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Metaplectic covers of GLn and the

Gauss2014Schering Lemma

par RICHARD HILL

RÉSUMÉ. Le lemme de Gauss-Schering est une identité impli-
quant le symbole de Legendre utilisé dans des preuves élémen-
taires de la loi de réciprocité quadratique. Dans cet article nous
montrons comment ce lemme peut-être généralisé pour donner
une formule sur un 2-cocycle correspondant à une plus grande ex-
tension métaplectique de GLn/k où k est un corps global. Dans
le cas où la caractéristique de k est non nulle, la formule fournit
une construction complète du groupe métaplectique, et par suite
donne une nouvelle preuve de la loi de réciprocité pour le symbole
de Legendre supérieur.

ABSTRACT. The Gauss-Schering Lemma is a classical formula
for the Legendre symbol commonly used in elementary proofs of
the quadratic reciprocity law. In this paper we show how the
Gauss Schering Lemma may be generalized to give a formula for
a 2-cocycle corresponding to a higher metaplectic extension of
GLn/k for any global field k. In the case that k has positive
characteristic, our formula gives a complete construction of the
metaplectic group and consequently an independent proof of the
power reciprocity law for k.

1. Introduction

Let k be a global field with adele ring A and let G/k be an affine algebraic
group. A metaplectic extension of G by a discrete Abelian group A is a
topological central extension:

which splits over the group G(k) of k-rational points. This means that the
group lifts to a subgroup of G(~). The covering group G(A) is called
a metaplectic group, or metaplectic cover of G. Metaplectic groups are
important since, just as the usual automorphic forms on G are functions on
G(A) which are invariant under translations by G(k), forms of non-integral
weight on G can be regarded as functions on G(A) which are invariant
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under translations by a lift of G(k). Metaplectic extensions of G by A are
classified by elements of H 2(G(A), A) which split when restricted to G(k).
The cohomology groups here are based on Borel-measurable cochains and A
is regarded as a trivial, discrete G(A)-module. In this paper the algebraic
group G will always be the general linear group and A will be a

group of roots of unity in k.
Let pm be a group of roots of unity in k with m = There is

a canonical metaplectic extension of SLn/k by pm. This extension was
constructed by T. Kubota [7], [8] in the case n = 2 and by H. Matsumoto
[11] for general n (see also [12] or [5]). By embedding GLn in SLn+l one
obtains a metaplectic extension on GLn. Of course the extension of SLn
can be recovered from that of GLn in the same way.

In this article we shall give a different construction of the metaplectic
cover of SLn. Our construction will be explicit in the sense that we are able
to write down a cocycle corresponding to the extension. We shall show how
the cocycle is related to the Gauss-Schering Lemma in the case n = 1, and
as a corollary we obtain Weil’s reciprocity law. The results described here
are contained in a more general form in [4]. However we shall give more
elementary proofs and limit ourselves to a minimum of notation. We shall
also emphasize the connection between the cocycle and the Gauss-Schering
Lemma.

Acknowledgement. This paper was written on a visit to the University
of Goettingen. I would like to thank the University of Goettingen and
particularly Prof. S. J. Patterson for their hospitality.

Notation. Throughout, k will denote a global field containing a primitive
m-th root of unity. We shall write pm for the group of all m-th roots of
unity in k. For a place v of k we shall write ov for the ring of integers in kv
and (~, for the m-th power Hilbert symbol on kv. We shall write xv for
a local uniformizer in kv. Given a finite set S of places of k containing all
the Archimedian places, we shall write A(S) for the restricted topological
product of the kv for v ~ S with respect to the subrings ov. Given an adele
a we shall write a, for the component of a in kv. For an idele a E A (S) X
we shall use the notation

We shall write os for the ring of S’-integers. The m-th power Legendre
symbol on os is defined by

/~/B 2013201320132013 x~ "

where a is an S-integer and b is an ideal of os which is coprime to ma.



191

Suppose T is an Abelian group, and regard pm as a trivial T-module. If
is an inhomogeneous 2-cocycle on T with values in pm then the commutator
of a is the function T x T - given by:

This map is bimultiplicative, skew-symmetric and depends only on the co-
homology class of a . We shall write H2 ,, (T, pm ) for the subgroup of classes
whose commutators are trivial. Cocycles in H ym are called symmetric co-
cycles. It is known (see [6]) that the restriction map gives an isomorphism

where T[m] is the m-torsion subgroup of T.

2. The cocycle

We begin by describing the cocycle. Let S be the finite set of places v
of k for which 1. Note that if k is a function field then S is empty
and A(S) = A.
The group jim acts on the Cartesian product A(S)’ of n copies of A(S)

by scalar multiplication. Let U be a pm-invariant compact, open neigh-
bourhood of 0 in A(S)n and let F be an open fundamental domain for
the action of pm on A(S)n B f 0}. We shall write f : A(S)n - Z for the
characteristic function of F. Define for a, 0 E GLn (A(S) ) ,

where the Haar measure dx on A(S)n is normalized so that U has measure
1. The powers in this product are all rational numbers whose denominators
are coprime to m. It therefore makes sense to raise to such a power.

Theorem ([4]). The function O’UF is a continuous, inhomogeneous 2-co-
cycle on The cohomology class ofau,F is independent of U and
F. If k is a function field then aU,F is metaplectic. Its restriction to SLn
corresponds to the canonical metaplectic extension of SLn. Furthermore

QU,F splits on every compact subgroup of GLn(A).
Remark. In fact a is not quite the standard metaplectic class on the whole
group GLn. In particular if m is even then Q cannot be obtained by pulling
back a cocycle on a larger group SLn+r to GLr (see [4]). There is a sense
in which a is a nicer cocycle on GLn than Matsumoto’s, since it has the
following functorial property. Let 1 be a finite extension of 1~ of degree
d. Then Rest’ k (GLn/1) may be regarded as a subgroup of GLnd/k. The
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cocycle a(l) which we obtain on GLn/l is the restriction of the cocycle 
on GLnd/k. This compatibility does not hold for Matsumoto’s cocycles.
The theorem will be proved in sections 4, 5 and 6. At first sight the

cocycle o, seems completely unrelated to any other number theoretical ob-
jects. In section 3 we shall show that it is in fact closely related to the
Gauss-Schering Lemma.

3. The Gauss-Schering Lemma

One of Gauss’ proofs of the quadratic reciprocity law is based on the
following Lemma
Gauss’ Lemma. be an odd prime number and a a natural number
not divisible by ,~3. Then

where r is the number of residue classes i E 11, 2, ... , modulo ,Q such
that ai is congruent to one of the numbers {-1, ... , -~~ modulo 3.

In work unpublished during his lifetime, Gauss [1] generalized this lemma
to include composite fl and 4th power residue symbols in the Gaussian
integers. He went on to use the lemma to prove the biquadratic reciprocity
law for the Gaussian integers. However his proof using the lemma is much
harder than his later proof using Gauss sums. Some time later, Schering [13]
published a proof that the lemma holds for composite fl and the generalized
lemma came to be known as the Gauss-Schering Lemma. More recently [2],
[9], [10], [3] the Gauss-Schering lemma has been used to prove the general
power reciprocity law in a number field.
We shall now recall a general form of the Gauss-Schering Lemma. Let k

and pm C k be as above and let S be a finite set of places of k containing
all Archimedian places. Then for an S-integer a and an ideal b C os with
b coprime to ma, the m-th power Legendre symbol (a/b)m is defined. By
a 1 -set modulo b we shall mean a subset F C os/6 such that

where the union here is disjoint.
Generalized Gauss-Schering Lemma. Let a E os and let b C os be
coprime to mcx. Then for F modulo b, one has

where r(~) is the number of elements i E F such that ai E (F.
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A proof of this may be found for example in [9] or [3].
We shall now reformulate the lemma slightly. Let f : os/6 -&#x3E; {0,1~ be

the characteristic function of F. The power r(() in the Gauss-Schering
Lemma can now be expressed in the form

We therefore have

Replacing the sum by an integral over A(S) we obtain a formula for (a / b)m
of exactly the same form as (A). More precisely, if we regard os B 101 as
being embedded diagonally in A(S)x = GL1(A(,S)) then we have

I I

’" . , ,,’"

where U = IIvEts Ov and F coincides on with modulo fl.
The above relation between Legendre symbols and the cocycle is

still rather unsatisfactory since our choice of F depends on fl. We shall
now give a relation between the commutator of Q and Hilbert symbols.

Proposition 1. For E A(S)X the following holds:

Remark. Hilbert symbols are partially skew symmetric in the sense that
(a~ = a)§$h. However if m is even then it is not always true that
(a, a)v,m = 1. If the Hilbert symbol fails to be skew symmetric in this
way then it clearly cannot be the commutator of a cocycle. The factor

in the above formula compensates for the lack
of skew symmetry in the Hilbert symbols.

Proof. Note that A(S)" is generated by the following set:

Here by abuse of notation ~rv denotes an idele whose w-component is 1 for
w # v and whose v-component is a local uniformizer of kv. Since both
sides of the equation in the proposition are bilinear and skew symmetric,
it suffices to prove the equality for a and (3 in the generating set.

First suppose a, (3 E flvgs o v x - Since aU = 3U = U, we have
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Therefore [a, = 1.

We next treat the case a E and {3 = 1rw. For any choice of F it
follows as before that au,F(,6, a) = 1. We therefore have

- - 1" ,

We must show that aU,F(a, (3) = (ow,1rw)w,m- Note that we are still free
to choose F in such a way that we can calculate O’UF(a,,3). First let Fl be
a lift to o~ in a £-set Fo modulo 1rw. Define

where U~ _ Ov. Then F2 is an open fundamental domain for 
in U B (3U. This may be extended to an open fundamental domain F3 for
pm in ~(S) ~ 101. We shall write fi for the characteristic function of Fi.
We have

The result now follows from the Gauss-Schering Lemma taking F = F3.
Finally suppose a = xv and fl w. We must show that

This is a routine but long calculation and is left to the reader. D

As a corollary to this and the theorem we obtain:
Weil’s Reciprocity Law. Let k be a global field of positive characteristic.
For a,,3 E k’ we have

4. The Cocycle Relation

The Legendre symbol is defined for composite Q by multiplica-
tivity. Thus in order to prove that the Gauss-Schering Lemma holds for
composite fl one must show that the right hand side of the formula in
the lemma is also multiplicative in 0. If one follows the proof of this fact
through without assuming that a and {3 commute or are coprime then



195

instead of obtaining a multiplicativity relation, one obtains the cocycle re-
lation for 

We shall go through this proof now.
We simply calculate Q(a, as follows:

Since is congruent to 1 modulo m, we have

It remains to show that

This follows from the following lemma.

Lemma 1.

Proof. Since U and ¡U are pm-invariant, it is sufficient to show that for
any non-zero vector y E {0} we have



196

where pmy denotes the pm orbit of ~. This follows easily from the relation

From the lemma we have

Note that f (x)f ((x) = 0 unless ( = 1. We therefore have

Replacing x by ~-lx we obtain:

Finally replacing ( by (-’ we obtain (B).

5. Independence of U and F

We shall now show that the cohomology class of O’UF is independent of
U and F. We first fix F and vary U. Let U’ be another pm-invariant,
compact, open neighbourhood of 0 in A(S) and define

We shall show that
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First note that

Now using Lemma 1 we obtain

Again since f (x)f ((x) = 0 unless ( = 1, we obtain the result.
A similar argument shows that if F’ is another open fundamental domain

for the action of pm on ~(S) ~ 101 then we have

where

Here f’ denotes the characteristic function of F’.

6. The rest of the proof
The other properties of the cocycle are almost immediate from its defi-

nition with suitable choices of F and U. We begin by showing that Q splits
on any compact subgroup of Let K be a compact subgroup of
GLn(A(S)). Then one may choose the neighbourhood U of 0 in to

be K-invariant. One then has immediately for a, j3 E K,

We next show that a splits on GLn (k) in the case that k is a function field.
To prove this we would like to take F to be invariant under translations by
kn and U to be a fundamental domain for ~n in A~. Then for E 

and C E pm the function

is periodic modulo translations by kn. On the other hand U and 3U are
two different fundamental domains for We therefore have



198

which implies

There is a problem with this method. Unfortunately there is no open
fundamental domain F for in 101 which is kl-invariant. However
if we are only interested in the restriction to GLn(k) , we may instead
take F to be an open fundamental domain for in A~n B Thus its
characteristic function f will be discontinuous on Since U and (3U have
the same intersection with it follows that the integrals

will still be rationals whose denominators are coprime to m. We may
therefore use such an F to define a cocycle. Now it is possible to take F
to be translation invariant modulo so the above argument shows that
~ splits on GLn(k) .

Finally we give a sketch proof that the restriction of o, to SLn corresponds
to the canonical metaplectic extension of SLn . The canonical extension is
determined by its restriction to the subgroup T of diagonal matrices with
determinant 1. For a diagonal matrix a we shall write cx2 for the i-th entry
on the diagonal of a.
On the canonical extension is given by the cocycle

One calculates that the commutator of c is
n

By generalizing Proposition 1 one may show that this is the same as the
commutator of Q on T. Thus represents a symmetric class on T(A(S)).
To show that Q is cohomologous to c on SLn (A(S) ) it remains only to show
that splits on T(~(S))~m~. Since T(A(S) ) [m] is relatively compact in
GLn(A(S) ) it follows that Q splits on T(~(S))(m~. On the other hand if
a, (3 E T(A(S)) [m] then since the Hilbert symbols for S are unramified,
it follows that = 1. This finishes the proof.
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