MARTIN EPKENHANS

An analogue of Pfister’s local-global principle in the burnside ring

Journal de Théorie des Nombres de Bordeaux, tome 11, no 1 (1999), p. 31-44

<http://www.numdam.org/item?id=JTNB_1999__11_1_31_0>

© Université Bordeaux 1, 1999, tous droits réservés.

L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
An Analogue of Pfister’s Local-Global Principle in the Burnside Ring

par MARTIN EPKENHANS

RÉSUMÉ. Soit N/K une extension galoisienne de groupe de Galois G. On étudie l’ensemble $T(G)$ des combinaisons linéaires sur \mathbb{Z} de caractères de l’anneau de Burnside $B(G)$, qui induisent des combinaisons \mathbb{Z}-linéaires des formes trace de sous-extensions de N/K qui sont triviales dans l’anneau de Witt $W(K)$ de K. On montre que le sous-groupe de torsion de $B(G)/T(G)$ est le noyau de l’homomorphisme signature.

ABSTRACT. Let N/K be a Galois extension with Galois group G. We study the set $T(G)$ of \mathbb{Z}-linear combinations of characters in the Burnside ring $B(G)$ which give rise to \mathbb{Z}-linear combinations of trace forms of subextensions of N/K which are trivial in the Witt ring $W(K)$ of K. In particular, we prove that the torsion subgroup of $B(G)/T(G)$ coincides with the kernel of the total signature homomorphism.

1. INTRODUCTION

Let L/K be a finite, separable extension of fields of characteristic $\neq 2$. With it we associate the ‘trace form’ which is defined by $\text{tr}_{L/K} : L \to K : x \mapsto \text{tr}_{L/K}x^2$. P.E. Conner started to investigate the connection of the trace form of L/K and the trace form of a normal closure of L/K. His work yields some polynomial vanishing theorems for trace forms (see [1]). These identities come from identities in the Burnside ring of the Galois group $G = G(N/K)$ of N/K. We study the trace ideal $T(G)$ in $B(G)$, which is roughly speaking the set of \mathbb{Z}-linear combinations of trace forms of subextensions of N/K which are trivial in the Witt ring $W(K)$ of K.

We first recall the definition of the Burnside ring $B(G)$ of a finite group G. A theorem of Springer [6] gives rise to a homomorphism $h_{N/K} : B(G) \to W(K)$. The trace ideal $T(G)$ is a finitely generated subgroup of the free abelian group $B(G)$. We introduce a signature homomorphism $\text{sign}_\sigma : B(G) \to \mathbb{Z}$ for each element $\sigma \in G$ of order ≤ 2. These signature homomorphisms correspond to signatures of the Witt ring. We conclude that $T(G)$ is contained in the intersection $L(G)$ of all kernels of signatures. The
main theorem states that $T(G)$ and $L(G)$ are of equal rank. Hence the torsion subgroup of $B(G)/T(G)$ is given by the kernel of the total signature homomorphism. In section 7 we reduce our approach to 2-groups. The general case follows by induction via the Frattini subgroup of G.

2. Notation

We first fix our notations. Let K be a field. Then K^* denotes the multiplicative group of K, K^{*2} is the group of squares in K^*. We write K_s for a separable closure of K.

Let N/K be a Galois extension, then $G(N/K)$ denotes the Galois group of N/K. If $H < G(N/K)$ then N^H is the fixed field of H in N. Let $Aut(K)$ be the group of field automorphisms of K.

Now let K be a field of characteristic $\neq 2$. Let ψ, φ be non-degenerate quadratic forms over K. Then $\det_K \psi$ is the determinant of ψ. If p is a real place of K then $\text{sign}_p \psi$ is the signature of ψ with respect to p. $\psi \otimes \varphi$ is the product of ψ and φ. For $m \in \mathbb{Z}$, $m \times \psi$ is the m-fold sum of ψ. $\psi \simeq \varphi$ indicates the isometry of ψ and φ over K. Let L/K be a field extension. Then ψ_L is the lifting of ψ to a form over L by scalar extension. $W(K)$ is the Witt ring of K. Let $K^1, \ldots, K^n \in K^*$. Then $<a_1, \ldots, a_n>$ is the diagonal form $a_1X_1^2 + \ldots + a_nX_n^2$ over K. $<a_1, \ldots, a_n>$ is the diagonal form over K. Then ψ_L is the lifting of ψ to a form over L by scalar extension. $W(K)$ is the Witt ring of K. Let $a_1, \ldots, a_n \in K^*$. Then $<a_1, \ldots, a_n>$ is the diagonal form $a_1X_1^2 + \ldots + a_nX_n^2$ over K. $<a_1, \ldots, a_n> = \otimes_{i=1}^{n} a_i$ is the n-fold Pfister form defined by a_1, \ldots, a_n.

Let L/K be a finite and separable field extension. The trace form of L/K is the non-degenerate quadratic form $tr_{L/K}: L \rightarrow K : x \mapsto tr_{L/K}(x^2)$. We denote the trace form also by $<L/K>$, resp $<L>$ if no confusion can arise.

Let M be a set. Then $\sharp M$ is the cardinality of M. $ord(G)$, $ord(\sigma)$ is the order of the finite group G, resp. of the element $\sigma \in G$.

3. The Burnside ring $B(G)$

Let G be a finite group and let $H < G$ be a subgroup of G. We denote the transitive action of G on the set of left cosets $G/H = \{aH, a \in G\}$ by $(G, G/H)$. The transitive and faithful actions of G on finite sets are in one-to-one correspondence with the set of conjugacy classes of subgroups of G. A subgroup H of G induces a transitive action of degree $[G:H]$, hence a representation of dimension $[G:H]$. Let χ_H denote the corresponding character. We sometimes write χ_H^G to indicate that the character is defined on G.

Definition 1. Let G be a finite group. The Burnside ring $B(G)$ of G is the free abelian group freely generated by the set
$\{\chi_H | H \text{ runs over representatives of conjugacy classes of subgroups of } G\}$
and with multiplication given by
\[\chi U_1 \cdot \chi U_2 = \bigoplus_{\sigma \in U_1 \backslash G / U_2} \chi U_1 \cap \sigma U_2 \sigma^{-1}, \]
where the sum runs over a set of representatives of the double cosets in \(U_1 \backslash G / U_2 \).

Remark 2. \(\chi_G \) is the multiplicative identity, \(\chi\{e\} =: \chi_1 \) is the regular character.

Another way of defining the multiplication is as follows. Let \(\rho_i : G \to GL(V_i), i = 1, 2 \) be representations of \(G \). Then \(\rho_1 \otimes \rho_2 : G \times G \to GL(V_1 \otimes V_2) \) is a representation of \(G \times G \) on \(V_1 \otimes V_2 \). According to the diagonal embedding \(G \to G \times G \) the representation \(\rho_1 \otimes \rho_2 \) restricts to a representation of \(G \) on \(V_1 \otimes V_2 \). For \(\rho_i = (\rho_i, G / U_i) \) we get \(\rho_1 \otimes \rho_2 |_G = \bigoplus_{\sigma \in U_1 \backslash G / U_2} (G, G / (U_1 \cap \sigma U_2 \sigma^{-1})). \)

4. THE HOMOMORPHISM \(h_{N/K} : \mathcal{B}(G(N/K)) \to W(K) \)

Proposition 3 (T.A. Springer). Let \(N/K \) be a finite Galois extension with Galois group \(G(N/K) = G \). Then there is a well-defined ring homomorphism
\[h_{N/K} : \mathcal{B}(G) \to W(K) \]
with
\[h_{N/K}(\chi_H) = \langle N^H \rangle \]
for all subgroups \(H \) of \(G \).

Proof. Let \(H < G \) be a subgroup of \(G \). Then \(h_{N/K} \) is well-defined as a group homomorphism since \(\langle N^H \sigma H^{-1} \rangle = \langle \sigma(N^H) \rangle = \langle N^H \rangle \). Now the assertion follows from the next lemma. \(\square \)

Lemma 4. Let \(N/K \) be a finite Galois extension with Galois group \(G = G(N/K) \). Let \(U_1, U_2 \) be subgroups of \(G(N/K) \). Then
\[\langle N^{U_1} \rangle \otimes \langle N^{U_2} \rangle = \bigoplus_{\sigma \in U_1 \backslash G / U_2} \langle N^{U_1 \cap \sigma U_2 \sigma^{-1}} \rangle, \]
where the sum runs over a set of representatives of the double cosets \(U_1 \backslash G / U_2 \).

Proof. (see [2], I.6.2) Let \(\alpha \in N \) with \(N^{U_i} = K(\alpha) \) and let \(f \in K[X] \) be the minimal polynomial of \(\alpha \) over \(K \). Set \(L := N^{U_2} \). From Frobenius reciprocity [5], 2.5.6 we get
\[\langle N^{U_i} \rangle \otimes \langle N^{U_2} \rangle = \langle K(\alpha) \rangle \otimes \langle L \rangle = tr_{L/K}((tr_{K(\alpha)/K}(1))L) \]
\[= tr_{L/K}(L[X]/(f))/L \]
\[= \bigoplus_{i=1, \ldots, r} tr_{L/K}(L[X]/(f_i))/L, \]
where \(f = f_1 \cdots f_r \) is the decomposition of \(f \) into monic irreducible polynomials in \(L[X] \). Now consider \(tr_{L/K}(L[X]/(g))/L \) for some monic prime
divisor $g \in L[X]$ of f. Then g is the minimal polynomial of some conjugate $\sigma(\alpha)$ of α over L. Hence

$$\text{tr}_{L/K} <(L[X]/(g))/L> = \text{tr}_{L/K}(\text{tr}_{L(\sigma)/L}<1>) = <L(\sigma(\alpha))>.$$

Now

$$L(\sigma(\alpha)) = L \cdot K(\sigma(\alpha)) = L \cdot \sigma(K(\alpha)) = N^{U_2} \cdot \sigma(N^{U_1}) = N^{U_1 \cap \sigma U_2 \sigma^{-1}}.$$

The action of G on the roots of f induces an action of U_2 on the roots of f, which is equivalent to the action of U_2 on G/U_1. Each orbit of this action corresponds to a monic irreducible factor $g \in L[X]$ of f. \hfill \Box

5. The Trace Ideal in $B(G)$

Definition 5. Let G be a finite group. Set

$$\mathcal{T}(G) := \cap \ker(h_{N/K}),$$

where the intersection is taken over all Galois extensions N/K over all fields K of characteristic $\neq 2$ with Galois group $G(N/K) \simeq G$. We call $\mathcal{T}(G)$ the **trace ideal of** $B(G)$.

6. The Main Results

Theorem 6. Let G be a finite group. Then the trace ideal $\mathcal{T}(G)$ of $B(G)$ is a free abelian group of rank

$$\text{rank}(\mathcal{T}(G)) = \text{rank}(B(G)) - \#\{\text{conjugacy classes of elements } \sigma \in G \text{ of order } \leq 2\}.$$

The proof of theorem 6 will be organized as follows. We start by defining in a rather canonical way signatures for elements in the Burnside ring. By lemma 8, the trace ideal is contained in the kernel $L(G)$ of the total signature homomorphism. We compute the rank $L(G)$ in lemma 14. Now the assertion follows from the equality of the ranks of $\mathcal{T}(G)$ and $L(G)$, whose proof will be the subject of sections 7 and 8. In section 7 we reduce the proof of theorem 6 to 2-groups. Section 8 contains the proof of theorem 6 for 2-groups. It runs via induction over the Frattini subgroup of G.

If G is a finite group then $RC(G)$ denotes a set of representatives of the conjugacy classes of subgroups of G. Further, $RC_2(G)$ denotes a set of representatives of the conjugacy classes of elements of order 1 or 2 in G. Let G_2 be a 2-Sylow subgroup of G. Then we can choose $RC_2(G) \subset G_2$.

In the sequel we will use the following proposition of Sylvester.
Proposition 7. Let K be field, \mathfrak{p} be an ordering of K. Then for any separable polynomial $f(X) \in K[X]$ the signature of the trace form of $K[X]/(f(X))$ over K equals the number of real roots of $f(X)$ with respect to the ordering \mathfrak{p}.

For a proof see [7].

Lemma 8. Let G be a finite group and let $\sigma \in G$ be an element of order ≤ 2. Then there is a Galois extension N/K of algebraic number fields and an isomorphism $\iota : G \xrightarrow{\sim} G(N/K)$ such that

1. $K \subset \mathbb{R}$ and $N \subset \mathbb{C}$.
2. $\iota(\sigma)$ is induced by the complex conjugation.

Proof. Set $n := \text{ord}(G)$.

1. $\text{ord}(\sigma) = 2$. If $n = 2$, set $K = \mathbb{Q}, N = \mathbb{Q}(\sqrt{-1})$.

Now let $n = 2m \geq 4$. Consider the quadratic form $\psi = (m - 1)x < 1, -1> \perp <1, -2>$ as a form over \mathbb{Q}. Then $\det_{\mathbb{Q}} \psi \notin \mathbb{Q}^2$ and $\text{sign}_{\mathbb{Q}} \psi = 0$. By theorems 1 and 3 of [4] there is a field extension L/\mathbb{Q} with normal closure N/\mathbb{Q} such that $N \subset \mathbb{C}, G(N/\mathbb{Q}) \cong S_n$ and L/\mathbb{Q} has trace form ψ. Here S_n denotes the symmetric group on n elements.

Let $\alpha \in L$ be a primitive element of L/\mathbb{Q}. Since $\text{sign}_{\mathbb{Q}} <L>= 0$ no conjugate of α is real (see proposition 7). Let $M := \{\alpha_1, \bar{\alpha}_1, \ldots, \alpha_m, \bar{\alpha}_m\}$ be the set of conjugates of α. $\bar{\alpha}$ is the complex conjugate of $\alpha \in \mathbb{C}$. Let $\varphi : G \to M$ be a bijection such that for each $a \in G$ the set $\varphi(\{a, \sigma(a)\})$ consists of a pair of complex conjugate elements of M. Now according to the identification given by φ we get a monomorphism $\iota : G \hookrightarrow S(M) \xrightarrow{\sim} G(N/\mathbb{Q})$. Then $\iota(\sigma)$ is given by the complex conjugation on N. Set $K := N^{\iota(G)}$. Since $\iota(\sigma) \in \iota(G)$ the field K is real.

2. $\sigma = \text{id}$. Set $\psi = (n - 1)x <1> \perp <2>$.

Then $\det_{\mathbb{Q}} \psi \notin \mathbb{Q}^2$ and $\text{sign}_{\mathbb{Q}} \psi = n$. Now choose L, N and $\alpha \in L$ as above. Since $\text{sign}_{\mathbb{Q}} \psi = \text{sign}_{\mathbb{Q}} <L>= n$ all conjugates of α are real. Hence $L \subset N \subset \mathbb{R}$. Choose any injection $\iota : G \hookrightarrow G(N/\mathbb{Q})$ and set $K := N^{\iota(G)} \subset \mathbb{R}$. □

Set

$$X = \sum_{\mathcal{H} \in \text{RC}(G)} m_{\mathcal{H}} \cdot \chi_{\mathcal{H}}, \quad m_{\mathcal{H}} \in \mathbb{Z}.$$

Let N/K be a Galois extension with Galois group $G(N/K) = G$. Let \mathfrak{p} be a real place of K. Then

$$h_{N/K}(X) = \sum_{\mathcal{H} \in \text{RC}(G)} m_{\mathcal{H}} \cdot <N^\mathcal{H}> = 0.$$
gives
\begin{equation}
\text{sign}_p h_{N/K}(X) = 0 = \sum_{\mathcal{H} \in RC(\mathcal{G})} m_{\mathcal{H}} \cdot \text{sign}_p <N^{\mathcal{H}}>
\end{equation}

Let \(\mathcal{H} < \mathcal{G} \) and \(N^{\mathcal{H}} = K(\alpha) \). By proposition 7, \(\text{sign}_p <N^{\mathcal{H}}> \) equals the number of real conjugates of \(\alpha \) with respect to the ordering \(p \). Let \(\sigma \in G(N/K) \) be the automorphism which is induced by the complex conjugation. Then \(\text{sign}_p <N^{\mathcal{H}}> \) is the number of fixed points of the action of \(<\sigma> \) on the set of conjugates of \(\alpha \), which equals the number of fixed points of the action of \(<\sigma> \) on \(\mathcal{G}/\mathcal{H} \). Therefore the equation (I) is already determined by \(\mathcal{G} \) and the conjugacy class of the complex conjugation in \(\mathcal{G} \). This leads to the following definition.

Definition 9. Let \(\sigma \in \mathcal{G} \) be an element of order \(\leq 2 \). Let \(\mathcal{H} \) be a subgroup of \(\mathcal{G} \) and let \(\chi_{\mathcal{H}} \in \mathcal{B}(\mathcal{G}) \) be the corresponding character. Set

\[
\text{sign}_\sigma \chi_{\mathcal{H}} = \#\{\text{fixed points of } <\sigma>, \mathcal{G}/\mathcal{H}\}.
\]

Of course, \(\text{sign}_\sigma \chi_{\mathcal{H}} = \chi_{\mathcal{H}}(\sigma) \). Since our approach is motivated by quadratic form considerations we feel it is more convenient to talk about signatures.

As usual \(C_\mathcal{G}(\sigma) \) denotes the centralizer of \(\sigma \) in \(\mathcal{G} \). Let \(\mathcal{G}\sigma = \{\rho^{-1}\sigma\rho \mid \rho \in \mathcal{G}\} \) be the set of conjugates of \(\sigma \) in \(\mathcal{G} \).

Proposition 10. Let \(\mathcal{G} \) be a finite group, \(\mathcal{H} < \mathcal{G} \) a subgroup of \(\mathcal{G} \). Let \(\sigma \in \mathcal{G} \) be an element of order \(\leq 2 \). Then

\[
\text{sign}_\sigma \chi_{\mathcal{H}} = \frac{\text{ord}(C_\mathcal{G}(\sigma))\#(\mathcal{G}\sigma \cap \mathcal{H})}{\text{ord}(\mathcal{H})} = \frac{[\mathcal{G}:\mathcal{H}]\#(\mathcal{G}\sigma \cap \mathcal{H})}{\#\mathcal{G}\sigma}
\]

Proof. Consider the action of \(<\sigma> \) on \(\mathcal{G}/\mathcal{H} \). Let \(\rho \in \mathcal{G} \). Then \(\rho\mathcal{H} \) is a fixed point if and only if \(\rho^{-1}\sigma\rho \in \mathcal{H} \). Hence we can assume that

\[
\mathcal{G}\sigma \cap \mathcal{H} = \{\sigma_1, \ldots, \sigma_r\}
\]

is a set of \(r > 0 \) elements. Let

\[
M = \{(\rho, \sigma_i) \mid \rho^{-1}\sigma\rho = \sigma_i\} \subset \mathcal{G} \times \{\sigma_1, \ldots, \sigma_r\}.
\]

Obviously the cardinality of \(M \) is the product of \(\text{ord}(\mathcal{H}) \) and the number of fixed points. Further, for \(i = 1, \ldots, r \) we get

\[
\#\{\rho \in \mathcal{G} \mid (\rho, \sigma_i) \in M\} = \text{ord}(C_\mathcal{G}(\sigma)).
\]

Hence \(\#M = \text{ord}(C_\mathcal{G}(\sigma)) \cdot \#\mathcal{G}\sigma \cap \mathcal{H} \). \(\square \)

We abbreviate \(\chi_{<\tau>} \) to \(\chi_\tau \).

Corollary 11. In the situation of proposition 10 we get

1. \(\text{sign}_\sigma \chi_{\mathcal{H}} \equiv [\mathcal{G}:\mathcal{H}] \mod 2 \).
2. \(\text{sign}_{id} \chi_{\mathcal{H}} = [\mathcal{G}:\mathcal{H}] \).
3. $\text{sign}_\sigma \chi_\mathcal{H} \neq 0$ if and only if \mathcal{H} contains some conjugate of σ.

4. Let $\tau \in \mathcal{G}$ be an element of order ≤ 2. Then $\text{sign}_\tau \chi \neq 0$ if and only if σ and τ are conjugate or $\sigma = \text{id}$.

5. Let τ and σ be two conjugate involutions. Then

$$2 \cdot \# \mathcal{G} \cdot \text{sign}_\sigma \chi_\tau = \text{ord}(\mathcal{G}).$$

6. If \mathcal{H} is a normal subgroup of \mathcal{G}, then $\text{sign}_\sigma \chi_\mathcal{H} = 0$ or $= [\mathcal{G} : \mathcal{H}]$.

sign_σ extends to a homomorphism on $\mathcal{B}(\mathcal{G})$.

Proposition 12. Let \mathcal{G} be a finite group and let $\sigma \in \mathcal{G}$ be an element of order ≤ 2. Then there is a unique homomorphism

$$\text{sign}_\sigma : \mathcal{B}(\mathcal{G}) \to \mathbb{Z}$$

with $\text{sign}_\sigma \chi_\mathcal{U} = \#\{\text{fixed points of } (\langle \sigma \rangle, \mathcal{G}/\mathcal{U})\}$ for all subgroups \mathcal{U} of \mathcal{G}.

Proof. We consider the representations and characters over fields of characteristic 0. Let $\rho : \mathcal{G} \to GL(V)$ be the underlying representation of $\chi_\mathcal{U}$. Hence we get $\text{sign}_\sigma \chi_\mathcal{U} = \text{trace}(\rho(\sigma)) = \chi_\mathcal{U}(\sigma)$. Since $\text{trace}(A \otimes B) = \text{trace}(A) \cdot \text{trace}(B)$, sign_σ is a ring homomorphism.

We conclude that $\mathcal{T}(\mathcal{G})$ is contained in the intersection of all kernels of signature homomorphisms.

Definition 13. Let \mathcal{G} be a finite group. Set

$$L(\mathcal{G}) := \left\{ \sum_{\mathcal{H} \in \mathcal{RC}(\mathcal{G})} m_\mathcal{H} \chi_\mathcal{H} \mid \sum_{\mathcal{H} \in \mathcal{RC}(\mathcal{G})} m_\mathcal{H} \cdot \text{sign}_\sigma \chi_\mathcal{H} = 0 \right\} \subset \mathcal{B}(\mathcal{G}).$$

for all $\sigma \in \mathcal{RC}_2(\mathcal{G})$.

Lemma 14. Let \mathcal{G} be a finite group of order n. The system of linear equations given by

$$\sum_{\mathcal{H} \in \mathcal{RC}(\mathcal{G})} \text{sign}_\sigma \chi_\mathcal{H} \cdot x_\mathcal{H} = 0, \ \sigma \in \mathcal{RC}_2(\mathcal{G})$$

has rank $\# \mathcal{RC}_2(\mathcal{G})$.

Proof. Let $\sigma_1 = \text{id}, \sigma_2, \ldots, \sigma_r$ be the r distinct elements of $\mathcal{RC}_2(\mathcal{G})$. Consider the coefficients $\text{sign}_{\sigma_i} \chi_{\langle \sigma_i \rangle}$ for $i, j = 1, \ldots, r$. We get $\text{sign}_{\sigma_i} \chi_{\langle \sigma_i \rangle} = \text{ord}(\mathcal{G})/\text{ord}(\sigma_i) \in \{n, n/2\}$ for $i = 1, \ldots, r$. For $j = 2, \ldots, r$ we have $\text{sign}_{\sigma_j} \chi_{\langle \sigma_i \rangle} \neq 0$ if and only if $i = j$.

\square
Remark 15. By lemma 14, $L(G)$ is a free abelian group of rank
$$\text{rank}(B(G)) - \# \text{RC}_2(G).$$
Further, $T(G) \subset L(G)$ by lemma 8 and the remarks following it. We get
$$\text{rank}(T(G)) = \text{rank}(L(G))$$
if and only if there exists a positive integer $a \in \mathbb{Z}$
with $a \cdot L(G) \subset T(G)$.

By Pfister's local-global principle, $L(G)$ is the set of all $X \in B(G)$ such that
$h_{N/K}(X)$ is a torsion form for any Galois extension N/K with $G(N/K) \simeq G$.
Hence the rank formula of theorem 6 is equivalent to the existence of an
integer $l \in \mathbb{Z}$, $l \geq 0$ depending only on G such that 2^l annihilates $h_{N/K}(L(G))$
for any Galois extension N/K with Galois group G.

Since $T(G) \subset L(G)$ each signature homomorphism sign_σ induces a unique
signature homomorphism $\text{sign} : B(G)/T(G) \to \mathbb{Z}$. Hence we easily get from
Theorem 6:

Theorem 16 (Local-Global Principle). An element $X \in B(G)$ is a tor-
sion element in $B(G)/T(G)$ if and only if $\text{sign}_\sigma(X) = 0$ for every $\sigma \in G$ of
order ≤ 2. Every torsion element of $B(G)/T(G)$ has 2-power order.

7. REDUCTION TO 2-GROUPS

Proposition 17. Let G be a group of odd order. Then
$$T(G) = L(G).$$
Hence $\text{rank}(T(G)) = \text{rank}(B(G)) - 1$.

Proof. Let N/K be a Galois extension with Galois group $G(N/K) \simeq G$.
Let L be an intermediate field of N/K. Then $[L : K] = 1$ (see [2],
cor. I.6.5). Let $X = \sum_{H \in \text{RC}(G)} m_H \cdot \chi_H$. Then $h_{N/K}(X) = \sum_{H \in \text{RC}(G)} m_H \cdot [G : H] < 1>$.
Since ord(G) is odd, $L(G)$ is defined by the equation
$$\sum_{H \in \text{RC}(G)} m_H \cdot [G : H] = 0$$
(see corollary 11). Now the statement about
the ranks follows from remark 15. \hfill \Box

Let H, U be subgroups of G. Then the representation defined by the action
of G on G/U restricts to a representation of H on G/U. This defines a ring
homomorphism
$$\text{res}^G_H : B(G) \to B(H),$$
the ‘restriction map’. We get
$$\text{res}^G_H \chi^G_{\sigma U} = \oplus_{\sigma \in H \cap G/U} \chi^H_{H \cap \sigma U \sigma^{-1}} \in B(H),$$
where $\chi^H_{H \cap \sigma U \sigma^{-1}} \in B(H)$ is a character of H.

Proposition 18. Let G be a finite group and let $H < G$. Let $\sigma \in H$ be an
element of order ≤ 2. Then
commutes.

Proof. Let $U < G$. We compute the signature of $\text{res}_H^G \chi_U^G$ as follows: Restrict the action of G on G/U to H. Then count the number of fixed points of $<\sigma>$ according to this action. Of course, this number equals $\text{sign}_\sigma \chi_U^G$. □

There is an additive but not multiplicative corestriction map $\text{cor}_H^G : B(H) \to B(G)$ defined by $\text{cor}_H^G \chi_H^U = \chi_U^G$.

Proposition 19. Let G be a finite group, $H < G$. Let N/K be a Galois extension with $G(N/K) = G$. Let $s^* : W(K) \to W(N^H)$ be the lifting homomorphism. Then

\[
\begin{array}{ccc}
B(G) & \xrightarrow{h_{N/K}} & W(K) \\
\text{res}_H^G & \downarrow & \downarrow s^* \\
B(H) & \xrightarrow{h_{N/N^H}} & W(N^H)
\end{array}
\]

and

\[
\begin{array}{ccc}
B(G) & \xrightarrow{h_{N/K}} & W(K) \\
\text{cor}_H^G & \downarrow & \downarrow \text{tr}_{N^H/K} \\
B(H) & \xrightarrow{h_{N/N^H}} & W(N^H)
\end{array}
\]

commute.

Proof. We use the notation of lemma 4 and its proof. Set $L := N^H$. Then

\[
\begin{aligned}
\text{h}_{N/L}(\text{res}_H^G(\chi_U^G)) &= \prod_{\sigma \in U \backslash G/H} h_{N/L}(\chi_{H^G \sigma U \sigma^{-1}}^H) \\
&= \prod_{\sigma \in U \backslash G/H} \langle N^H \cap \sigma U \sigma^{-1} \rangle / L = \prod_{i=1, \ldots, r} \langle L[X]/(f_i) \rangle / L \\
&= \langle (L[X]/(f_1 \cdots f_r)) \rangle / L = \langle (K[X]/(f)) \otimes L \rangle \\
&= s^*(N^U/K) = s^* \circ h_{N/K}(\chi_U^G).
\end{aligned}
\]
Lemma 20. Let $\mathcal{H} < G$ be finite groups.

1. Then $\text{res}_G^\mathcal{H}(L(G)) \subset L(\mathcal{H})$.

2. Let $[G : \mathcal{H}]$ be odd.
 (a) Then $\text{res}_G^\mathcal{H}(X) \in L(\mathcal{H})$ if and only if $X \in L(G)$.
 (b) $\text{res}_G^\mathcal{H}(X) \in T(\mathcal{H})$ implies $X \in T(G)$.

Proof. 1. follows from proposition 18.
2. Choose $RC_2(G) \subset RC_2(\mathcal{H})$ and apply proposition 18.
(b) Let N/K be a Galois extension with $G(N/K) = G$ and let $X \in B(G)$ with $\text{res}_G^\mathcal{H}(X) \in T(\mathcal{H})$. Now $h_{N/N1} \circ \text{res}_G^\mathcal{H}(X) = 0 = s^* \circ h_{N/K}(X)$ by proposition 19. By a theorem of Springer s^* is injective (see [5], 2.5.3). Thus $h_{N/K}(X) = 0$.

From $X \in T(G)$ we get $X \in \ker(h_{N/K})$, hence $\text{res}_G^\mathcal{H}(X) \in \ker(h_{N/N1})$. But we do not get $\text{res}_G^\mathcal{H}(X) \in T(\mathcal{H})$. We only get $\text{res}_G^\mathcal{H}(X) \in \bigcap \ker(h_{N/K})$, where the intersection runs over all Galois extensions N/K with Galois group G and such that $G < \text{Aut}(N)$.

Let $\text{exp}(G)$ denote the exponent of G.

Proposition 21. Let G be a finite group and let G_2 be a 2-Sylow subgroup of G.

1. Then the rank formula of theorem 6 holds for G if it holds for any 2-Sylow subgroup of G, in which case $\text{exp}(L(G)/T(G))$ divides the exponent of $L(G_2)/T(G_2)$.

2. Suppose there is a set X of fields such that $G \subset \text{Aut}(N)$ for any $N \in X$ and such that

$$T(G_2) = \bigcap_{N \in X} \bigcap_{U \text{Aut}(N), U \cong G_2} \ker(h_{N/NU}).$$

Then $X \in T(G)$ if and only if $\text{res}_{G_2}^G(X) \in T(G_2)$. Hence $L(G)/T(G)$ is isomorphic to a subgroup of $L(G_2)/T(G_2)$.

Proof. 1. If the rank formula holds for G_2, then by remark 15 there is a positive integer a with $a \cdot L(G_2) \subset T(G_2)$. Let $X \in L(G)$. Then $\text{res}_{G_2}^G(X) \in L(G_2)$ and $\text{res}_{G_2}^G(aX) = a \cdot \text{res}_{G_2}^G(X) \in a \cdot L(G_2) \subset T(G_2)$. Hence $aX \in T(G)$ by
lemma 20(2)(b). The proof of (2) is left to the reader.

8. PROOF OF THEOREM 6

Let $J_2(G)$ be the set of involutions of the 2-group G. For a subgroup H of G define

$$X_H^G := X_H := \text{ord}(H) \cdot \chi_H^G - \chi_1^G + \sum_{\tau \in R_C^2(G), \tau \neq 1} \#(\mathcal{C} \cap H) \cdot (\chi_1^G - 2 \cdot \chi_1^G)$$

and let

$$M_G := \{ X_H | H \in R_C(G) - R_C^2(G) \}.$$

By proposition 10 and corollary 11, M is a free subset of $L(G)$ which consists of $\text{rank}(L(G))$ elements. We will prove by induction that M_G is contained in $\mathcal{B}(G)$.

Lemma 22. Let G be a 2-group. Then M_G is a free subset of $\mathcal{B}(G)$ consisting of $\text{rank}(L(G))$ elements.

Proof. Observe that $\mathcal{B}(\mathbb{Z}_2) = 0$. Let G be a group of order $2^i \geq 4$ and let N/K be a Galois extension with Galois group G. Now we proceed by induction.

1. Let H be a subgroup with $H \neq G$. Let $\tau, \tau' \in G$ be involutions. Then $\chi_\tau = \chi_{\tau'}$ if and only if $\tau' \in \mathcal{G}\tau$. Since $J_2(G)$ is the disjoint union of the conjugacy classes of the involutions of G we get

$$J_2(H) = J_2(G) \cap H = \bigcup_{\tau \in R_C^2(G), \tau \neq 1} \mathcal{G}\tau \cap H.$$

Let $U < G$ be a maximal subgroup of G which contains H. Then

$$X_H^U = \text{ord}(H) \cdot \chi_H^U - \chi_1^U + \sum_{\tau \in R_C^2(U), \tau \neq 1} \#(U \cap H) \cdot (\chi_1^U - 2 \cdot \chi_1^U)$$

$$= \text{ord}(H) \cdot \chi_H^U - \chi_1^U + \sum_{\tau \in J_2(H)} (\chi_1^U - 2 \cdot \chi_1^U).$$

Now $X_H^U \in \mathcal{B}(U)$ by induction hypothesis. Hence $h_{N/K}(X_H^U) = 0$, which gives $h_{N/K}(X_H^G) = \text{tr}_{N/K}(h_{N/K}(X_H^U)) = 0$ (see proposition 19). Hence $X_H^G \in \mathcal{B}(G)$ if $H \neq G$.

2. Next we have to prove $X_G^G \in \mathcal{B}(G)$. First we consider an elementary abelian group. Then

$$X_G^G = 2^i \cdot \chi_G^G + (2^i - 2) \cdot \chi_1^G - 2 \cdot \sum_{\tau \in G, \tau \neq 1} \chi_\tau^G.$$
Let $N = K(\sqrt{a_1}, \ldots, \sqrt{a_l})$. We know that $< N > = < 2^l > \otimes < -a_1, \ldots, -a_l >$ (see [3], prop. 1).

Now expand the Pfister form $< -a_1, \ldots, -a_l > = < 1, b_2, \ldots, b_{2l} >$. Then the entries b_2, \ldots, b_{2l} are in one-to-one correspondence with the quadratic subextensions of N/K. There are exactly $2^{l-1} - 1$ elements $\tau \in G, \tau \neq id$ such that $K(\sqrt{b_i}) \subset N^{\tau}$. Hence

$$h_{N/K}(X_G^G) = 2^l \times 1 \cdot (2^l - 2) \times < N > - 2 \sum_{\tau \in G, \tau \neq id} < N^{\tau} >$$

$$= 0.$$

Now we can assume that G is not an elementary abelian group. Let U_1, \ldots, U_m be the maximal subgroups of G. Since G is not a group of order 2, we get $J_2(G) \subset \bigcup_{i=1}^m U_i$. This gives

$$\sum_{\tau \in J_2(G)} (\chi_1 - 2 \cdot \chi_\tau) = \sum_{U = U_{i_1} \cap \ldots \cap U_{i_r}} (-1)^{r+1} \sum_{\tau \in J_2(U)} (\chi_1 - 2 \cdot \chi_\tau),$$

where the sum runs over the set of all non-empty subsets of $\{1, \ldots, m\}$. Let $\Phi(G)$ denote the Frattini subgroup of G. Let 2^k be its order and set $V = G/\Phi(G)$. Let F be the fixed field of $\Phi(G)$. Then F/K is an elementary abelian extension. Let $\{i_1, \ldots, i_r\} \subset \{1, \ldots, m\}$ be a set of r different indices. Set $H = U_{i_1} \cap \ldots \cap U_{i_r}$. Then $X_H^H \in T(H)$ by induction hypothesis. We get $h_{N/N_H}(X_H^H) = 0$, which implies

$$\sum_{\tau \in J_2(H)} (< N/N_H > - 2 \times < N^{\tau}/N_H >) = < N/N_H > - \text{ord}(H) \times < 1 >.$$

Set $V' = H/\Phi(G)$ and suppose $H \neq \Phi(G)$. By (1) we know that $X_{V'}^{V'} \in T(V)$ for all subgroups V' of V with $V' \neq 1$. This gives

$$\text{ord}(H/\Phi(G)) \times < 1 > = < F/N_H > - \sum_{\tau \in J_2(V')} (< F/N_H > - 2 \times < F^{\tau}/N_H >).$$
We further get
\[h_{N/K}(\sum_{\tau \in J_2(\mathcal{H})} (\chi_1^G - 2 \cdot \chi_T^G)) = \sum_{\tau \in J_2(\mathcal{H})} (^{<N> - 2 \times <N^\tau>}) \]
\[= \text{tr}_{N^H/K}[\sum_{\tau \in J_2(\mathcal{H})} (^{<N/N^H> - 2 \times <N^\tau/N^H>})] \]
\[= \text{tr}_{N^H/K}(^{<N>N^H> - \text{ord}(\mathcal{H}) \times <1>}) \]
\[= ^{<N>- \text{ord}(\mathcal{H}) \times <N^H>)} \]
\[= ^{<N>- 2^k \times \text{tr}_{N^H/K}(\text{ord}(\mathcal{H}/\Phi(\mathcal{G})) \times <1>)} \]
\[= ^{<N>- 2^k \times \text{tr}_{N^H/K}(<F/N^H>)} \]
\[- \sum_{\tau \in J_2(\mathcal{H}/\Phi(\mathcal{G}))} (^{<F/N^H>- 2 \times <F^\tau/N^H>}) \]
\[= ^{<N>- 2^k \times <F> \sum_{\tau \in J_2(\mathcal{H}/\Phi(\mathcal{G}))} (^{<F>- 2 \times <F^\tau>})} \]

If \(\mathcal{H} = \Phi(\mathcal{G}) \), then \(J_2(\mathcal{H}/\Phi(\mathcal{G})) \) is empty and \(N^H = F \). Hence the formula also holds in this situation.

Now \(\sum_{r=0}^{n}(-1)^r \binom{n}{r} = 0 \) implies
\[h_{N/K}(X^G_y) = 2^l \times <1> - <N> + \sum_{\mathcal{H}} (-1)^{r+1} \sum_{\tau \in J_2(\mathcal{H})} (^{<N>- 2 \times <N^\tau>}) \]
\[= 2^l \times <1>- 2^k \times <F> \]
\[+ 2^k \times \sum_{\mathcal{H}} (-1)^{r+1} \sum_{\tau \in J_2(\mathcal{H}/\Phi(\mathcal{G}))} (^{<F>- 2 \times <F^\tau>}) \]
\[= 2^k \times [\text{ord}(\mathcal{V}) \times <1> - <F> + h_{F/K}(\sum_{\tau \in J_2(\mathcal{V})} (\chi_1^\mathcal{V} - 2 \cdot \chi_T^\mathcal{V}))] \]
\[= 2^k h_{F/K}(X^\mathcal{V}_y) = 0 \]

by the above. \qed

9. OPEN QUESTIONS

We conclude with some open questions. How does the exponent of \(B(\mathcal{G})/T(\mathcal{G}) \) depend on \(\mathcal{G} \)?

Proposition 23. Let \(\mathcal{G} \) be a finite group. If a 2-Sylow subgroup \(\mathcal{G}_2 \) of \(\mathcal{G} \) is a normal subgroup of \(\mathcal{G} \), then the restriction homomorphism induces an epimorphism
\[\text{res} : L(\mathcal{G}) \rightarrow L(\mathcal{G}_2)/T(\mathcal{G}_2) \]
Proof. Let \(\text{cor} : B(\mathcal{G}_2) \rightarrow B(\mathcal{G}) \) be the corestriction. This is an additive homomorphism. Since \(\mathcal{G}_2 \) is normal in \(\mathcal{G} \) we get \(\text{res} \circ \text{cor} = [\mathcal{G} : \mathcal{G}_2] \cdot \text{id} \).

By Theorem 6 there is an integer \(l \in \mathbb{N} \) such that \(2^l \cdot L(\mathcal{G}_2) \subseteq T(\mathcal{G}_2) \). Let \(k, t \in \mathbb{Z}, k > 0 \) with \(k \cdot [\mathcal{G} : \mathcal{G}_2] = 1 + t \cdot 2^l \). Then \(\text{res} \circ \text{cor}(kX) = X + t \cdot 2^l X \equiv X \mod T(\mathcal{G}_2) \).

This leads to the following question: Does the restriction homomorphism induces an isomorphism

\[
\text{res} : L(\mathcal{G})/T(\mathcal{G}) \rightarrow L(\mathcal{G}_2)/T(\mathcal{G}_2)
\]

We know that the answer is affirmative if \(\mathcal{G} \) is an abelian group whose 2-Sylow subgroup is cyclic or elementary abelian. In these cases \(L(\mathcal{G})/T(\mathcal{G}) \) has exponent 2. If \(\mathcal{G} \) is the dihedral group of order 8, then the exponent is 2. In the case of the quaternion group \(Q_8 \) of order 8 we get \(\exp(L(Q_8)/T(Q_8)) = 4 \).

REFERENCES

Martin EPKENHANS
Fb Mathematik
D-33095 Paderborn
E-mail : martine@uni-paderborn.de