M. B. Levin

On the discrepancy of Markov-normal sequences

<http://www.numdam.org/item?id=JTNB_1996__8_2_413_0>
On the discrepancy of Markov-normal sequences

par M.B. LEVIN

RÉSUMÉ. On construit une suite normale de Markov dont la dis-
crépance est $O(N^{-1/2} \log^2 N)$, améliorant en cela un résultat don-
nant l’estimation $O(e^{-c(\log N)^{1/2}})$.

ABSTRACT. We construct a Markov normal sequence with a dis-
crepancy of $O(N^{-1/2} \log^2 N)$. The estimation of the discrepancy
was previously known to be $O(e^{-c(\log N)^{1/2}})$.

A number $\alpha \in (0, 1)$ is said to be normal to the base q, if in a q-ary
expansion of α,

$$\alpha = .d_1d_2\cdots = \sum_{i=1}^{\infty} d_i/q^i, \quad d_i \in \{0, 1, \ldots, q-1\}$$

each fixed finite block of digits of length k appears with an asymptotic
frequency of q^{-k} along the sequence $(d_i)_{i \geq 1}$. Normal numbers were intro-
duced by Borel (1909). Borel proved that almost every number (in the
sense of Lebesgue measure) is normal to the base q. But only in 1935 did
Champernowne give the explicit construction of such a number, namely

$$\theta = .123456789101112\ldots.$$

obtained by successively concatenating all the natural numbers.

Let $P = (p_{i,j})_{0 \leq i, j \leq q-1}$ be an irreducible Markov transition matrix,
$(\mu_i)_{0 \leq i \leq q-1}$ the stationary probability vector of P and μ its probability
measure.

A number α (sequence $(d_i)_{i \geq 1}$) is said to be Markov-normal if in a q-ary
expansion of α each fixed finite block of digits $b_0 b_1 \ldots b_k$ appears with an
asymptotic frequency of $p_{b_0} p_{b_1} \ldots p_{b_k-1}$.

According to the individual ergodic theorem μ-almost all sequences (num-
bbers) are normals.

Markov normal numbers were introduced by Postnikov and Piatecki-
Shapiro [1]. They also obtained, by generalizing Champernowne’s method,
the explicit construction of these numbers. Another Champernowne con-
struction of Markov normal numbers was obtained in Smorodinsky-Weiss

Manuscrit reçu le 7 février 1995.
[2] and in Bertrand-Mathis [3]. In [4] Chentsov gave the construction of Markov normal numbers using \textit{completely uniformly distributed sequences} (for the definition, see [5]) and the standard method of modelling Markov chains. In [6] Shahov proposed using a \textit{normal periodic systems of digits} (for the definition, see [5]) to construct Markov normal numbers. In [7] he obtained the estimate of discrepancy of the sequence \(\{\alpha q^n\}_{n=1}^N\) to be \(O(e^{-c(\log N)^{1/3}})\). In this article we construct a Markov normal sequence with the discrepancy of sequence \(\{\alpha q^n\}_{n=1}^N\) equal to \(O(N^{-1/2}\log^2 N)\).

Let \((x_n)_{n \geq 1}\) be a sequence of real numbers, \(\mu\) - measure on \([0,1)\). The quantity

\[
D(\mu, N) = \sup_{\gamma \in [0,1)} \left| \frac{1}{N} \# \{ n \in [1, N] \mid 0 \leq \{x_n\} < \gamma \} - \mu[0, \gamma] \right|
\]

is called the \textit{discrepancy} of \((x_n)_{n=1}^N\).

The sequence \(\{\{x_n\}\}_{n \geq 1}\) is said to be \(\mu\)-\textit{distributed} in \([0,1)\) if \(D(\mu, N) \to 0\).

Let the measure \(\mu\) be such that

\[
\mu((\gamma_n, \gamma_n + 1/2q^n)) = p_{e_1}p_{e_2}...p_{e_{n-1}e_n}, \quad \gamma_n = .c_1...c_n, \quad n = 1, 2, ...
\]

where \(c_k \in \{0, 1,...,q-1\}, \quad k = 1, 2,...\). It is known that if and only if \(\alpha\) is Markov normal number, the sequence \(\{\alpha q^n\}_{n=1}^\infty\) is \(\mu\)-distributed.

The discrepancy \(D(\mu, N)\) satisfies \(D(\mu, N) = O(N^{-1/2}(\log \log N)^{1/3})\) for almost all \(\alpha\).

The following facts are known from the theory of finite Markov chains [8,9]:

Let a Markov chain have \(d\) cyclic class \(C_1,...,C_d\). We enumerate the states \(e_1,...,e_q\) of the Markov chain in such a way, that if \(e_i \in C_m, \quad e_j \in C_n\) and \(i > j,\) then \(m \geq n\). Here matrix \(P\) has \(d^2\) blocks \((P_{i,j})_{0 \leq i,j \leq d-1}\), where \(P_{i,j} = 0\) except for \(P_{1,2}, P_{2,3}, P_{d-1,d}, P_{d,d}\). Matrix \(P^d\) has a block-diagonal structure. Let \(P_1,...,P_d\) be the block diagonal of matrix \(P^d\). There exists a number \(k_0\) such that all the elements of matrices \(P_i^{k_0}\) \((i = 1, ..., d)\) are greater than zero [9, ch. 4]. Let \(\theta\) be the minimal element of these matrices, and \(p_{ij}^{(k)}\) the \(ij\) element of matrix \(P^k\), \(k = 1, 2,\)

It is evident that

\[
\theta = \min_{i,j} p_{ij}^{(d)k_0},
\]

where we choose minimum values for \(i,j\) so that \(e_i, e_j\) are included in the same cyclic class.

Let \(f(j)\) be the number of cyclic class states \(e_j\) \((e_j \in C_{f(j)}, j = 0,...,q-1)\).
According to [9, ch.4] we obtain

\[|p_{ij}^{(kd+f(j)-f(i))} - dp_{j}| \leq (1 - 2\theta)^{-1+k/k_0}, \]

\[p_{ij}^{(kd+f(j)-f(i)+l)} = 0, \quad l = 1, 2, \ldots, d - 1, \quad k = 1, 2, \ldots. \]

Let

\[p = \max_{0 \leq i, j \leq q-1} (p_{ij}, p_{ij}), \quad A_n = [p^{-n}], \quad n = 1, 2, \ldots. \]

We have, from the irreducibility of matrix \(P \), that

\[p < 1 \quad \text{and} \quad A_n \to \infty. \]

We use matrices \(P_n = (p_{ij}(n))_{0 \leq i, j \leq q-1} \) with the rational elements

\[p_{ij}(n) = v_{ij}(n)/A_n, \]

and we choose \(v_{ij}(n) \) as follows:

Let \(i \) be fixed and \(p_{ij} \) be greater than zero. Then we denote

\[v_{ij}(n) = [A_n p_{ij}], \quad \text{if} \quad j \neq j_0, \quad \text{and} \quad v_{ij}(n) = A_n - \sum_{j \neq j_0} v_{ij}(n). \]

It is evident that

\[\sum_{j=0}^{q-1} p_{ij}(n) = 1, \quad |v_{ij}(n) - A_n p_{ij}| \leq q, \quad i, j = 0, \ldots, q - 1, \quad n = 1, 2, \ldots. \]

If \(k_1 \) is sufficiently large, then using (3) and (6)-(8), we obtain

\[\min_{ij} p_{ij}^{(dko)}(n) \geq \theta/2, \quad n > k_1, \]

where we choose minimum values for \(i, j \) so that \(e_i, e_j \) belong to the same cyclic class.

It is evident that \(P_n \) \((n > k_1)\) is an irreducible matrix with a \(d \)-cyclic class.

Applying (3), (4) and (9) we obtain

\[|p_{ij}^{(kd+f(j)-f(i))}(n) - dp_{j}(n)| \leq (1 - \theta)^{-1+k/k_0}, \quad k = 1, 2, \ldots. \]

\[p_{ij}^{(kd+f(j)-f(i)+l)}(n) = 0, \quad l = 1, 2, \ldots, d - 1, \quad i, j = 0, \ldots, q - 1, \]

where \(n > k_1 \), and \((p_j(n))_{j<q} \) is the stationary probability vector of \(P_n \).

According to [7, 10] there exist integers \(v_0(n), \ldots, v_{q-1}(n), L_n > 0 \), such that

\[p_j(n) = v_j(n)/L_n \quad v_0(n) + \ldots + v_{q-1}(n) = L_n \]
If \(k_1\) is sufficiently large, then applying (5)-(8) and (11), we obtain
\[
\max_{i,j} (p_i(n), p_{ij}(n))) \leq (p+1)/2 < 1, \quad n > k_1,
\]
\[
\min_{0 \leq i \leq q-1} p_i(n) \geq \bar{p} = 1/2 \min_{0 \leq i \leq q-1} p_i > 0.
\]

Let the measure \(\mu_n\) on \([0,1)\) be such that
\[
\mu_n([\gamma_r, \gamma_r + 1/q^r]) = p_{c_1}(n)p_{c_1c_2}(n)\ldots p_{c_{r-1}c_r}(n),
\]
\[
\gamma_r = c_1\ldots c_r, \quad n, r = 1, 2, \ldots
\]
where \(c_r \in \{0,1,\ldots,q-1\}, \quad r = 1, 2, \ldots\).

Lemma 1. Let \(\gamma = c_1\ldots c_n, \ldots\). Then
\[
\mu[0, \gamma] = \mu_n[0, \gamma_n] + O(np^n),
\]
\[
\mu[0, \gamma] = \mu_n[0, \gamma_n + 1/q^n] + O(np^n),
\]
where the \(O\)-constant depends only on \(P\).

Proof. It follows from (2), (5) and (6) that
\[
\mu[0, \gamma_n] + \sum_{r \geq n+1} \sum_{k=0}^{c_r-1} p_{c_1}p_{c_1c_2}\ldots p_{c_{r-1}b} = \mu[0, \gamma_n] + O(p^n).
\]

We apply (2), (14) and obtain
\[
\mu[0, \gamma_n] = \mu_n[0, \gamma_n] + \sum_{r=1}^{n} \sum_{k=0}^{c_r-1} \sigma_r(b),
\]
\[
\sigma_r(b) = p_{c_1}p_{c_1c_2}\ldots p_{c_{r-1}b} - p_{c_1}(n)p_{c_1c_2}(n)\ldots p_{c_{r-1}b}(n).
\]
If \(p_{c_1}p_{c_1c_2}\ldots p_{c_{r-1}b} = 0\), then \(p_{c_1c_j} = 0\) and according to (5), (7), (8), (11) we have \(p_{c_1c_j}(n) = O(p^n)\) and
\[
\sigma_r(b) = O(p^n).
\]

Let \(p_{c_1}p_{c_1c_2}\ldots p_{c_{r-1}b} \neq 0\). Then
\[
\sigma_r(b) = p_{c_1}p_{c_1c_2}\ldots p_{c_{r-1}b} \Delta_r,
\]
where
\[
\Delta_r = 1 - (1 + \frac{a_{c_1}(n) - L_np_{c_1}}{L_np_{c_1}}) \prod_{k=1}^{r-1} (1 + \frac{a_{c_kv_k}(n) - A_np_{c_kv_k}}{A_np_{c_kv_k}}),
\]
and \(v_k = c_{k+1} \) or \(b \).

On the basis of (5), (7), (8) and (11) we deduce that

\[
|\Delta_r| \leq \left(1 + \frac{B}{p \cdot A_n}\right)(1 + \frac{q}{p' \cdot A_n})^{r-1} - 1 \leq (1 + \varepsilon p^n)^r - 1, \quad p' = \min_{i,j \neq 0} p_{ij},
\]

where \(|\varepsilon| < 2qB/p'\).

It is easy to compute that

\[
\Delta_r = O(rp^n), \quad r \leq n.
\]

Hence and from (17) - (20) we obtain

\[
\mu(0, \gamma) - \mu_n[0, \gamma_n] = O(np^n + np^n \sum_{r=1}^{n} \sum_{k=0}^{c_r-1} p_{c_1c_2 \cdots p_{c_r-1}b}) = O(np^n)
\]

and formula (15) is proved. Statement (16) is proved analogously.

We obtain the Markov normal number \(\alpha = .d_1d_2 \ldots \) by concatenating blocks \(\alpha_n = (a_1, \ldots, a_{A_2n}) \), where \(a_i \in \{0, 1, \ldots, q - 1\}, \ i = 1, 2, \ldots \)

(21)

\[
\alpha = .\alpha_1' \ldots \alpha_n', \ldots
\]

We choose the numbers \(a_i \) as follows:

Let

(22)

\[
\Omega_n = \{\omega_n = (b_0, \ldots, b_{A_2n+n}) \mid b_0 \in \{0, \ldots, L_n - 1\}, \ b_1, b_2, \ldots \in \{0, \ldots, A_n - 1\}\}
\]

\[
S_0 = [0, v_0(n)), \ S_j = [v_0(n) + \ldots + v_{j-1}(n), v_0(n) + \ldots + v_j(n)),
\]

\[
S_{i,0} = [0, v_{i,0}(n)), \quad S_{i,j} = [v_{i,0}(n) + \ldots + v_{i,j-1}(n), v_{i,0}(n) + \ldots + v_{i,j}(n))
\]

(\(i = 0, \ldots, q - 1, \ j = 1, \ldots, q - 1\)).

We set \(a_0 = i, \) if \(b_0 \in S_i, \ i = 0, \ldots, q - 1. \) If we choose the numbers \(a_0, \ldots, a_{k-1}, \) then we set

(23)

\[
a_k = i, \ \text{if} \ b_k \in S_{a_{k-1},i}, \ i = 0, \ldots, q - 1.
\]

Let

(24)

\[
\alpha_n = \alpha_n(\omega_n) = .a_1, \ldots, a_{A_2n+n}, \quad n = 1, 2, \ldots
\]

(25)

\[
R(\beta, \gamma)(\mu_n, \alpha, M) = \#\{n \in [1, M] \mid \beta \leq \{\alpha q^n\} < \gamma\} - M \mu_n[\beta, \gamma],
\]

(26)

\[
E_n(\omega_n) = \max_{1 \leq M \leq A_2n} \max_{\gamma_n} |R(0, \gamma_n)(\mu_n, \alpha_n(\omega_n), M)|,
\]
We choose ω_n (and consequently $\alpha_n(\omega_n)$) such that

$$E_n = \min_{\omega_n \in \Omega_n} E_n(\omega_n).$$

Proof. (To follow later.)

Let

$$n_1 = 0, \ldots, n_{k+1} = n_k + A_{2k}, \quad k = 1, 2, \ldots.$$

Every natural N can be represented uniquely in the following form with integers k

$$N = n_k + M_1, \quad 0 \leq M_1 < A_{2k}, \quad k = 1, 2, \ldots.$$

Let

$$T_\gamma(\alpha, Q, M) = \# \{ n \in (Q, Q + M) \mid \{\alpha q^n\} < \gamma \},$$

$$R_\gamma(\mu, \alpha, Q, M) = T_\gamma(\alpha, Q, M) - M \mu[0, \gamma).$$

For $Q = 0$ we use the symbols $T_\gamma(\alpha, M)$ and $R_\gamma(\mu, \alpha, M)$.

Theorem 1. Let the number α be defined by (21), (23), (24) and (27). Then α is Markov-normal and the following estimate is true:

$$D(\mu, N) = O(N^{-1/2} \log^2 N),$$

where the O-constant depends only on P.

Proof. Using (29), (30) and (31), we obtain

$$R_\gamma(\mu, \alpha, N) = \sum_{r=1}^{k-1} R_\gamma(\mu, \alpha, n_r, A_{2r}) + R_\gamma(\mu, \alpha, n_k, M_1).$$

According to (21), (24) and (25) we have

$$R_\gamma(\mu, \alpha, n_r, M) = R_\gamma(\mu, \alpha_r, M), \quad M < A_{2r} - 2r.$$

It follows from (31) that

$$R_\gamma(\mu, \alpha_r, M) = T_\gamma(\alpha_r, M) - M \mu[0, \gamma),$$

and

$$T_{\gamma_r}(\alpha_r, M) \leq T_\gamma(\alpha_r, M) \leq T_{\gamma_{r+1/q}}(\alpha_r, M).$$
It is evident that

\[|R_\gamma(\mu, \alpha_r, M)| \leq |T_{\gamma_r}(\alpha_r, M) - M\mu[0, \gamma)| + |T_{\gamma_r+1/q^*}(\alpha_r, M) - M\mu[0, \gamma)|. \]

We apply (31) and obtain

\[|R_\gamma(\mu, \alpha_r, M)| \leq |R_{\gamma_r}(\mu, \alpha_r, M)| + |R_{\gamma_r+1/q^*}(\mu, \alpha_r, M)| + M(\mu[0, \gamma) - \mu[0, \gamma_r)| + |\mu[0, \gamma) - \mu[0, \gamma_r + 1/q^*)|. \]

On the basis of (26)-(28), Lemma 1 and Lemma 2 we deduce that

\[R_\gamma(\mu, \alpha_r, M) = O(p^{-r}r^2). \]

According to (34) we have for \(M < A_{2r - r} \)

(35) \[R_\gamma(\mu, \alpha, n_r, M) = O(p^{-r}r^2). \]

It follows from (31) that

\[R_\gamma(\mu, \alpha_r, M) = R_\gamma(\mu, \alpha_r, M - 2r) + O(r), \]

It is evident from this that statement (35) is valid both for \(M < A_{2r - 2r} \) as well as for \(M \in [A_{2r - 2r}, A_{2r}] \).

Substituting (35) into (33) and bearing in mind (30) we deduce

\[R_\gamma(\mu, \alpha, N) = \sum_{r=1}^{k-1} O(p^{-r}r^2) + O(p^{-k}k^2) = O(p^{-k}k^2). \]

Using (29), (30) and (5) we obtain

\[R_\gamma(\mu, \alpha, N) = O(N^{1/2} \log^2 N). \]

Hence and from (1), (31) the statement of the theorem follows.

We denote

(36) \[\delta(a) = \begin{cases} 1, & \text{if } a = 0; \\ 0, & \text{otherwise}. \end{cases} \]

It is easy to see that

(37) \[\delta(a) = \frac{1}{N} \sum_{m=1}^{N} e^{2\pi i am}, \quad 0 \leq a \leq N - 1. \]

\textbf{Lemma 3.} \textit{Let} \(1 \leq M \leq A_{2n} \) \textit{and}

\[G_M = \sum_{z=1}^{M} g_z. \]
Then

\begin{equation}
|G_M| \leq \sum_{m=0}^{A_{2n}-1} \frac{1}{m+1} \sum_{x=1}^{A_{2n}} g_x e^{2\pi i \frac{m(x-y)}{A_{2n}}}.
\end{equation}

Proof. According to (36) we have

\[G_M = \sum_{y=1}^{M} \sum_{z=1}^{A_{2n}} g_z \delta(x - y).\]

Using (37), we obtain

\begin{equation}
|G_M| = \left| \sum_{m=0}^{A_{2n}-1} \frac{1}{A_{2n}} \sum_{y=1}^{M} \sum_{z=1}^{A_{2n}} g_z e^{2\pi i \frac{m(x-y)}{A_{2n}}} \right| \leq
\end{equation}

\[\leq \sum_{m=0}^{A_{2n}-1} \frac{1}{A_{2n}} \left| \sum_{y=1}^{M} \sum_{z=1}^{A_{2n}} e^{2\pi i \frac{m(y-z)}{A_{2n}}} \right| \left| \sum_{x=1}^{A_{2n}} g_x e^{2\pi i \frac{mx}{A_{2n}}} \right|.
\]

Let $0 < N_2 - N_1 < A_{2n}$. It is known [5, p. 1] that

\begin{equation}
\frac{1}{A_{2n}} \left| \sum_{y=N_1}^{N_2} e^{2\pi i \frac{m(y-z)}{A_{2n}}} \right| \leq \min(1, \frac{1}{A_{2n}|\sin \frac{xm}{A_{2n}}|}) \leq \frac{1}{m+1}.
\end{equation}

From (39) and (40) we give the assertion of the lemma. ■

Lemma 4. Let $0 \leq u_1 \leq u_2 < A_{2n}$, $m \geq 0$ $i, j = 0, ..., q - 1$, $n > k_1$. Then

\[S = \sum_{x=u_1}^{u_2} e^{2\pi i \frac{mx}{A_{2n}}} (p_{ij}^{(x)}(n)/p_j(n) - 1) = O(1),
\]

where the constant in symbol O depends only on P.

Proof. Let $N_1 = [u_1/d]$, $N_2 = [u_2/d]$. We change the variable $x = dy + z$ and obtain according to (13)

\[S = \frac{2d}{p} + \sum_{y=N_1}^{N_2} \sum_{z=1}^{d} e^{2\pi i \frac{m(y+z)}{A_{2n}}} (p_{ij}^{(dy+z)}(n)/p_j(n) - 1), \text{ where } |\epsilon| < 1
\]

Let

\[\sigma_y = \sum_{z=1}^{d} e^{2\pi i \frac{mz}{A_{2n}}} (p_{ij}^{(dy+z)}(n)/p_j(n) - 1).
\]

It follows that

\begin{equation}
S = \frac{2d}{p} + \sum_{y=N_1}^{N_2} e^{2\pi i \frac{mx+y}{A_{2n}}} \sigma_y.
\end{equation}
Applying (13), (10), we obtain

\[\sigma_y = d e^{2\pi i \frac{m_1}{A_{2n}}} + \epsilon_1 \frac{d}{p_j(n)} (1 - \theta)^{-1+y/k_0} - \sum_{z=1}^{d} e^{2\pi i \frac{m_1}{A_{2n}}}, \]

where \(|\epsilon_1| < 1, \ z_1 = f(j) - f(i)\).

Substituting this formula into (41), we obtain according to (13), that

\[(42) \quad S = S_1 S_2 + \epsilon_1 \sum_{y=N_1}^{N_2} \frac{d}{p} (1 - \theta)^{-1+y/k_0}, \quad |\epsilon_1| \leq 1, \]

where

\[(43) \quad S_1 = \sum_{y=N_1}^{N_2} e^{2\pi i \frac{m_1}{A_{2n}}}, \quad S_2 = \sum_{z=1}^{d} (e^{2\pi i \frac{m_1}{A_{2n}}} - e^{2\pi i \frac{m_1}{A_{2n}}}). \]

It is known that

\[(44) \quad |e^{2\pi i \frac{m_1(z_1-z)}{A_{2n}}} - 1| = 2|\sin \pi m(z_1-z)/A_{2n}| \leq 2\pi m d/A_{2n}. \]

Using (40) we get

\[S_1 \leq A_{2n}/(md + 1). \]

Hence and from (42-44) the assertion of the lemma follows. \(\square \)

We consider further that \(a_i, \ i = 1, 2, ... \) is the sign of the number \(\alpha_n(\omega_n) \).

It follows from (25), that

\[(45) \quad R_{[0,\gamma_\nu]}(\mu_n, \alpha_n, M) = \sum_{r=1}^{n} \sum_{b=0}^{c_r-1} R_{[\gamma_{r-1}+b/q^r, \gamma_{r-1}+(b+1)/q^r]}(\mu_n, \alpha_n, M), \]

and

\[R_{[\gamma_{r-1}+b/q^r, \gamma_{r-1}+(b+1)/q^r]}(\mu_n, \alpha_n, M) = \]

\[\sum_{z=1}^{M} \delta(a_{z+1} - c_1) ... \delta(a_{z+r} - b) - M \mu_n[\gamma_{r-1} + b/q^r, \gamma_{r-1} + (b+1)/q^r]. \]

Hence and from (45) we get

\[(46) \quad R_{[0,\gamma_\nu]}(\mu_n, \alpha_n, M) = \]

\[= \sum_{r=1}^{n} \sum_{b=0}^{c_r-1} M \sum_{z=1}^{M} (\delta(a_{z+1} - c_1) ... \delta(a_{z+r} - b) - \mu_n[\gamma_{r-1} + b/q^r, \gamma_{r-1} + (b+1)/q^r]). \]
LEMMA 5. Let \(n > k_1 \),

\[
B(r, c) = \sum_{z, y=1}^{A_2n} e^{2\pi iz\frac{r}{A_2n}} (\mu_n^2[\gamma_r, \gamma_r + \frac{1}{q^r}) + \sigma_1(x, y) - \mu_n[\gamma_r, \gamma_r + \frac{1}{q^r}](\sigma_2(x) + \sigma_2(y))),
\]

where

\[
\sigma_1(x, y) = \frac{1}{|\Omega_n|} \sum_{\omega_n \in \Omega_n} \delta(a_{x+1} - c_1)\delta(a_{x+r} - c_r)\delta(a_{y+1} - c_1)\delta(a_{y+r} - c_r),
\]

\[
\sigma_2(x) = \frac{1}{|\Omega_n|} \sum_{\omega_n \in \Omega_n} \delta(a_{x+1} - c_1)\delta(a_{x+r} - c_r).
\]

Then

\[
E_n \leq \frac{A_2n-1}{m+1} (\frac{Cn}{m})^{1/2} \left(\sum_{r=1}^{c_r-1} \sum_{m=0}^{e_r-1} \sum_{c_r=0}^{q-1} B(r, c) \right)^{1/2}.
\]

Proof. It follows from (46) and Lemma 3 that

\[
|R_{(0, \gamma_n)}(\mu_n, \alpha_n, M)| \leq \frac{1}{m+1} \left(\sum_{r=1}^{c_r-1} \sum_{m=0}^{e_r-1} \sum_{c_r=0}^{q-1} e^{2\pi iz\frac{r}{A_2n}} (\delta(a_{x+1} - c_1)\delta(a_{x+r} - b) - \mu_n[\gamma_{r-1} + b/q^r, \gamma_{r-1} + (b+1)/q^r]) \right).
\]

Changing the order of summation and applying the Cauchy inequality

\[
\left| \frac{1}{N} \sum_{n=1}^{N} g_n \right| \leq \left(\frac{1}{N} \sum_{n=1}^{N} |g_n|^2 \right)^{1/2},
\]

we obtain that

\[
|R_{(0, \gamma_n)}(\mu_n, \alpha_n, M)| \leq \frac{A_2n-1}{m+1} (\frac{Cn}{m})^{1/2} \left(\sum_{r=1}^{c_r-1} \sum_{m=0}^{e_r-1} \sum_{c_r=0}^{q-1} e^{2\pi iz\frac{r}{A_2n}} (\delta(a_{x+1} - c_1)\delta(a_{x+r} - b) - \\
- \mu_n[\gamma_{r-1} + b/q^r, \gamma_{r-1} + (b+1)/q^r]) \right)^{1/2}.
\]

We change the variable \(b \) to \(c_i \) and assume, on the right-hand side, the summation on \(c_i, i = 1, ..., r - 1 \).

It is evident that

\[
|R_{(0, \gamma_n)}(\mu_n, \alpha_n, M)| \leq \frac{A_2n-1}{m+1} (\frac{Cn}{m})^{1/2} \left(\sum_{r=1}^{c_r-1} \sum_{m=0}^{e_r-1} \sum_{c_r=0}^{q-1} \sum_{c_r=0}^{q-1} \sum_{c_r=0}^{q-1} \right).
\]
We denote by $S(cvn)$ the right-hand side of formula (52).
It is evident that $S(wn)$ does not depend on M and γ_n.
Applying (26), we obtain
\[E_n(\omega_n) \leq S(\omega_n) \]
and
\[E_n \leq \frac{1}{|\Omega_n|} \sum_{\omega_n \in \Omega_n} E_n(\omega_n) \leq \frac{1}{|\Omega_n|} \sum_{\omega_n \in \Omega_n} S(\omega_n). \]
Changing the order of summation and using (51), we obtain
\[E_n \leq \sum_{m=0}^{A_{2n}^{-1}} \frac{(q_n)^{1/2}}{m + 1} \left(\sum_{r=1}^{n} \sum_{c_1=0}^{q-1} \sum_{c_r=0}^{q-1} \frac{1}{|\Omega_n|} \sum_{\omega_n \in \Omega_n} \sum_{x=1}^{A_{2n}^{-1}} e^{2\pi i \frac{mx}{A_{2n}}} (\delta(a_{x+1} - c_1) \ldots \delta(a_{x+r} - c_r) - \mu_n[\gamma_r, \gamma_r + 1/q^r]) \right)^{1/2}. \]
Hence and from (47)-(49) we deduce formula (50).

Lemma 6. Let $n > k_1$. Then
\[\sigma_2(x) = \mu_n[\gamma_r, \gamma_r + 1/q^r]. \]

Proof. Applying (49) and (22), we get
\[\sigma_2(x) = \frac{1}{L_n A_{2n}^{x+r}} \sum_{b_0=0}^{L_n-1} \sum_{b_1=0}^{A_n-1} \ldots \sum_{b_{x+r}=0}^{A_n-1} \delta(a_{x+1} - c_1) \ldots \delta(a_{x+r} - c_r). \]
According (23), we obtain
\[a_{x+i} = c_i \quad \text{if and only if} \quad b_{x+i} \in S_{c_{i-1} c_i}, i = 2, 3, \ldots. \]
It follows that
\[\sigma_2(x) = \frac{1}{L_n A_{2n}^{x+r}} \sum_{b_0=0}^{L_n-1} \sum_{b_1=0}^{A_n-1} \ldots \sum_{b_{x+1}=0}^{A_n-1} \delta(a_{x+1} - c_1) \sum_{b_{x+2} \in S_{c_1 c_2}} \ldots \sum_{b_{x+r} \in S_{c_{r-1} c_r}} 1 = \]
\[= \frac{1}{L_n A_{2n}^{x+r}} \sum_{b_0=0}^{L_n-1} \sum_{b_1=0}^{A_n-1} \ldots \sum_{b_{x+1}=0}^{A_n-1} \delta(a_{x+1} - c_1) u_{c_1 c_2}(n) \ldots u_{c_{r-1} c_r}(n). \]
Using (7) we get
\[\sigma(x) = \sigma p_{c_1 c_2}(n) \ldots p_{c_{r-1} c_r}(n), \]
where

\begin{equation}
\sigma = \frac{1}{L_n A_n^{x+1}} \sum_{b_0=0}^{L_n-1} \sum_{b_1=0}^{A_n-1} \cdots \sum_{b_{z+1}=0}^{A_n-1} \delta(a_{z+1} - c_1).
\end{equation}

It is obvious that

\begin{equation}
\sum_{d_0, \ldots, d_z=0}^{q-1} \prod_{i=0}^{z} \delta(a_i - d_i) = 1.
\end{equation}

Hence and from (55) we obtain, changing the order of summation

\begin{equation}
\sigma = \sum_{d_0, \ldots, d_z=0}^{q-1} \frac{1}{L_n A_n^{x+1}} \sum_{b_0=0}^{L_n-1} \sum_{b_1=0}^{A_n-1} \cdots \sum_{b_{z+1}=0}^{A_n-1} \prod_{i=0}^{z} \delta(a_i - d_i) \delta(a_{z+1} - c_1).
\end{equation}

According to (53), (36) and (22), we have

\begin{equation}
\sigma = \sum_{d_0, \ldots, d_z=0}^{q-1} \frac{1}{L_n A_n^{x+1}} \sum_{b_0 \in S_{d_0}} \sum_{b_1 \in S_{d_0 d_1}} \cdots \sum_{b_{z+1} \in S_{d_z c_1}} 1 =
\end{equation}

\begin{equation}
= \sum_{d_0, \ldots, d_z=0}^{q-1} \frac{1}{L_n A_n^{x+1}} v_{d_0}(n) v_{d_0 d_1}(n) v_{d_z c_1}(n).
\end{equation}

Applying (7) and (11), we obtain

\begin{equation}
\sigma = p_{c_1}(n).
\end{equation}

On the basis of (54) and (14) the lemma is proved. \hfill \blacksquare

Lemma 7. Let \(n > k_1, \ |y - x| > r. \) Then

\begin{equation}
\sigma_1(x, y) = \mu_n^2 [\gamma_r, \gamma_r + 1/q^r] p_{c_1 c_1}(n) / p_{c_1}(n).
\end{equation}

Proof. Let \(y > x. \)

Applying (48) and (22), we obtain \(\sigma_1(x, y) =
\end{equation}

\begin{equation}
= \frac{1}{L_n A_n^{x+r}} \sum_{b_0=0}^{L_n-1} \sum_{b_1=0}^{A_n-1} \cdots \sum_{b_{x+r+1}=0}^{A_n-1} \delta(a_{x+1} - c_1) \cdots \delta(a_{x+r} - c_r) \delta(a_{y+1} - c_1) \cdots \delta(a_{y+r} - c_r).
\end{equation}

As in the proof of Lemma 6, we get

\begin{equation}
\sigma_1(x, y) = p_{c_1}(n) (p_{c_1 c_1}(n) \cdots p_{c_r c_r}(n))^2 \sigma,
\end{equation}

where

\begin{equation}
\sigma = \frac{1}{A_n^{x+r}} \sum_{b_{x+r+1}=0}^{A_n-1} \cdots \sum_{b_{y+1}=0}^{A_n-1} \delta(a_{x+r} - c_r) \delta(a_{y+1} - c_1).
\end{equation}
As in (56), we have
\[\sum_{d_1, \ldots, d_{y-z-r}=0}^{q-1} \prod_{i=1}^{y-z-r} \delta(a_{x+r+i}-d_i) = 1. \]
Hence and from (59), changing the order of summation, we obtain
\[\sigma = \sum_{d_1, \ldots, d_{y-z-r}=0}^{q-1} \frac{1}{A_n^{y-z-r}} \sum_{b_{x+r+1}+1=0}^{A_n-1} \cdots \sum_{b_{y+1}+1=0}^{A_n-1} \delta(a_{x+r} - c_r) \times \]
\[\times \prod_{i=1}^{y-z-r} \delta(a_{x+r+i} - d_i) \delta(a_{y+1} - c_1). \]
Using (53), (36) and (22), we get
\[\sigma = \sum_{d_1, \ldots, d_{y-z-r}=0}^{q-1} \frac{1}{A_n^{y-z-r}} \sum_{b_{x+r+1+1} \in S_{c_r, d_1}} \cdots \sum_{b_{y+1+1} \in S_{d_{y-z-r}, c_1}} 1. \]
Applying (7) and (11), we obtain
\[\sigma = \sum_{d_1, \ldots, d_{y-z-r}=0}^{q-1} p_{c, d_1}(n) p_{d_1, d_2}(n) \cdots p_{d_{y-z-r}, c_1}(n) = p_{c, c_1}^{(y-z-r)}(n). \]
It follows from (58), that
\[\sigma_1(x, y) = (p_{c_1}(n)p_{c_1, c_2}(n) \cdots p_{c_{r-1}, c_r}(n))^2 p_{c, c_1}^{(y-z-r)}(n)/p_{c_1}(n). \]
Similarly for \(x < y \). According to (14) the lemma is proved. ■

Lemma 8. Let \(n > k_1 \), \(|y - x| \leq r \). Then
\[\sigma_1(x, y) \leq \mu_n[\gamma_r, \gamma_r + 1/q^r](\frac{1+p}{2})|y-x|-1. \]

Proof. Let \(y \geq x \).
As in the proof of Lemma 6 and Lemma 7, we get
\[\sigma_1(x, y) \leq p_{c_1}(n)p_{c_1, c_2}(n) \cdots p_{c_{y-x-1}, c_{y-x}}(n)p_{c_{y-x}, c_1}(n)p_{c_1, c_2}(n) \cdots p_{c_{r-1}, c_r}(n). \]
It follows from (12), that
\[\sigma_1(x, y) \leq p_{c_1}(n)p_{c_1, c_2}(n) \cdots p_{c_{r-1}, c_r}(n)(\frac{1+p}{2})^{y-x-1}. \]
Similarly for \(x < y \). According to (14) the lemma is proved. ■

Lemma 9. Let \(n > k_1 \). Then
\[B(r, c) = O(A_{2n} \mu_n[\gamma_r, \gamma_r + 1/q^r]). \]

\[(60) \]
Proof. Applying (47) and Lemma 6, we obtain
\[B(r, c) = \sum_{x,y=1}^{A_{2n}} \sigma(x,y), \]
where
\[\sigma(x,y) = e^{2\pi i \frac{m(x-y)}{A_{2n}}} (\sigma_1(x,y) - \mu_n^2(\gamma_r, \gamma_r + \frac{1}{q^r})). \]
Let
\[B_1 = \sum_{1 \leq x, y \leq A_{2n}, |y-x| \leq r} \sigma(x,y), \quad B_2 = \sum_{1 \leq x, y \leq A_{2n}, y-x \geq r} \sigma(x,y), \quad B_3 = \sum_{1 \leq x, y \leq A_{2n}, z-y \geq r} \sigma(x,y). \]
According to Lemma 8, (12) and (14) we obtain
\[|B_1| \leq \mu_n(\gamma_r, \gamma_r + \frac{1}{q^r}) \sum_{1 \leq x, y \leq A_{2n}, |y-x| \leq r} \frac{1}{q^r} = O(A_{2n} \mu_n(\gamma_r, \gamma_r + \frac{1}{q^r})). \]

It follows from Lemma 7 that
\[B_2 = \mu_n^2(\gamma_r, \gamma_r + 1/q^r) \sum_{x=1}^{A_{2n}} \sum_{y=x+r}^{A_{2n}} e^{2\pi i \frac{m(x-y)}{A_{2n}}} (p_{c, c_1}(y-x-r)(n)/p_{c_1}(n) - 1). \]
Changing the variable \(y \) to \(y_1 = y-x-r \) and applying Lemma 3, we obtain
\[B_2 = O(A_{2n} \mu_n^2(\gamma_r, \gamma_r + 1/q^r)). \]
Similarly estimate is valid for \(B_3 \).
Hence and from (61)-(62) we obtain the assertion of the lemma. \(\square \)

Proof of Lemma 2. Substituting (60) into (50) and bearing in mind (5), we deduce
\[E_n = O\left(\sum_{m=0}^{A_{2n}-1} \frac{(nq)^{1/2}}{m+1} \left(\sum_{r=1}^{n} \sum_{c_1=0}^{q-1} \cdots \sum_{c_r=0}^{q-1} A_{2n} \mu_n(\gamma_r, \gamma_r + \frac{1}{q^r}) \right)^{1/2} \right) = O(\sqrt{A_{2n}n} \sum_{m=0}^{A_{2n}-1} \frac{1}{m+1}) = O(p^{-n}n^2). \]
Lemma 2 is proved. \(\square \)

Remark. By a similar method and the method in [12] a Markov normal vector for the multidimensional case can be be constructed. By the method
in [12] one can reduce the logarithmic multiplier in (32) to \(O(\log N^{3/2})\). To reduce the logarithmic multiplier further see [15].

Problem. According to [12-14] the Borel and Bernoulli normal numbers exist with discrepancy \(O(N^{-2/3+\epsilon})\). It would be interesting to know whether Markov normal numbers exist with discrepancy \(O(N^{-\epsilon})\) where \(\epsilon > 1/2\).

Acknowledgements. I am very grateful to Professor David Gilat and to Professor Meir Smorodinsky for their hospitality and support.

REFERENCES

M.B. Levin
University of Tel-aviv
e-mail: mlevin@math.tau.ac.il