ANTANAS LAURINČIKAS

Limit theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-function

<http://www.numdam.org/item?id=JTNB_1996__8_2_315_0>

© Université Bordeaux 1, 1996, tous droits réservés.

Limit Theorem in the space of continuous functions for the Dirichlet polynomial related with the Riemann zeta-function

par Antanas Laurinčikas

Résumé. Dans cet article on prouve un théorème limite dans l’espace des fonctions continues pour le polynôme de Dirichlet

$$\sum_{m \leq T} \frac{d_{\kappa T}(m)}{m^{\sigma T+iT}},$$

où $d_{\kappa T}(m)$ sont les coefficients du développement en série de Dirichlet de la fonction $\zeta^{\kappa T}(s)$ dans le demi-plan $\sigma > 1$, $\kappa T = (2^{-1} \log l_T)^{-1/2}$, $\sigma_T = \frac{1}{2} + \frac{\log^2 l_T}{l_T}$, $l_T > 0$, $l_T \leq \log T$ et $l_T \rightarrow \infty$ lorsque $T \rightarrow \infty$.

Abstract. A limit theorem in the space of continuous functions for the Dirichlet polynomial

$$\sum_{m \leq T} \frac{d_{\kappa T}(m)}{m^{\sigma T+iT}},$$

where $d_{\kappa T}(m)$ denote the coefficients of the Dirichlet series expansion of the function $\zeta^{\kappa T}(s)$ in the half-plane $\sigma > 1, \kappa_T = (2^{-1} \ln l_T)^{-1/2}$, $\sigma_T = \frac{1}{2} + \frac{\ln^2 l_T}{l_T}$ and $l_T > 0$, $l_T \leq \ln T$ and $l_T \rightarrow \infty$ as $T \rightarrow \infty$, is proved.

Let s be a complex variable and $\zeta(s)$, as usual, denote the Riemann zeta-function. To study the distribution of values of the Riemann zeta-function the probabilistic methods can be used, and the obtained results usually are presented as the limit theorems of probability theory. The first theorems of this type were obtained in [1],[2], and they were proved in [3]-[5] using other methods. In modern terminology we can formulate it as follows. Let

*This paper has been written during the author’s stay at the University Bordeaux I in the framework of the program "S&T Cooperation with Central and Eastern European Countries".
Let C be the complex space and let $B(S)$ denote the class of Borel sets of the space S. Let $\operatorname{meas}\{A\}$ be the Lebesgue measure of the set A and

$$\nu_T^t(...)=\frac{1}{T}\operatorname{meas}\{t \in [0,T],\ldots\}$$

where in place of dots we write the conditions which are satisfied by t. We define the probability measure

$$P_T(A)=\nu_T^t(\zeta(\sigma+it) \in A), \quad A \in B(C)$$

Theorem A. For $\sigma > \frac{1}{2}$ there exists a probability measure P on $(C,B(C))$ such that P_T converges weakly to P as $T \to \infty$.

More general results were obtained in [6]. Let M denote the space of functions meromorphic in the half-plane $\sigma > \frac{1}{2}$, equipped with the topology of uniform convergence on compacta. Define the probability measure

$$Q_T(A)=\nu_T^t(\zeta(s+it) \in A), \quad A \in B(M).$$

Theorem B. There exists a probability measure Q on $(M,B(M))$ such that Q_T converges weakly to Q as $T \to \infty$.

Note that the explicit form of the measure Q can be indicated, and, obviously, Theorem A is a corollary of Theorem B.

The situation is more complicated when σ depends on T and tends to $\frac{1}{2}$ as $T \to \infty$, or $\sigma = \frac{1}{2}$. It turns out that in this case some power norming is necessary. Let $l_T > 0$ and let l_T tend to infinity as $T \to \infty$, or $l_T = \infty$. We take

$$\tilde{\sigma}_T = \frac{1}{2} + \frac{1}{l_T}, \quad \kappa = \kappa_T = \begin{cases} (2^{-1}\log l_T)^{-1/2}, & l_T \leq \log T, \\ (2^{-1}\log \log T)^{-1/2}, & l_T \geq \log T. \end{cases}$$

The case $l_T = \infty$ corresponds to $\tilde{\sigma}_T = \frac{1}{2}$.

The function

$$w(\tau, k) \overset{\text{def}}{=} \int_{C\setminus\{0\}} |s|^{i\tau} e^{ik\arg s} \, dP \quad \tau \in \mathbb{R}, k \in \mathbb{Z},$$

is called the characteristic transform of the probability measure P on the space $(C,B(C))$ [7]. The lognormal probability measure on $(C,B(C))$ is defined by the characteristic transform

$$w(\tau, k) = \exp \left\{ -\frac{\tau^2}{2} - \frac{k^2}{2} \right\}.$$
THEOREM C. The probability measure

\[\nu_T^T(\zeta^\tau(\sigma_T + it) \in A), \quad A \in \mathcal{B}(C), \]

converges weakly to the lognormal probability measure as \(T \to \infty \).

Here if \(\zeta(s) \neq 0, a \in \mathbb{R} \), then \(\zeta^a(s) \) is understood as \(\exp \{a \log \zeta(s)\} \) where \(\log \zeta(s) \) is defined by continuous displacement from the point \(s = 2 \) along the path joining the points \(2, 2 + it \) and \(\sigma + it \).

When \(\sigma_T = \frac{1}{2} \), Theorem C was proved by A. Selberg (unpublished), see also [8], and for different form of \(\nu_T \), it was obtained in [8]–[10], [5].

Now it arises the problem to obtain some results of the kind of Theorem C in the space of continuous functions.

Let \(C_\infty = C \cup \{\infty\} \) be the Riemann sphere and let \(d(s_1, s_2) \) be a metric on \(C_\infty \) given by the formulæ

\[d(s_1, s_2) = \frac{2 | s_1 - s_2 |}{\sqrt{1+|s_1|^2} \sqrt{1+|s_2|^2}}, \quad d(s, \infty) = \frac{2}{\sqrt{1+|s|^2}}, \quad d(\infty, \infty) = 0. \]

Here \(s, s_1, s_2 \in C \). This metric is compatible with the topology of \(C_\infty \). Let \(C(\mathbb{R}) = C(\mathbb{R}, C_\infty) \) denote the space of continuous functions \(f : \mathbb{R} \to C_\infty \) equipped with the topology of uniform convergence on compacta. In this topology, sequence \(\{f_n, f_n \in C(\mathbb{R})\} \) converges to the function \(f \in C(\mathbb{R}) \) if

\[d(f_n(t), f(t)) \to 0 \]

as \(n \to \infty \) uniformly in \(t \) on compact subsets of \(\mathbb{R} \).

The functional analogue of the probability measure in Theorem C is the measure

(1) \[\nu_T^T(\zeta^\tau(\sigma_T + it + i\tau) \in A), \quad A \in \mathcal{B}(C(\mathbb{R})). \]

Does this measure converge weakly as \(T \to \infty \) to some probability measure on \((C(\mathbb{R}), \mathcal{B}(C(\mathbb{R}))) \)? At this moment this question is open and it seems to be very difficult.

In the proof of Theorem C an important role is played by the Dirichlet polynomial

\[S_u(s) = \sum_{m \leq u} \frac{d_k(m)}{m^s} \]
where $d_n(m)$ denote the coefficients of the Dirichlet series expansion of the function $\zeta^n(s)$ in the half-plane $\sigma > 1$ (see [11], [12]). Therefore the aim of this paper is to prove the limit theorem in the space of continuous functions for $S_u(s)$. This theorem will be the first step to study the weak convergence of the probability measure (1).

Now let $l_T \leq \log T$, $\sigma_T = \frac{1}{2} + \frac{\log^2 l_T}{l_T}$, and let

$$P_{T,S_u}(A) = \nu_T^u(S_u(\sigma_T + it + i\tau) \in A), \quad A \in B(C(\mathbb{R})).$$

Moreover we suppose that

$$l_{T+U} - l_T = \frac{BU}{T}$$

for all $U > 0$ as $T \to \infty$. Here B denotes a number (not always the same) which is bounded by a constant.

Theorem There exists a probability measure P on $(C(\mathbb{R}), B(C(\mathbb{R})))$ such that P_{T,S_T} converges weakly to P as $T \to \infty$.

Proof of the theorem is based on the following probability result. Let S_1 and S_2 be two metric spaces, and let $h : S_1 \to S_2$ be a measurable function. Then every probability measure P on $(S_1, B(S_1))$ induces on $(S_2, B(S_2))$ the unique probability measure Ph^{-1} defined by the equality $Ph^{-1}(A) = P(h^{-1}A), \quad A \in B(S_2)$.

Now let h and h_n be the measurable functions from S_1 into S_2 and

$$E = \{x \in S_1 : h_n(x_n) \not\to h(x) \text{ for some } x_n \to \infty \}.$$

Lemma 1. Let P and P_n be the probability measures on $(S_1, B(S_1))$. Suppose that P_n converges weakly to P as $n \to \infty$ and that $P(E) = 0$. Then the measure $P_n h_n^{-1}$ converges weakly to Ph^{-1} as $n \to \infty$.

Proof. This lemma is Theorem 5.5 from [13].

Let γ denote the unit circle on complex plane, that is $\gamma = \{s \in \mathbb{C} : |s| = 1\}$. We put

$$\Omega = \prod_p \gamma_p$$

where $\gamma_p = \gamma$ for each prime p. With the product topology and pointwise multiplication the infinite-dimensional torus Ω is a compact Abelian topological group. Let P be a probability measure on $(\Omega, B(\Omega))$.

The Fourier transform $g(k)$ of the measure P is defined by the formula

$$g(k) = \int_{\Omega} \prod_{p} x_{p}^{k_{p}} dP.$$

Here $k = (k_2, k_3, \ldots)$ where only a finite number of integers k_p are distinct from zero, and $x_{p} \in \gamma$.

Lemma 2. Let $\{P_{n}\}$ be a sequence of probability measures on $(\Omega, \mathcal{B}(\Omega))$ and let $\{g_{n}(k)\}$ be a sequence of corresponding Fourier transforms. Suppose that for every vector k the limit $g(k) = \lim_{n \to \infty} g_{n}(k)$ exists. Then there exists a probability measure P on $(\Omega, \mathcal{B}(\Omega))$ such that P_{n} converges weakly to P as $n \to \infty$. Moreover, $g(k)$ is the Fourier transform of P.

Proof. The lemma is the special case of the continuity theorem for compact Abelian group, see, for example, [14].

Let

$$Q_{T}(A) = \nu_{T}^{-1}(\{p_{1}^{i\tau}, p_{2}^{i\tau}, \ldots\} \in A), \quad A \in \mathcal{B}(\Omega).$$

Lemma 3. The probability measure Q_{T} converges weakly to the Haar measure ν on $(\Omega, \mathcal{B}(\Omega))$ as $T \to \infty$.

Proof. The Fourier transform $g_{T}(k)$ of the measure Q_{T} is given by

$$g_{T}(k) = \int_{\Omega} \prod_{p} x_{p}^{k_{p}} dQ_{T} = \frac{1}{T} \int_{0}^{T} \prod_{j=1}^{\infty} p_{j}^{ik_{j}\tau} d\tau =
\begin{cases}
1 & \text{if } k = 0,
\exp\{iT \sum_{j=1}^{\infty} k_{j} \log p_{j}\} - 1 & \text{if } k \neq 0
\end{cases}.$$

Here $x_{p} \in \gamma, k = (k_1, k_2, \ldots)$. By definition of the Fourier transform of probability measure on $(\Omega, \mathcal{B}(\Omega))$, only a finite number of k_{j} are distinct from zero. Since the logarithms of prime numbers are linearly independent over the field of rational numbers, we find that

$$g_{T}(k) \to \begin{cases} 1 & \text{if } k = 0, \\
0 & \text{if } k \neq 0
\end{cases}$$

as $T \to \infty$. In view of Lemma 2, this proves the lemma.
We define the function \(h_T : \Omega \rightarrow C(\mathbb{R}) \) by the formula

\[
h_T(t; e^{i\eta_1}, e^{i\eta_2}, \ldots) = \sum_{k \leq T} \frac{d_\kappa(k)}{k^{\sigma_T + i\tau}} \prod_{j \leq k} e^{i\alpha_j \eta_j}.
\]

Here \(p^\alpha \parallel k \) means that \(p^\alpha \mid k \) but \(p^{\alpha+1} \nmid k \). Then, clearly,

\[
S_T(\sigma_T + it + i\tau) = h_T(t; p_1^{i\tau}, p_2^{i\tau}, \ldots).
\]

Let, for brevity,

\[
h_T(t; e^{i\tau_1}, e^{i\tau_2}, \ldots) = S_T(\sigma_T + it + i\tau),
\]

and let

\[
Z_{nk}(it, \tau) = S_{n+k}(\sigma_{n+k} + it + i\tau) - S_n(\sigma_n + it + i\tau).
\]

Let \(K \) be a compact subset of \(\mathbb{R} \). For every \(\epsilon > 0 \) we define the set \(A_{nk}^\epsilon \) by

\[
A_{nk}^\epsilon(K) = \{(e^{i\tau_1}, e^{i\tau_2}, \ldots) : \sup_{t \in K} |Z_{nk}(it, \tau)| \geq \epsilon\}
\]

and we put

\[
A_k^\epsilon(K) = \bigcap_{l=1}^{\infty} \bigcup_{n \geq l} A_{nk}^\epsilon.
\]

Lemma 4. \(m(A_k^\epsilon(K)) = 0 \) for every \(\epsilon > 0, K, \) and \(k \in \mathbb{N} \).

Proof. By the Chebyshev inequality

\[
m(A_{nk}^\epsilon(K)) \leq \frac{1}{\epsilon^2} \int_{\Omega} \sup_{t \in K} |Z_{nk}(it, \tau)|^2 \, dm.
\]

Using the Cauchy formula, we have that

\[
Z_{nk}^2(it, \tau) = \frac{1}{2\pi i} \int_L \frac{Z_{nk}^2(z, \tau)}{z-it} \, dz
\]

where \(L \) denotes the restangle, enclosing the set \(iK = \{ia, a \in K\} \), with the sides \(\sigma = -\frac{1}{t_{n+k}} + it, \sigma = \frac{1}{t_{n+k}} + it, \) and with two other sides parallel
to the real axis. Moreover, we suppose that the distance of \(L \) from the set \(iK \) is \(\geq \frac{1}{l_{n+k}} \). From this equality it follows that

\[
\sup_{t \in K} |Z_{nk}(it, \tau)|^2 = Bl_{n+k} \int_{L} |Z_{nk}(z, \tau)|^2 \, |dz|.
\]

Hence, having in mind the inequality (5), we obtain that

\[
m(A_{nk}^\varepsilon) = \frac{Bl_{n+k}}{\varepsilon^2} \int_{L} |dz| \int_{\Omega} |Z_{nk}(z, \tau)|^2 \, dm = \frac{Bl_{n+k} |L|}{\varepsilon^2} \sup_{z \in L} \int_{\Omega} |Z_{nk}(z, \tau)|^2 \, dm
\]

(6)

where \(|L|\) is the length of \(L \). From the definitions of \(Z_{nk}(z, \tau) \) and \(S_n(\sigma_n + z + i\tau) \) we have that, for \(z = u + iv \),

\[
Z_{nk}(z, \tau) = \sum_{l \leq n+k} \frac{d_{\kappa_n+k}(l)}{l_{\sigma_n+k+u+iv} \prod_{p_j^\alpha \| l} e^{i\alpha_j \tau_j}} - \sum_{l \leq n} \frac{d_{\kappa_n}(l)}{l_{\sigma_n+u+iv} \prod_{p_j^\alpha \| l} e^{i\alpha_j \tau_j}} = \]

\[
= \sum_{n < l \leq n+k} \frac{d_{\kappa_n+k}(l)}{l_{\sigma_n+k+u+iv} \prod_{p_j^\alpha \| l} e^{i\alpha_j \tau_j}} + \sum_{l \leq n} \left(\frac{d_{\kappa_n+k}(l)}{l_{\sigma_n+k+u+iv} \prod_{p_j^\alpha \| l} e^{i\alpha_j \tau_j}} - \frac{d_{\kappa_n}(l)}{l_{\sigma_n+u+iv} \prod_{p_j^\alpha \| l} e^{i\alpha_j \tau_j}} \right) \overset{def}{=} V + W.
\]

Since

\[
|a + b|^2 \leq 2(|a|^2 + |b|^2),
\]

hence we find that

\[
(Z_{nk}(z, \tau))^2 \leq 2(|V|^2 + |W|^2).
\]

(7)

The properties of the Haar measure \(m \) imply the equality

\[
\int_{\Omega} |V|^2 \, dm = \sum_{n < l \leq n+k} \frac{d_{\kappa_n+k}(l)}{l^2(\sigma_n+k+u)} + \sum_{n < l_1 \leq n+k} \sum_{n < l_2 \leq n+k} \frac{d_{\kappa_n+k}(l_1)d_{\kappa_n+k}(l_2)}{l_1 l_2 (\sigma_n+k+u+iv) (\sigma_n+k+u-iv)} \times
\]

\[
\times \int_{\Omega} \prod_{p_j^\alpha \| l_1} e^{i\alpha_j \tau_j} \prod_{p_j^\alpha \| l_2} e^{i\alpha_j \tau_j} \, dm = \sum_{n < l \leq n+k} \frac{d_{\kappa_n+k}(l)}{l^2(\sigma_n+k+u)}. \]

(8)
By a similar manner we find that

\[\int_\Omega |W|^2 \, dm = \sum_{l \leq n} \left(\frac{d_{\kappa_{n+k}}(l)}{l^{\sigma_{n+k}+u}} - \frac{d_{\kappa_n}(l)}{l^{\sigma_n+u}} \right)^2. \]

From the definition of the contour L it follows that

\[\frac{1}{l_{n+k}} \leq u \leq \frac{1}{l_{n+k}} \]

for $z = u + iv \in L$. Then (8) together with (2) and the well-known estimate

\[\sum_{m \leq x} \frac{1}{m} = \log x + \gamma_0 + \frac{B}{x}, \]

where γ_0 is the Euler constant, yields

\[\int_\Omega |V|^2 \, dm = Bn \frac{-2 \log^2 l_{n+k} - 1}{l_{n+k}} \sum_{n < l \leq n+k} \frac{1}{l} = Bn e \frac{-\log n \log^2 l_n}{l_n} \left(1 + \frac{Bk}{n} \right) \times \]

\[\times \left(\log \frac{n+k}{n} + \frac{B}{n} \right) = Bk e c_1 \frac{\log n \log^2 l_n}{l_n} \]

for $n \geq n_0$. Here we have used the inequality $0 < d_{\kappa_{n+k}}(l) < 1$, $n \geq n_0$, which follows trivially from the multiplicativity of $d_{\kappa_{n+k}}(m)$ and from the inequality $0 < d_{\kappa_n}(p^\alpha) < 1$, $n \geq n_0$, implied by the formula [11], [12]

\[d_{\kappa}(p^\alpha) = \frac{\kappa(\kappa+1) \ldots (\kappa+\alpha-1)}{\alpha!}. \]

From the assumption on l_T we deduce that, for $n \geq n_0$,

\[\sigma_{n+k} = \sigma_n(1 + \frac{Bk}{n}), \]

\[\log l_{n+k} = \log \left(l_n + \frac{Bk}{n} \right) = \log l_n \left(1 + \frac{Bk}{nl_n} \right) = \]

\[= \log l_n + \frac{Bk}{nl_n} = \log l_n \left(1 + \frac{Bk}{nl_n \log l_n} \right). \]
Thus,
\[\kappa_{n+k} = (2^{-1} \log l_{n+k})^{-\frac{1}{2}} = \kappa_n \left(1 + \frac{Bk}{nl_n \log l_n} \right)^{-\frac{1}{2}} = \]

Consequently, in view of (12), for \(n \geq n_0 \),

\[
d_{\kappa_{n+k}} (p^\alpha) = \frac{\kappa_n (1 + r_{nk})(\kappa_n (1 + r_{nk}) + 1) \cdots (\kappa_n (1 + r_{nk}) + \alpha - 1)}{\alpha!} =
\]

\[
= \frac{\kappa_n (1 + r_{nk})(\kappa_n + 1) \left(1 + \frac{\kappa_n r_{nk}}{\kappa_n + 1} \right) \cdots (\kappa_n + \alpha - 1) \left(1 + \frac{\kappa_n r_{nk}}{\kappa_n + \alpha - 1} \right)}{\alpha!} =
\]

\[
= d_{\kappa_n} (p^\alpha) \prod_{j=1}^{\alpha} \left(1 + \frac{Br_{nk}}{j} \right) =
\]

\[
= d_{\kappa_n} (p^\alpha) (1 + Br_{nk} \log \alpha).
\]

Hence, for \(m \leq n \),

\[
d_{\kappa_{n+k}} (m) = \prod_{p^\alpha \parallel m} d_{\kappa_{n+k}} (p^\alpha) =
\]

\[
= d_{\kappa_n} (m) = \prod_{p^\alpha \parallel m} (1 + Br_{nk} \log \alpha) =
\]

\[
= d_{\kappa_n} (m) \exp \{ Br_{nk} \sum_{p^\alpha \parallel m} \log \alpha \} =
\]

\[
= d_{\kappa_n} (m) \exp \{ Br_{nk} \log \log n \sum_{p^\alpha \parallel m} 1 \} =
\]

\[
= d_{\kappa_n} (m) \exp \{ Br_{nk} \log \log n \log n \} =
\]

\[
(14) \quad = d_{\kappa_n} (m) (1 + Br_{nk} \log \log n \log n).
\]

Therefore, from (9), (13) and (14) we have that

\[
(15) \quad \int_{\Omega} | W |^2 d\nu = \frac{Bk^2 \log^2 n \log^2 \log n}{n^2 l_n^2 \log^2 l_n} \sum_{l \leq n} \frac{d_{\kappa_n}^2 (l)}{l^{2(\sigma_n + u)}}.
\]
Repeating the proof of Lemma 3 from [10] and taking into account (10), we see that
\[\sum_{l \leq n} \frac{d_{n,l}^{2}}{l^{2}(\sigma_{n}+u)} = B. \]
Consequently, this and (15) give the estimate
\[\int_{\Omega} |W|^{2} dm = \frac{Bk^{2} \log^{2} n \log^{2} \log n}{n^{2}l_{n}^{2} \log^{2} l_{n}}. \]
From this, (6), (7) and (11) we find that
\[m(A_{n,k}^{\varepsilon}(K)) = \frac{Bk^{2}}{\varepsilon^{2}} \left(\frac{1}{n} e^{-c_{1} \log n \log^{2} l_{n}} + \frac{\log^{2} n \log^{2} \log n}{n^{2}l_{n}^{2} \log^{2} l_{n}} \right) \]
for every \(\varepsilon > 0 \) and \(k \in \mathbb{N} \). Thus it follows from the definition of the set \(A_{n,k}^{\varepsilon}(K) \) that
\[m(A_{k}^{\varepsilon}(K)) = \lim_{l \to \infty} m(\bigcup_{n > l} A_{n,k}^{\varepsilon}(K)) = \]
\[= \lim_{l \to \infty} \frac{Bk^{2}}{\varepsilon^{2}} \sum_{n > l} \left(\frac{1}{n} e^{-c_{1} \log n \log^{2} l_{n}} + \frac{\log^{2} n \log^{2} \log n}{n^{2}l_{n}^{2} \log^{2} l_{n}} \right) = 0. \]
The lemma is proved.

Proof of Theorem. We will deduce the theorem from lemmas 1, 3 and 4. Let
\[(e^{i\tau_{T}}(T), e^{i\tau_{2}(T)}, ...) \]
converges to
\[(e^{i\tau_{1}}, e^{i\tau_{2}}, ...) \]
as \(T \to \infty \), and let \(E \) denote the set \(\{(e^{i\tau_{1}}, e^{i\tau_{2}}, ...): \} \) of elements of \(\Omega \) such that
\[h_{T}(t; e^{i\tau_{1}(T)}, e^{i\tau_{2}(T)}, ...) \]
does not converge to some function \(h(t; e^{i\tau_{1}}, e^{i\tau_{2}}, ...) \) as \(T \to \infty \). In order to prove the theorem we must show that \(m(E) = 0 \). Since \(\Omega \) is compact, it is separable. Consequently [13], \(E \in B(\Omega) \).

Let \(E_{1} \) denote the set \(\{(e^{i\tau_{1}}, e^{i\tau_{2}}, ...)\} \) such that
\[h_{T}(t; e^{i\tau_{1}}, e^{i\tau_{2}}, ...) \]
does not converge to some function \(h(t; e^{i\tau_1}, e^{i\tau_2}, ...) \) as \(T \to \infty \). We will prove that \(m(E_1) = 0 \). First we consider the sequence \(h_n(t; e^{i\tau_1}, e^{i\tau_2}, ...) \).

Note that there exists a sequence \(\{K_j\} \) of compact subsets of \(\mathbb{R} \) such that

\[
\mathbb{R} = \bigcup_{j=1}^{\infty} K_j,
\]

\(K_j \subset K_{j+1} \), and if \(K \) is as compact of \(\mathbb{R} \) then \(K \subset K_j \) for some \(j \). Let

\[
\rho_j(f, g) = \sup_{t \in K_j} d(f(t), g(t))
\]

for \(f, g \in C(\mathbb{R}) \). Then

\[
\rho(f, g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\rho_j(f, g)}{1 + \rho_j(f, g)}
\]

is a metric in \(C(\mathbb{R}) \).

Since \(C(\mathbb{R}) \) is a complete metric space, we have that every fundamental sequence is convergent. Thus it follows from the definition of the fundamental sequence that

\[
m((e^{i\tau_1}, e^{i\tau_2}, ...) : h_n(t; e^{i\tau_1}, e^{i\tau_2}, ...) \not\to) =
\]

\[
= m((e^{i\tau_1}, e^{i\tau_2}, ...) : (e^{i\tau_1}, e^{i\tau_2}, ...), \in \bigcup_{\epsilon>0} \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} A_k(K_j)).
\]

Thus, by Lemma 4,

\[
m((e^{i\tau_1}, e^{i\tau_2}, ...) : h_n(t; e^{i\tau_1}, e^{i\tau_2}, ...) \not\to) = 0.
\]

From the definition of the function \(h_T \), using the estimates of types (13) and (14), we find that

\[
h_T(t; e^{i\tau_1}, e^{i\tau_2}, ...) = \sum_{k \leq [T]} \frac{d_{k, [T]}(k)}{k^{\sigma[T]+it} \prod_{\alpha_j \| k} e^{i\alpha_j \tau_j}} + \frac{B}{T^{1/4}}
\]

uniformly in \(t \in \mathbb{R} \) and in \((e^{i\tau_1}, e^{i\tau_2}, ...) \in \Omega \). Therefore, in view of (16), \(m(E_1) = 0 \).
We have shown that there exists a function h such that for almost all $(e^{i\tau_1}, e^{i\tau_2}, \ldots) \in \Omega$

$$
\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T+it}} \prod_{\alpha_j} e^{i\alpha_j \tau_j} \xrightarrow{T \to \infty} h(t; e^{i\tau_1}, e^{i\tau_2}, \ldots)
$$

uniformly in t on compact subsets of \mathbb{R}. Similarly as above in the case of the variable t it can be proved using the Cauchy formula that for almost all $(e^{i\tau_1}, e^{i\tau_2}, \ldots) \in \Omega$ the relation (17) is valid uniformly in τ_1 on compact subsets of \mathbb{R}, uniformly in τ_2 on compact subsets of \mathbb{R}, \ldots. Since the family of sets of m-measure one is closed under countable intersection, hence we have that (17) is true for almost all $(e^{i\tau_1}, e^{i\tau_2}, \ldots) \in \Omega$ uniformly in t on compact subsets of \mathbb{R}, the convergence being uniform in τ_j on compact subsets of \mathbb{R}, $j = 1, 2, \ldots$.

Since, for every $M > 0$,

$$
m\left(\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T+it}} \prod_{\alpha_j} e^{i\alpha_j \tau_j} \right) \geq M \leq \frac{1}{M^2} \int_{\Omega} \left| \sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T+it}} \prod_{\alpha_j} e^{i\alpha_j \tau_j} \right|^2 \, dm = \frac{1}{M^2} \sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{2\sigma_T}} = \frac{B}{M^2}
$$
in view of the estimate

$$
\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{2\sigma_T}} = B,
$$

we have that $h(t; e^{i\tau_1}, e^{i\tau_2}, \ldots) \neq \infty$ for almost all $(e^{i\tau_1}, e^{i\tau_2}, \ldots) \in \Omega$.

The relation (17) and the uniform convergence imply that for almost all $(e^{i\tau_1}, e^{i\tau_2}, \ldots) \in \Omega$

$$
\sum_{k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T+it}} \prod_{\alpha_j} e^{i\alpha_j \tau_j} \xrightarrow{T \to \infty} h(t; e^{i\tau_1}, e^{i\tau_2}, \ldots)
$$

uniformly in t on compact subsets of \mathbb{R}. This yields $m(E) = 0$. The latter equality together with Lemmas 1 and 3 proves the theorem.

Now let $n_T = T^{\alpha_T}$.
COROLLARY. There exists a probability measure P on $(C(\mathbb{R}), \mathcal{B}(C(\mathbb{R})))$ such that $P_{n, T}$ converges weakly to P as $n \to \infty$.

Proof. Let K be a compact subset of \mathbb{R}. Denote by $Z_T(it + i\tau)$ the difference

$$S_T(\sigma_T + it + i\tau) - S_{n, T}(\sigma_T + it + i\tau) = \sum_{n, T < k \leq T} \frac{d_{\kappa_T}(k)}{k^{\sigma_T + it + i\tau}}.$$

Let $\epsilon_T = (\log l_T)^{-1}$. Then

(18) \[\nu_T\left(\sup_{\tau \in K} |Z_T(it + i\tau)| \geq \epsilon_T \right) \leq \frac{1}{\epsilon_T^2 T} \int_0^T \sup_{\tau \in K} |Z_T(it + i\tau)|^2 d\tau. \]

In view of the Cauchy formula

$$\sup_{\tau \in K} |Z_T(it + i\tau)| = Bl_T \int_L |Z_T(z + i\tau)|^2 |dz|$$

where L is the contour similar to that in the proof of Lemma 4. Hence we find by the Montgomery–Vaughan theorem for trigonometrical polynomials [15], [12] that

$$\int_0^T \sup_{\tau \in K} |Z_T(it + i\tau)|^2 d\tau = Bl_T \sup_{z \in L} \int_0^T |Z_T(z + i\tau)|^2 d\tau =$$

$$= Bl_T \sup_{z \in L} \sum_{n, T < k \leq T} \frac{d_{\kappa_T}^2(k)}{k^{2\sigma_T + 2u}} = Bl_T \sum_{n, T < k \leq T} \frac{d_{\kappa_T}^2(k)}{k} =$$

$$= BT \left(1 - \kappa_n \frac{c_2 \log^2 l_T}{l_T} \log T \sum_{k \leq T} \frac{1}{k} = BT \left(1 - c_3 \frac{\log^3 l_T}{l_T} \log^2 T. \right) \right)$$

From this and from (18) we deduce that

(19) \[\nu_T\left(\sup_{\tau \in K} |Z_T(it + i\tau)| \geq \epsilon_T \right) = o(1) \]

as $T \to \infty$. Clearly, from the definition of the metric ρ, for $\epsilon > 0$,

$$\nu_T(\rho(S_T(\sigma_T + it + i\tau), S_{n, T}(\sigma_T + it + i\tau)) \geq \epsilon) \leq$$
By (19) the second integral in the latter formula is $o(T)$ as $T \to \infty$, and the first integral trivially is $B \epsilon_T T$. Hence and from (20)

Acknowledgement. For the warm hospitality during our stay at the University Bordeaux I we express our deep gratitude to Prof. M. MENDÈS FRANCE, Prof. M. BALAZARD and to their colleagues. We also would like to thank Prof. J.-P. ALLOUCHE and the referee for several helpful remarks.

REFERENCES

Antanas LAURINČIKAS
Department of Mathematics
Vilnius University
Naugarduko 24
2006 Vilnius, Lithuania