RÉSUMÉ. Agrawal, Kayal, et Saxena ont récemment introduit une nouvelle méthode pour montrer qu’un entier est premier. La vitesse de cette méthode dépend des minorations prouvées pour la taille du semi-groupe multiplicatif engendré par plusieurs polynômes modulo un autre polynôme h. Voloch a trouvé une application du théorème ABC de Stothers et Mason dans ce contexte: sous de petites hypothèses, des polynômes distincts A, B, C de degré au plus $1.2 \deg h - 0.2 \deg \rad{ABC}$ ne peuvent pas être tous congrus modulo h. Nous présentons deux améliorations de la partie combinatoire de l’argument de Voloch. La première amélioration augmente $1.2 \deg h - 0.2 \deg \rad{ABC}$ en $2 \deg h - \deg \rad{ABC}$. La deuxième amélioration est une généralisation à A_1, \ldots, A_m de degré au plus $((3m-5)/(3m-7)) \deg h - (6/(3m-7)m) \deg \rad{A_1 \cdots A_m}$, avec $m \geq 3$.

ABSTRACT. Agrawal, Kayal, and Saxena recently introduced a new method of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena method depends on proven lower bounds for the size of the multiplicative semigroup generated by several polynomials modulo another polynomial h. Voloch pointed out an application of the Stothers-Mason ABC theorem in this context: under mild assumptions, distinct polynomials A, B, C of degree at most $1.2 \deg h - 0.2 \deg \rad{ABC}$ cannot all be congruent modulo h. This paper presents two improvements in the combinatorial part of Voloch’s argument. The first improvement moves the degree bound up to $2 \deg h - \deg \rad{ABC}$. The second improvement generalizes to $m \geq 3$ polynomials A_1, \ldots, A_m of degree at most $((3m-5)/(3m-7)) \deg h - (6/(3m-7)m) \deg \rad{A_1 \cdots A_m}$.
1. Introduction

Fix a nonconstant univariate polynomial \(h \) over a field \(k \). Assume that the characteristic of \(k \) is at least 3 \(\deg h - 1 \). The main theorem of this paper, Theorem 2.3, states that if \(m \geq 3 \) distinct polynomials \(A_1, \ldots, A_m \) are all congruent modulo \(h \) and coprime to \(h \) then

\[
\max\{\deg A_1, \ldots, \deg A_m\} > \frac{3m - 5}{3m - 7} \deg h - \frac{6}{(3m - 7)m} \deg \text{rad} A_1 \cdots A_m.
\]

As usual, \(\text{rad} X \) means the largest monic squarefree divisor of \(X \), i.e., the product of the monic irreducibles dividing \(X \). If \(\deg \text{rad} A_1 \cdots A_m < (m/3) \deg h \) then the bound in Theorem 2.3 is better than the obvious bound \(\max\{\deg A_1, \ldots, \deg A_m\} > \deg h - 1 \).

For example, if distinct polynomials \(A, B, C \) are congruent modulo \(h \) and coprime to \(h \) then \(\max\{\deg A, \deg B, \deg C\} > 2 \deg h - \deg \text{rad} ABC \). No better bound is possible in this level of generality: if \(h = x^{10} - 1 \), \(A = x^{20}, B = x^{10}, \) and \(C = 1 \) then \(\text{rad} ABC = \text{rad} x^{30} = x \) so \(2 \deg h - \deg \text{rad} ABC = 19 \).

The proof relies on the Stothers-Mason ABC theorem. Analogous bounds in the number-field case follow from the ABC conjecture.

Previous work. Voloch in [3] proved that \(\max\{\deg A, \deg B, \deg C\} > 1.2 \deg h - 0.2 \deg \text{rad} ABC \). This paper improves Voloch’s result in two ways:

- This paper is quantitatively stronger, in the interesting case that \(\deg \text{rad} ABC < \deg h \).
- This paper applies to larger values of \(m \).

Application. Inside the unit group \((k[x]/h)^* \) consider the subgroup \(G \) generated by \(\{x - s : s \in S\} \), where \(S \subseteq k \) and \(0 \notin h(S) \). The Agrawal-Kayal-Saxena primality-proving method requires a lower bound on \(\#G \) for groups \(G \) of this type, typically with \(\#S = \deg h \). The primality-proving method becomes faster as the lower bound on \(\#G \) increases, as discussed in [1, Section 7].

This paper shows that

\[
\#G \geq \frac{1}{m - 1} \left(\left\lfloor \frac{(3m - 5)/(3m - 7)}{\deg h - (6/(3m - 7)m)\#S} \right\rfloor + \#S \right)
\]

for any \(m \geq 3 \). Indeed, the binomial coefficient is the number of products of powers of \(\{x - s\} \) in \(k[x] \) of degree at most

\[
\left(\frac{(3m - 5)/(3m - 7)}{\deg h - (6/(3m - 7)m)\#S} \right);
\]

\(m \) distinct such products cannot all have the same image modulo \(h \).
In particular, if \(\#S = \deg h \), then
\[
\#G \geq \frac{1}{3} \left(\frac{\deg h}{\deg h} \right)^{2.1} \approx 4.2768^{\deg h}.
\]
Compare this to the bound \(\#G \geq \frac{2^{\deg h - 1}}{\deg h} \approx 4^{\deg h} \) obtained from a degree bound of \(\deg h - 1 \). Note that the improvement requires \(m > 3 \).

Different methods from [3] produce a lower bound around \(5.828^{\deg h} \), so the ABC-based techniques in [3] and in this paper have not yet had an impact on the speed of primality proving. However, I suspect that these techniques have not yet reached their limits.

2. Proofs

Theorem 2.1. Let \(k \) be a field. Let \(h \) be a positive-degree element of the polynomial ring \(k[x] \). Assume that \(1, 2, 3, \ldots, 3 \deg h - 2 \) are invertible in \(k \). Let \(A, B, C \) be distinct nonzero elements of \(k[x] \). If \(\gcd\{A, B, C\} = 1 \) and \(A \equiv B \equiv C \pmod{h} \) then
\[
\text{max}\{\deg A, \deg B, \deg C\} > 2 \deg h - \deg \text{rad} \ ABC.
\]

Proof. Permute \(A, B, C \) so that \(\deg A = \max\{\deg A, \deg B, \deg C\} \).

The nonzero polynomial \(A - B \) is a multiple of \(h \), so \(\deg A \geq \deg (A - B) \geq \deg h > 0 \); thus \(\deg \text{rad} \ ABC > 0 \).

If \(\deg A \geq 2 \deg h \) then \(\deg A > 2 \deg h - \deg \text{rad} \ ABC \); done.

Define \(U = (B - C)/h, V = (C - A)/h, \) and \(W = (A - B)/h \). Then \(U \neq 0; V \neq 0; W \neq 0; U, V, W \) each have degree at most \(\deg A - \deg h \); and \(U A + V B + W C = 0 \). Define \(D = \gcd\{U A, V B, W C\} \).

If \(\deg D = \deg U A \) then \(U A \) divides \(V B, W C \); so \(A \) divides \(V W A, V W B, V W C \); so \(A \) divides \(\gcd\{V W A, V W B, V W C\} = V W \); but \(V W \neq 0 \), so \(\deg A \leq \deg V W \leq 2(\deg A - \deg h) \); so \(\deg A \geq 2 \deg h \); done.

Assume from now on that \(\deg D < \deg U A \) and that \(\deg A \leq 2 \deg h - 1 \). Then \(\deg(U A / D) \) is between 1 and \(2 \deg A - \deg h \leq 3 \deg h - 2 \); so the derivative of \(U A / D \) is nonzero. Also \(U A / D + V B / D + W C / D = 0 \), and \(\gcd\{U A / D, V B / D, W C / D\} = 1 \). By Theorem 3.1 below, \(\deg(U A / D) < \deg \text{rad}(U A / D)(V B / D)(W C / D) = \deg \text{rad}(U V W A B C / D^3) \).

The proof follows Voloch up to this point. Voloch next observes that \(D \) divides \(\gcd\{U V W A, U V W B, U V W C\} = U V W \gcd\{A, B, C\} = U V W \). I claim that more is true: \(D \gcd(U V W A B C / D^3) \) divides \(U V W \gcd A B C \).

(In other words: If \(d = \min\{u + a, v + b, w + c\} \) and \(\min\{a, b, c\} = 0 \) then \(d + [u + v + w + a + b + c > 3d] \leq u + v + w + [a + b + c > 0] \). Proof: Without loss of generality assume \(a = 0 \). Then \(d \leq u + v + w \). If \(d < u + v + w \) then \(d + [\cdots] \leq d + 1 \leq u + v + w \leq u + v + w + [\cdots] \) as claimed. If \(a + b + c > 0 \) then \(d + [\cdots] \leq u + v + w + 1 \leq u + v + w + [\cdots] \) as claimed. Otherwise \(u + v + w + a + b + c \leq d \leq 3d \) so \(d + [u + v + w + a + b + c > 3d] \leq u + v + w \leq u + v + w + [\cdots] \) as claimed.)

Thus \(\deg U A < \deg(D \gcd(U V W A B C / D^3)) \leq \deg(U V W \gcd A B C) \). Hence \(\deg A < \deg(U V W \gcd A B C) \leq 2(\deg A - \deg h) + \deg \text{rad} \ ABC \); i.e., \(\deg A > 2 \deg h - \deg \text{rad} \ ABC \) as claimed.
Theorem 2.2. Let k be a field. Let h be a positive-degree element of the polynomial ring $k[x]$. Assume that $1, 2, 3, \ldots, 3 \deg h - 2$ are invertible in k. Let A, B, C be distinct nonzero elements of $k[x]$. If $\gcd\{A, B, C\}$ is coprime to h and $A \equiv B \equiv C \pmod{h}$ then

$$\max\{\deg A, \deg B, \deg C\}$$

$$> 2 \deg h - \deg \rad A - \deg \rad B - \deg \rad C$$

$$+ \deg \rad \gcd\{A, B\} + \deg \rad \gcd\{A, C\} + \deg \rad \gcd\{B, C\}.$$

Proof. Write $G = \gcd\{A, B, C\}$. Then G is coprime to h, so $A/G \equiv B/G \equiv C/G \pmod{h}$. By Theorem 2.1,

$$\max\left\{\deg \frac{A}{G}, \deg \frac{B}{G}, \deg \frac{C}{G}\right\} > 2 \deg h - \deg \rad \frac{ABC}{GGG}$$

$$\geq 2 \deg h - \deg \rad ABC.$$

Furthermore, $\deg G \geq \deg \rad G = \deg \rad \frac{ABC}{A - \deg \rad B - \deg \rad C + \deg \rad \gcd\{A, B\} + \deg \rad \gcd\{A, C\} + \deg \rad \gcd\{B, C\}$ by inclusion-exclusion. Add. \qed

Theorem 2.3. Let k be a field. Let h be a positive-degree element of the polynomial ring $k[x]$. Assume that $1, 2, 3, \ldots, 3 \deg h - 2$ are invertible in k. Let S be a finite subset of $k[x] - \{0\}$, with $\#S \geq 3$. If each element of S is coprime to h, and all the elements of S are congruent modulo h, then

$$\max\{\deg A : A \in S\} > \frac{3\#S - 5}{3\#S - 7} \deg h - \frac{6}{(3\#S - 7)\#S} \deg \rad \prod_{A \in S} A.$$

For example, $\max\{\deg A : A \in S\} > 1.4 \deg h - 0.3 \deg \rad \prod_{A \in S} A$ if $\#S = 4$, and $\max\{\deg A : A \in S\} > 1.25 \deg h - 0.15 \deg \rad \prod_{A \in S} A$ if $\#S = 5$.

Proof. Define $d = \max\{\deg A : A \in S\}$ and $e = \deg \rad \prod_{A \in S} A$. Then

$$d > 2 \deg h - \deg \rad A - \deg \rad B - \deg \rad C$$

$$+ \deg \rad \gcd\{A, B\} + \deg \rad \gcd\{A, C\} + \deg \rad \gcd\{B, C\}$$

for any distinct $A, B, C \in S$ by Theorem 2.2. Average this inequality over all choices of A, B, C to see that $d > 2 \deg h - 3 \avg_A \deg \rad A + 3 \avg_{A \neq B} \deg \rad \gcd\{A, B\}$. On the other hand, $e \geq \#S \avg_A \deg \rad A - \left(\frac{\#S}{2}\right) \avg_{A \neq B} \deg \rad \gcd\{A, B\}$ by inclusion-exclusion, so

$$d + \frac{3}{\#S}e > 2 \deg h - \frac{3\#S - 9}{2} \avg_{A \neq B} \deg \rad \gcd\{A, B\}.$$

Note that $3\#S - 9 \geq 0$ since $\#S \geq 3$.

One can bound each term $\deg \rad \gcd\{A, B\}$ by the simple observation that $A/\gcd\{A, B\}$ and $B/\gcd\{A, B\}$ are distinct congruent polynomials.
of degree at most \(d - \deg \gcd\{A, B\} \); thus \(d - \deg \gcd\{A, B\} \geq \deg h \), so
\[
\deg \rad \gcd\{A, B\} \leq d - \deg h.
\]
Hence
\[
d + \frac{3}{S}e > 2 \deg h - \frac{3 \#S - 9}{2} (d - \deg h);
\]
i.e., \(d > \frac{((3 \#S - 5)/(3 \#S - 7)) \deg h - (6/(3 \#S - 7) \#S)e}{} \).

\[
\Box
\]

3. Appendix: the ABC theorem

Theorem 3.1 is a typical statement of the Stothers-Mason ABC theorem, included in this paper for completeness. The proof given here is due to Noah Snyder; see [2].

Theorem 3.1. Let \(k \) be a field. Let \(A, B, C \) be nonzero elements of the polynomial ring \(k[x] \) with \(A + B + C = 0 \) and \(\gcd\{A, B, C\} = 1 \). If \(\deg A \geq \deg \rad ABC \) then \(A' = 0 \).

In fact, \(A' = B' = C' = 0 \). As usual, \(X' \) means the derivative of \(X \); the relevance of derivatives is that \(X/\rad X \) divides \(X' \).

Proof. Note that \(\gcd\{A, B\} = \gcd\{A, B, -(A + B)\} = \gcd\{A, B, C\} = 1 \). By the same argument, \(\gcd\{A, C\} = 1 \) and \(\gcd\{B, C\} = 1 \).

\(C/\rad C \) divides both \(C \) and \(C' \), so it divides \(C' B - C B' \). Similarly, \(B/\rad B \) divides \(C' B - C B' \). Furthermore, \(C' = -(A' + B') \), so \(C' B - C B' = -(A' + B') B + (A + B) B' = AB' - A' B; \) thus \(A/\rad A \) divides \(C' B - C B' \).

The ratios \(A/\rad A, B/\rad B, C/\rad C \) are pairwise coprime, so their product \(ABC/\rad ABC \) divides \(C' B - C B' \). But by hypothesis

\[
\deg \frac{ABC}{\rad ABC} = \deg ABC - \deg \rad ABC \geq \deg BC > \deg(C' B - C B');
\]
so \(C' B - C B' = 0 \); so \(AB' - A' B = 0 \); so \(A \) divides \(A' B \); but \(A \) and \(B \) are coprime, so \(A \) divides \(A' \); but \(\deg A > \deg A' \), so \(A' = 0 \). \(\Box \)

References

