Theorem 1.1. There is a positive absolute constant c, such that, for any finite sets of complex numbers $A, B,$ and Q,

$$c|A|^{3/2}|B|^{1/2}|Q|^{1/2} \leq |A + B| \cdot |A \cdot Q|,$$

whence $c|A|^{5/4} \leq \max(|A + A|, |A \cdot A|)$.

Manuscrit reçu le 26 aout 2003.

This research was supported by NSERC and OTKA grants.
2. Proof

For the proof we need some simple observations and definitions. For each \(a \in A \) let us find "the closest" element, an \(a' \in A \) so that \(a' \neq a \) and for any \(a'' \in A \) if \(|a - a'| > |a - a''| \) then \(a = a'' \). If there are more then one closest elements, then let us select any of them. This way we have \(|A|\) ordered pairs, let us call them neighboring pairs.

Definition. We say that a quadruple \((a, a', b, q)\) is good if \((a, a')\) is a neighboring pair, \(b \in B\) and \(q \in Q\), moreover

\[
\left| \{u \in A + B : |a + b - u| \leq |a - a'| \} \right| \leq \frac{28|A + B|}{|A|}
\]

and

\[
\left| \{v \in A \cdot Q : |aq - v| \leq |aq - a'|q| \} \right| \leq \frac{28|A \cdot Q|}{|A|}.
\]

When a quadruple \((a, a', b, q)\) is good, then it means that the neighborhoods of \(a + b\) and \(aq\) are not very dense in \(A + B\) and in \(A \cdot Q\).

Lemma 2.1. For any \(b \in B\) and \(q \in Q\) the number of good quadruples \((a, a', b, q)\) is at least \(|A|/2\).

Proof. Let us consider the set of disks around the elements of \(A\) with radius \(|a - a'|\) (i.e. for every \(a \in A\) we take the largest disk with center \(a\), which contains no other elements of \(A\) in it’s interior). A simple geometric observation shows that no complex number is covered by more then \(7\) disks. Therefore

\[
\sum_{a \in A} \left| \{u \in A + B : |a + b - u| \leq |a - a'| \} \right| \leq 7|A + B|
\]

and

\[
\sum_{a \in A} \left| \{v \in A \cdot Q : |aq - v| \leq |aq - a'|q| \} \right| \leq 7|A \cdot Q|
\]

providing that at least half of the neighboring pairs form good quadruples with \(b\) and \(q\). Indeed, if we had more then a quarter of the neighboring pairs so that, say,

\[
\left| \{v \in A \cdot Q : |aq - v| \leq |aq - a'|q| \} \right| > \frac{28|A \cdot Q|}{|A|}
\]

then it would imply

\[
7|A \cdot Q| \geq \frac{|A|}{4} \left| \{v \in A \cdot Q : |aq - v| \leq |aq - a'|q| \} \right| > 7|A \cdot Q|.
\]

\(\square\)
Proof of Theorem 1 To prove the theorem, we count the good quadruples \((a, a', b, q)\) twice. For the sake of simplicity let us suppose that \(0 \notin Q\). Such a quadruple is uniquely determined by the quadruple \((a + b, a' + b, aq, a'q)\). Now observe that there are \(|A + B|\) possibilities for the first element, and given the value of \(a + b\), the second element \(a' + b\) must be one of the nearest element of the sum-set \(A + B\). We make the same argument for the third and fourth component to find that the number of such quadruples is at most
\[
|A + B| \frac{28|A + B|}{|A|} \frac{|A \cdot Q|}{|A|} 28|A \cdot Q| .
\]
On the other hand, by Lemma 1 the number of such quadruples is at least
\[
\frac{|A|}{2} |B| |Q|
\]
that proves the theorem.

A similar argument works for quaternions and for other hypercomplex numbers. In general, if \(T\) and \(Q\) are sets of similarity transformations and \(A\) is a set of points in space such that from any quadruple \((t(p_1), t(p_2), q(p_1), q(p_2))\) the elements \(t \in T, q \in Q, \) and \(p_1 \neq p_2 \in A\) are uniquely determined, then
\[
c|A|^{3/2} |T|^{1/2} |Q|^{1/2} \leq |T(A)| \cdot |Q(A)|,
\]
where \(c\) depends on the dimension of the space only.

References

József SOLY MOSI
Department of Mathematics,
University of British Columbia
1984 Mathematics Road, Vancouver,
Colombie-Britannique, Canada V6T 1Z2
E-mail: solymosi@math.ubc.ca