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SCALING LIMITS AND INFLUENCE OF THE SEED

GRAPH IN PREFERENTIAL ATTACHMENT TREES

by Nicolas Curien, Thomas Duquesne, Igor Kortchemski
& Ioan Manolescu

Abstract. — We are interested in the asymptotics of random trees built by linear preferential
attachment, also known in the literature as Barabási–Albert trees or plane-oriented recursive
trees. We first prove a conjecture of Bubeck, Mossel & Rácz [9] concerning the influence of the
seed graph on the asymptotic behavior of such trees. Separately we study the geometric struc-
ture of nodes of large degrees in a plane version of Barabási–Albert trees via their associated
looptrees. As the number of nodes grows, we show that these looptrees, appropriately rescaled,
converge in the Gromov–Hausdorff sense towards a random compact metric space which we
call the Brownian looptree. The latter is constructed as a quotient space of Aldous’ Brownian
Continuum Random Tree and is shown to have almost sure Hausdorff dimension 2.
Résumé (Limites d’échelle et ontogenèse des arbres construits par attachement préférentiel)

Nous nous intéressons au comportement asymptotique d’arbres aléatoires construits par
attachement préférentiel linéaire, qui sont aussi connus dans la littérature sous le nom d’arbres
de Barabási-Albert ou encore arbres plans récursifs. Nous validons une conjecture de Bubeck,
Mossel & Rácz relative à l’influence de l’arbre initial sur le comportement asymptotique de ces
arbres. Séparément, nous étudions la structure géométrique des sommets de grand degré dans la
version planaire des arbres de Barabási-Albert en considérant leurs « arbres à boucles ». Lorsque
le nombre de sommets croît, nous prouvons que ces arbres à boucles, convenablement mis à
l’échelle, convergent au sens de Gromov-Hausdorff vers un espace métrique compact aléatoire,
que nous appelons « l’arbre à boucles brownien ». Ce dernier est construit comme un espace
quotient de l’arbre continu brownien d’Aldous, et nous prouvons que sa dimension de Hausdorff
vaut 2 presque sûrement.
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2 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

Figure 1. The looptree associated with a large plane Barabási–
Albert tree.

1. Introduction

Random graphs constructed recursively by preferential attachment rules have at-
tracted a lot of attention in the last decade. They are sensible models for many
real-world networks, and have the remarkable scale-free property, meaning that their
degree distribution exhibits a power law behavior. The literature on the subject is
extremely vast, and we refer to [19] for an overview and references.

In this work, we focus on the simplest and the best known of these models, the
linear preferential attachment model (LPAM in short). Starting with a finite tree T1
(i.e. a finite connected graph without cycles, considered up to graph isomorphisms),
one constructs recursively a sequence of random trees T1, T2, . . . by requiring that for
i > 1, the tree Ti+1 is obtained from the tree Ti by joining with an edge a new vertex
with a random vertex of Ti, chosen proportionally to its degree. These trees are also
known in the literature as plane-oriented recursive trees. This model was introduced
by Szymánski [29], and generalized and popularized by Albert & Barabási [5] and
Bollobás, Riordan, Spencer & Tusnády [7].

This work concerns two related aspects of the LPAM. First we investigate the
influence of the initial tree (also called the seed) on the behavior of Tn as n → ∞.
Next we study the graph structure of Tn as n→∞ by studying its associated looptree
(see below for the definition of a looptree associated with a tree).

Influence of the seed graph. — Bubeck, Mossel and Rácz [9] recently raised the ques-
tion of the influence of the initial tree on the large time behavior of the LPAM. More
precisely, given a tree S with |S| = n0 > 2 vertices, consider the sequence of trees
(T

(S)
n )n>n0

constructed by using the previously mentioned preferential attachment
rule and starting with Tn0

= S. The tree S is called the seed graph. Informally, the
question is whether the seed graph can be determined from the law of Tn for large
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Scaling limits and influence of the seed graph in preferential attachment trees 3

values of n. Following [9], for finite trees S1 and S2, set

d(S1, S2) = lim
n→∞

dTV(T (S1)
n , T (S2)

n ),

where dTV denotes the total variation distance for random variables taking values
in the space of finite trees. Bubeck, Mossel and Rácz [9] have observed that d is a
pseudo-metric and have conjectured that d is a metric in non-trivial cases. We confirm
this conjecture:

Theorem 1. — The function d is a metric on trees with at least 3 vertices.

Observe that Theorem 1 means that dTV(T
(S1)
n , T

(S2)
n ) remains bounded away

from 0 as n → ∞, as soon as the two seeds S1, S2 are different and consist of at
least 3 vertices. In [9] this is proved for seeds with different degree sequences by
studying the asymptotic behavior of the tail of the degrees of the vertices of T (S)

n ,
and the authors notice that additional information concerning the graph structure
has to be incorporated to solve the general case. To this end, they suggest to study
the maximum of the sum of the degrees over all embeddings of a fixed tree in T (S)

n .
In order to establish Theorem 1, we design another family of “observables” of T (S)

n ,
indexed by finite trees τ which roughly correspond to the total number of possible
embeddings of a given tree τ into T

(S)
n . Using these variables, we then construct

a family of martingales such that their laws differ asymptotically for different seed
graphs.

Although rather implicit in our proof of Theorem 1, the underlying key feature of
the LPAM is the geometric structure induced by the nodes of large degree in T (S)

n . It is
known that the maximal degree in T (S)

n is of order
√
n (see e.g. [25]) and that there is

a tight number of vertices with degree of this order. Roughly speaking, the geometric
tree structure induced by these vertices is captured by the martingales constructed
for the proof of Theorem 1. In this spirit, our second main result is devoted to giving
a precise sense to the continuous scaling limit of this structure through the looptree
associated with T

(S)
n . As we will see below, the looptree of a plane tree encodes

in a natural way the geometric structure of nodes with exceptionally large degree.
Let us mention that this approach differs with that of recent works on local limits
of preferential attachment graphs describing the (sparse) neighborhoods of typical
vertices [6, 15].

Scaling limits of looptrees. — For our next results, we consider the planar version of
the LPAM. For a plane (i.e. embedded in the plane) tree S with n0 vertices, consider
the sequence of random plane trees (T

(S)

n )n>n0
defined by T (S)

n0
= S and, for n > n0,

conditionally on T
(S)

n0
, . . . , T

(S)

n , T (S)

n+1 is obtained by grafting an edge leading to a
new vertex inside a uniformly chosen corner of T (S)

n (by definition, a corner is an
angular sector in the plane formed by two consecutive half-edges around a vertex).
Since the number of corners around a vertex is equal to its degree, it is immediate that
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4 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

the tree structure of (T
(S)

n )n>n0
is that of a LPAM. Thus we no longer distinguish

between T (S)

n and T (S)
n .

The plane embedding of the LPAM allows us to consider its associated looptree.
The notion of looptree was introduced in [13] (see also [14] for the appearance of
looptrees in the context of random maps). Informally speaking, the looptree Loop(τ)

of a plane tree τ is the graph constructed by replacing each vertex u ∈ τ by a discrete
cycle of length given by the degree of u in τ and gluing these cycles according to
the tree structure of τ , see Figure 2. See [13] for a formal definition. One may view
Loop(τ) as a compact metric space by endowing the set of its vertices with the graph
distance.

Figure 2. An example of the looptree associated with a plane tree.

We will show that, for a plane tree S, the sequence of compact metric spaces
(Loop(T

(S)
n ))n>|S|, suitably rescaled by a factor n−1/2, converges towards a random

compact metric space. The latter convergence is almost sure with respect to the
Gromov–Hausdorff topology of compact metric spaces; see Section 3.3 for background.

It will be useful to consider for a start the case of the particular seed graph (
consisting of a single vertex with a unique corner. Formally, ( is a planted tree.
By definition, a tree τ is planted if a distinguished half-edge is attached to a vertex
of τ (thus increasing the degree of this vertex by one and adding a corner to it).
One defines the sequence of random planted plane trees (T(

n )n>1 by the preferential
attachment rule described above, starting with the seed graph( (to simplify notation
we write T(

n instead of T (()
n ). See Figure 3 for an illustration.

The looptree associated with a planted tree τ is the looptree of the tree obtained
by adding a new vertex to the endpoint of the half-edge of τ , but where the self-loop
surrounding this new vertex is removed, see Figure 3 for an example. If M is a metric
space, we write c·M for the metric space obtained from M by multiplying all distances
by c > 0. Our second main result is the following.

J.É.P. — M., 2015, tome 2
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Figure 3. Illustration of the growth mechanism of the plane LPAM
started from (. At each step, the corner in which a new edge is
grafted is highlighted in light blue. The last diagram is the looptree
of the last planted tree displayed.

Theorem 2. — The following convergence holds almost surely in the Gromov–
Hausdorff topology

n−1/2 · Loop(T(
n )

a.s.−−−−→
n→∞

2
√

2 · L,

where L is a random compact metric space called the Brownian looptree.

Remark. — It is natural to scale Loop(T(
n ) by a factor n−1/2 in order to obtain a

non-degenerate limiting compact metric space. Indeed, lengths of loops in Loop(T(
n )

correspond to vertex degrees of T(
n , and it is well-known that the maximum degree

of T(
n is of order

√
n (see e.g. [25]). Moreover the diameter of T(

n is of much lower
order, namely of order log(n) (see e.g. [19, Sec. 11]). In light of the above, it is not
surprising that looptrees associated with T(

n admit a nontrivial scaling limit, while
the trees T(

n themselves do not.

The metric space L is constructed as a quotient of the Brownian Continuum Ran-
dom Tree (in short the CRT) which was introduced by Aldous in [2]. Let us give for
the moment a heuristic construction of L. Denote by Te the CRT obtained from a
Brownian excursion e (see e.g. [20, Sec. 2]). This random tree supports a natural mass
measure µ. This is a probability measure on Te and is supported by the leaves of Te.
Denote by (Xi)i>0 a sequence of i.i.d. points sampled according to µ. For every n > 2,
consider the subtree Span(Te;X0, . . . , Xn) of Te spanned by X0, X1, . . . , Xn (see Sec-
tion 3.2 for a precise definition). Denote by Pn the point in Span(Te;X0, . . . , Xn−1)

which is the closest to Xn, see Figure 4. Set also P1 = X0. Informally, the compact
metric space L is obtained from Te by making the point identifications Xn ∼ Pn for
every n > 1. See Section 3 for the rigorous construction. Let us also mention that the
Brownian looptree L may be constructed by a line-breaking cycle-creating procedure,
similar to Aldous’ line-breaking construction of the Brownian CRT (see Remark 12).

Since the sizes of loops in Loop(T(
n ) correspond to vertex degrees in T(

n , L contains
the limiting joint distribution of the scaled degrees in T(

n . This distribution has
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Figure 4. The metric space obtained from Te by making the identi-
fications Xn ∼ Pn for 1 6 n 6 5.

been computed in [26] and asymptotic estimates on its tails studied in [9]. But L

incorporates additional information concerning the graph structure of T(
n .

An important tool is a coupling between the LPAM and Rémy’s algorithm [28]
which appeared in [26]. The proof of Theorem 2 combines this coupling with the
convergence of scaled uniform binary trees towards the Brownian CRT.

For planar LPAM’s starting with a generic seed graph S, we obtain as consequence
of Theorem 1 a convergence similar to that for the seed(.

Corollary 3. — For any plane tree S there exists a random compact metric
space L(S) such that following convergence holds almost surely for the Gromov–
Hausdorff topology

n−1/2 · Loop(T (S)
n )

a.s.−−−−→
n→∞

2
√

2 · L(S).

The limiting metric space L(S) is constructed by gluing weighted i.i.d. copies of L;
see Section 3.4 for details. In light of Theorem 1, we expect that if S1 6= S2 are
different seed graphs with at least three vertices, then the laws of L(S1) and of L(S2) are
different and we further conjecture (see Section 3.4) that the distance d(· , ·) appearing
in Theorem 1 can be expressed as

(1) d(S1, S2) = dTV(L(S1),L(S2)).

Several other random compact metric spaces have been constructed as quotients of
the Brownian CRT and appear as limits of discrete structures. For example, the scaling
limit of the connected components of the Erdős-Rényi random graph is described by a
tilted Brownian CRT with a finite number of point identifications [1]. These conserve
many of the properties of the CRT (such as the Hausdorff dimension equal to 2).
Another example is the Brownian map, obtained from the CRT by gluing a continuum
number of points using additional randomness involving Brownian motion indexed
by the CRT, see [21]. In this case, the structure of the metric space is drastically
altered by the identifications, and it is known that the Brownian map is almost surely

J.É.P. — M., 2015, tome 2



Scaling limits and influence of the seed graph in preferential attachment trees 7

homeomorphic to the sphere and has Hausdorff dimension 4 (see [21]). The Brownian
looptree is, in some sense, in-between the two examples above, since it involves a
countable number of point identifications in the CRT, which change completely its
topological structure, but conserve the Hausdorff dimension of the CRT.

Proposition 4. — Almost surely, the Hausdorff dimension of L is 2.

We mention that in [13], a related one-parameter family of random compact metric
spaces (Lα)α∈(1,2) has been constructed. They are called stable looptrees, and appear
as scaling limits of discrete looptrees associated with large critical Galton–Watson
trees whose offspring distribution belongs to the domain of attraction of an α-stable
law. The Brownian looptree introduced in this work differs substantially from stable
looptrees. For example, in the Brownian looptree, large loops are adjacent, while in Lα

large loops are connected through infinitely many microscopic loops. In addition,
in [13] it is shown that the Hausdorff dimension of Lα is almost surely α < 2.

We believe that, as illustrated by Theorem 2, looptrees are an interesting means to
give a sense to scaling limits of highly dense random trees. See in particular, Section 4.1
for a conjecture concerning affine preferential attachment models and random trees
built by Ford’s algorithm. We hope to pursue this line of research in future work.

Outline. — The paper is organized as follows. Sections 2 and 3 establish Theorems 1
and 2, respectively. In Section 2, we first define the observables that we use, then
prove Theorem 1. In Section 3 we start by presenting the connection between the
plane LPAM and Rémy’s algorithm, then construct the Brownian looptree from the
Brownian CRT and prove Theorem 2 and its corollary. We end the section with
the computation of the Hausdorff dimension of the Brownian looptree. These two
sections are largely independent. Finally, in Section 4, we propose several extensions
and generalizations.

2. Influence of the seed graph

In this section, we assume that the LPAM is started from a seed graph S, which is
a (non planted) tree with at least two vertices. In particular, the total degree of T (S)

n

(that is the sum of the degrees of all its vertices) is always equal to 2n− 2.

2.1. Decorated trees. — A decorated tree is a pair τ = (τ, `) consisting of a tree τ
and a family of positive integers (`(u);u ∈ τ) carried by its vertices. We denote by |τ |
the total number of vertices of τ and set w(τ ) :=

∑
u∈τ `(u) to be the total weight

of τ . We insist on the fact that `(u) > 0 for every u ∈ τ .
Let D be the set of all decorated trees. For τ , τ ′ ∈ D, we write τ ≺ τ ′ if

w(τ ) < w(τ ′) and |τ | 6 |τ ′| or if w(τ ) = w(τ ′) and |τ | < |τ ′|.

Thus ≺ is a strict partial order on D and we denote by 4 the associated partial order.
We now define the observables which will be used to identify the seed of a LPAM.

For k, j > 1, write [k]j = k(k − 1) · · · (k − j + 1). If τ, T are trees, we say that

J.É.P. — M., 2015, tome 2



8 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

a map φ : τ → T is an embedding if φ is an injective graph homomorphism. For a
decorated tree τ , set

Dτ (T ) =
∑

φ

∏

u∈τ
[degT φ(u)]`(u),

where the sum is taken over all embeddings φ : τ → T and where degT (x) denotes the
degree of a vertex x ∈ T . When τ = ¬ is the decorated tree formed of a single vertex
with label one, D¬(T ) is just the total degree of T . Theorem 1 is a consequence of
the following proposition.

Proposition 5. — Let τ be a decorated tree. There exist constants

{cn(τ , τ ′) : τ ′ 4 τ , n > 2} with cn(τ , τ ) > 0

such that, for every seed S, the process (M
(S)
τ (n))n>n0

defined by

M (S)
τ (n) =

∑

τ ′4τ

cn(τ , τ ′) ·Dτ ′(T (S)
n )

is a martingale with respect to the filtration Fn = σ(T
(S)
n0 , . . . , T

(S)
n ) and is bounded

in L2.

Remark. — Rather than the quantities Dτ defined above, a more natural family of
observables to consider are the number Eτ of embeddings of a tree τ inside T . These
observables could indeed be used to distinguish between seeds of the LPAM (the
martingales M of Proposition 5 could be written in terms of Eτ only). However, as
we will see, the main advantage of the observables Dτ is that they are more amenable
for recurrence relations (see Lemma 6).

The quantity Dτ (T ) has a special interpretation for plane trees T . Imagine that
there are `(u) distinguishable arrows pointing to each vertex u ∈ τ . Then Dτ (T ) is
the number of ways to embed τ in T in such a way that each arrow pointing to a
vertex of τ is associated with a corner of T adjacent to the corresponding vertex,
with distinct arrows associated with distinct corners. We call this type of embeddings
decorated embeddings.

Proposition 5 is the main ingredient in the proof of Theorem 1; its proof occu-
pies the following subsections. Before, let us explain how to deduce Theorem 1 from
Proposition 5.

Proof of Theorem 1. — Let S1 6= S2 be two distinct trees with at least 3 vertices. We
claim that if n0 = max(|S1|, |S2|), then there exists a deterministic decorated tree τ
such that

(2) E
[
Dτ (T (S1)

n0
)
]
6= E

[
Dτ (T (S2)

n0
)
]
.

To see this, suppose by symmetry that |S1| 6 |S2| and set S′1 = T
(S1)
|S2| . Thus S

′
1 is a

random tree when |S1| < |S2|. If we take τ = S2 with labels `(u) = deg(u), then, for

J.É.P. — M., 2015, tome 2



Scaling limits and influence of the seed graph in preferential attachment trees 9

every tree T with |T | = |S2|, we have Dτ (T ) = Dτ (S2) · 1{T=S2}. Consequently, for
this particular value of τ ,

E [Dτ (S′1)] = Dτ (S2) · P[S′1 = S2].

When |S1| = |S2| the above probability is 0. When |S1| < |S2| it may easily be checked
that S′1 is non-deterministic (here it is essential that |S1| > 3), hence the probability
above is strictly less than 1. In both cases (2) holds for this choice of τ .

Let τ be a minimal (for the partial order 4) decorated tree for which (2) holds.
Then E[Dτ ′(T

(S1)
n0 )] = E[Dτ ′(T

(S2)
n0 )] for all τ ′ ≺ τ and it follows that

E
[
M (S1)
τ (n0)

]
6= E

[
M (S2)
τ (n0)

]
,

where M (S1)
τ and M (S2)

τ are martingales as in Proposition 5. To simplify notation, set
M1(n) = M

(S1)
τ (n) and M2(n) = M

(S2)
τ (n). For n > n0, we may bound the distance

in total variation between T (S1)
n and T (S2)

n as follows (see for instance [8, p. 8])

dTV

(
T (S1)
n , T (S2)

n

)
> dTV (M1(n),M2(n))

>
(E [M1(n)−M2(n)])

2

2 (Var (M1(n)) + Var (M2(n))) + (E [M1(n)−M2(n)])
2 .

Since M1 and M2 are martingales, we have

E [M1(n)]− E [M2(n)] = E [M1(n0)]− E [M2(n0)] 6= 0

and Var(M1(n)) + Var(M2(n)) is bounded as n → ∞ since the two martingales are
bounded in L2. Thus the quantity dTV

(
T

(S1)
n , T

(S2)
n

)
is uniformly bounded away from 0

as n→∞ as desired. �

2.2. The recurrence relation. — In this section, we present a recurrence relation
for the conditional expectations of Dτ (T

(S)
n ). This relation is the key to Theorem 1

since it is used to build the martingales of Proposition 5 and get moment estimates
on them.

Lemma 6. — There exists a family of nonnegative real numbers {c(τ , τ ′) : τ ′ ≺ τ}
such that, for every seed S, every decorated tree τ with w(τ ) > 1 and every n > |S|
we have

(3) E
[
Dτ
(
T

(S)
n+1

)∣∣Fn
]

=
(

1 +
w(τ )

2n− 2

)
Dτ
(
T (S)
n

)
+

1

2n− 2

∑

τ ′≺τ
c(τ , τ ′)Dτ ′

(
T (S)
n

)
.

When τ = ¬ we have D¬(T
(S)
n ) = 2n− 2.

Proof. — Fix a tree S with |S| > 2 and n > |S|. To simplify notation, we omit the
dependence on S and write Tn instead of T (S)

n . It will be clear by construction that the
coefficients c(τ , τ ′) do not depend on S. We have already noticed that when τ = ¬,
Dτ (Tn) is the total degree of Tn, which is indeed 2n− 2.

J.É.P. — M., 2015, tome 2



10 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

Now fix a decorated tree τ with w(τ ) > 2. We denote by un+1 the vertex present
in Tn+1 but not in Tn, and by vn its neighbour in Tn. We write the set all em-
beddings φ : τ → Tn+1 as the disjoint union of the set of those using only vertices
of Tn, denoted by En, and the set of those using the new vertex un+1, which is
denoted by En+1 r En. If T is a tree and φ : τ → T is an embedding, we write
Wφ(T ) =

∏
u∈τ [degT φ(u)]`(u).

Let us evaluate E
[
Dτ
(
Tn+1

) ∣∣ Fn
]
. Since we work conditionally on Fn, we may

consider Tn as being fixed. Then Dτ
(
Tn+1

)
=
∑
φ∈En+1

Wφ(Tn+1), and we split the
sum into two, depending on whether φ ∈ En or φ ∈ En+1 r En. First of all, it is a
simple matter to check that for every `, d > 1,

[d+ 1]` = [d]` + ` · [d]`−1,(?)
d · [d]`−1 = [d]` + (`− 1) · [d]`−1,(??)

d · [d+ 1]` = [d]`+1 + 2` · [d]` + `(`− 1) · [d]`−1.(???)

First assume that φ ∈ En. Since degTn+1
(vn) = degTn

(vn) + 1, it follows that

E[Wφ(Tn+1) | Fn] =
(?)

Wφ(Tn) + E
[∑

w∈τ
1{φ(w)=vn} · `(w) ·

[
degTn

φ(w)
]
`(w)−1

·
∏

w′∈τr{w}

[
degTn

(φ(w′))
]
`(w′)

∣∣∣ Fn
]

= Wφ(Tn) +
∑

w∈τ

degTn
φ(w)

2n− 2
· `(w) ·

[
degTn

φ(w)
]
`(w)−1

·
∏

w′∈τr{w}

[
degTn

(φ(w))
]
`(w′)

=
(??)

(
1 +

w(τ)

2n− 2

)
·Wφ(Tn) +

∑

w∈τ

`(w)(`(w)− 1)

2n− 2
·
[
degTn

φ(w)
]
`(w)−1

·
∏

w′∈τr{w}

[
degTn

φ(w)
]
`(w′)

=
(

1 +
w(τ)

2n− 2

)
·Wφ(Tn) +

∑

w∈τ

`(w)(`(w)− 1)

2n− 2
·Wφw(Tn),

where φw is the embedding equal to φ of the decorated tree τw identical to τ except
for the label of w which is `τw

(w) = `τ (w) − 1. Note that such trees appear in the
expression only if `τw

(w) > 0. When φ runs through the embeddings of τ in Tn, φw
runs exactly through the embeddings of τw in Tn. Thus

(4) E
[∑

φ∈En

Wφ(Tn+1)
∣∣∣ Fn

]
=
(

1+
w(τ)

2n− 2

)
Dτ (Tn)+

∑

w∈τ

`(w)(`(w)− 1)

2n− 2
·Dτw

(Tn).

Notice that the trees τw for w ∈ τ may not be distinct but all have the property
τw ≺ τ .

Denote by L the set of all leaves (i.e. vertices of τ of degree 1) w ∈ τ such that
`(w) = 1. If φ ∈ En+1rEn, consider w ∈ τ such that φ(w) = un+1. Note that if w 6∈ L,
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then necessarily Wφ(Tn+1) = 0. Since τ 6= ¬, we may assume that |τ | > 2. If w ∈ L,
we denote by Ew the set of all embeddings φ ∈ En+1rEn such that φ(w) = un+1. Now
fix w ∈ L, φ ∈ Ew and let a be the neighbour of w in τ . Since [degTn+1

(φ(w))]`(w) = 1

and φ : τ r {w} → Tn restricted to τ r {w} is an embedding, we have

E [Wφ(Tn+1) | Fn] = E
[
1{φ(a)=vn} ·

∏

w′∈τrw

[
degTn+1

(φ(w′))
]
`(w′)

∣∣∣ Fn
]

=
degTn

φ(a)

2n− 2
·
[
degTn

φ(a) + 1
]
`(a)
·

∏

w′∈τr{w,a}

[
degTn

(φ(w′)).
]
`(w′)

.

Write τ 1
w, τ 2

w and τ 3
w for the decorated trees obtained from τ by removing w and

respectively increasing by one the label of a, leaving it unchanged and decreasing it
by one. Let φ1w, φ2w and φ3w be the respective embeddings of τ 1

w, τ 2
w and τ 3

w in Tn
obtained by restricting φ to τ r {w}. Then, using the previous display and (???), we
obtain

E [Wφ(Tn+1) | Fn]

=
1

2n− 2

(
Wφ1

w
(Tn) + 2`(a) ·Wφ2

w
(Tn) + `(a)(`(a)− 1) ·Wφ3

w
(Tn)

)
.

Now note that, for fixed w ∈ L, as φ runs through Ew, the embeddings φ1w, φ2w and φ3w
run respectively through all the embeddings of τ 1

w, τ 2
w and τ 3

w in Tn. Thus, summing
over all w ∈ L, we obtain

(5)
∑

φ∈En+1rEn

E [Wφ(Tn+1) | Fn]

=
1

2n− 2

∑

w∈L

(
Dτ1

w
(Tn) + 2`(a) ·Dτ2

w
(Tn) + `(a)(`(a)− 1) ·Dτ3

w
(Tn)

)
.

After adding (4) and (5), one gets an expression for E [Dτ (Tn+1) | Fn] as a function
of Dτ (Tn), Dτw(Tn), Dτ1

w
(Tn), Dτ2

w
(Tn) and Dτ3

w
(Tn), with coefficients depending

on τ only. Finally, we mention that τw, τ 1
w, τ

2
w, τ

3
w are all smaller than τ for the

order ≺. �

We now sketch another possible argument to prove Lemma 6 relying on decorated
embeddings, which were defined just after the statement of Proposition 5. We mention
this approach since a similar one will be used later.

First note that Tn+1 contains two more corners than Tn: one around the vertex to
which the new edge is grafted, and one around the new vertex which is added in the
transition from Tn to Tn+1. Call these corners respectively c′n and c′′n and let cn be the
corner of Tn in which the additional edge of Tn+1 is grafted. Then cn corresponds to
one of the neighbouring corners of c′n in Tn+1. The Dτ (Tn+1) decorated embeddings
of τ in Tn+1 may be split between those using at least one of the corners c′n, c′′n, and
those using none of them. There are Dτ (Tn) embeddings of the third type. With each
decorated embedding φ of the first or second type, associate an embedding φσ of a
decorated tree σ 4 τ in Tn obtained by conserving the arrows associated by φ with
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12 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

corners common to Tn and Tn+1 and adding an arrow pointing to cn (if such an arrow
did not already exist).

Depending on which of the corners cn, c′n, c′′n are used by φ, σ takes different values.
Thus Dτ (Tn+1) − Dτ (Tn) may be expressed as a linear combination of numbers of
decorated embeddings of trees σ 4 τ in Tn with an arrow in the corner cn. But since cn
is uniform among the corners of Tn, in expectation these numbers are 1

2n−2Dσ(Tn),
which leads to (3).

The proof of Lemma 8 illustrates in more detail the use of these ideas.

2.3. Moment estimates. — Relying on Lemma 6, we now establish moment estimates
on the number of decorated embeddings, which will be used to check that the mar-
tingales of Proposition 5 are bounded in L2. In the following, if (an)n>0 and (bn)n>0

are two sequences of real numbers, we write an � bn if there exist c > 0 and γ ∈ R
such that |an| 6 c · log(n)γ · |bn| for n large enough.

In this section, we fix a tree S with |S| > 2, and write Tn for T (S)
n to simplify

notation.

Corollary 7. — Let τ be a decorated tree with w(τ ) > 1. Then, for every seed S, we
have

nw(τ )/2 � E [Dτ (Tn)]� nw(τ )/2.

Proof of Corollary 7. — The first bound is immediate because Lemma 6 implies that,
for τ with w(τ ) > 1,

E
[
Dτ
(
Tn
)]
> C ·

n−1∏

j=|S|

(
1 +

w(τ )

2j − 2

)
> C ′ · nw(τ )/2,

for constants C,C ′ > 0 depending on S and τ .
We prove the second bound by induction on τ (for the partial order �). Fix τ with

w(τ ) > 1 and assume that E [Dτ ′(Tn)] � nw(τ ′)/2 for every τ ′ ≺ τ with w(τ ′) > 1.
Since D¬(Tn) = 2n−2, it follows that E [Dτ ′(Tn)]� nw(τ )/2 for every τ ′ ≺ τ . Then,
by Lemma 6, there exist constants C, γ > 0 such that

E
[
Dτ
(
Tn+1

)]
6
(

1 +
w(τ )

2n− 2

)
· E
[
Dτ
(
Tn
)]

+ C · (log n)γ · n(w(τ )/2)−1.

It is then a simple matter to show that this implies E
[
Dτ
(
Tn
)]
� nw(τ )/2. �

We now turn to second moment estimates on Dτ (Tn) which will be useful in the
proof of Proposition 5.

Lemma 8. — Let τ be a decorated tree with w(τ ) > 1. Then
(i) E

[
Dτ (Tn)2

]
� nw(τ ),

(ii) E
[(
Dτ (Tn+1)−Dτ (Tn)

)2]� n−3/2 · nw(τ ).

J.É.P. — M., 2015, tome 2



Scaling limits and influence of the seed graph in preferential attachment trees 13

To establish these results, we will need to estimate the number of embeddings in Tn
of pairs of decorated trees. If τ and τ ′ are decorated trees, set

(6) Dτ ,τ ′(T ) =
∑

φ

∏

u∈τtτ ′

[φ(u)]`(u),

where the sum is taken over all injective graph homomorphisms from τ t τ ′ to T

(in particular, φ(u) 6= φ(u′) if u ∈ τ and u′ ∈ τ ′).

Lemma 9. — Let τ , τ ′ be two decorated trees. Then E [Dτ ,τ ′(Tn)] � E [Dτ (Tn)] ·
E [Dτ ′(Tn)].

Sketch of proof of Lemma 9. — The proof follows the same lines as that of Lemma 6
and Corollary 7. For this reason, we only lay out the main steps without giving
additional detail. As in Lemma 6, one starts by writing a recurrence relation for
E [Dτ ,τ ′(Tn)] of the following form:

E
[
Dτ
(
Tn+1

) ∣∣ Fn
]

=

(
1 +

w(τ ) + w(τ ′)
2n− 2

)
Dτ ,τ ′

(
Tn
)

+
1

2n− 2

(∑

σ≺τ
c(τ , τ ′,σ)Dσ,τ ′

(
Tn
)

+
∑

σ′≺τ ′

c′(τ , τ ′,σ′)Dτ ,σ′
(
Tn
))
,

for certain nonnegative real numbers c(τ , τ ′,σ), c′(τ , τ ′,σ) and n > |S|. We stress
that in the previous equation, the decorated trees σ and σ′ may also take the
value ∅, in which case Dσ,τ ′

(
Tn
)
and Dτ ,σ′

(
Tn
)
are equal to respectively Dτ ′

(
Tn
)

and Dτ
(
Tn
)
. The same inductive argument as that of Corollary 7 leads to the con-

clusion. �

Proof of Lemma 8. — One could try to write a formal proof in the spirit of the one
of Lemma 6. However, to simplify the presentation, we use a planar embedding of Tn
and the interpretation of Dτ (Tn) as the number of decorated embeddings of τ in Tn,
as explained after the statement of Proposition 5. Let τ ′ be a disjoint copy of τ .
By definition, a decorated map φ : τ ∪τ ′ → Tn is a map such that both φ|τ and φ|τ ′

are decorated embeddings. We insist on the fact that φ is not necessarily injective.
If φ is a decorated embedding or a decorated map, φ will denote the map without
the choice of corners associated with arrows.

For the first assertion, observe that Dτ (Tn)2 is the number of decorated maps
φ : τ ∪ τ ′ → Tn. We denote by E1

τ (Tn) the set of all such decorated maps with
φ(τ)∩ φ(τ ′) = ∅ (as in the definition of Dτ ,τ (Tn)), and by E2

τ (Tn) the set of all such
decorated maps with φ(τ) ∩ φ(τ ′) 6= ∅. The cardinality of E1

τ (Tn) is Dτ ,τ (Tn), and
Lemma 9 applies.

If φ ∈ E2
τ (Tn) is a decorated map, we may associate with φ a decorated em-

bedding φ′ of a decorated tree σφ obtained by overlapping two copies of τ . More
precisely, let U2(τ ) be the set of all decorated trees which may be obtained by identi-
fying a non-empty subset of elements (i.e. of vertices, edges and arrows) of τ and τ ′.
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14 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

The embedding associated with φ is given by the images of τ and τ ′ in Tn via φ
(in particular σφ is the union of the images of τ and τ ′), see Figure 5.

Note that the function φ 7→ (σφ,φ
′) defined above is not one to one, since an

element of U2(τ ) may be obtained in several ways by overlapping τ and τ ′. However,
it is easy to see that there exists a constant C(τ ) > 0 such that any decorated tree
σ ∈ U2(τ ) and any embedding φ′ of σ in Tn is associated with at most C(τ ) decorated
maps φ. We may therefore conclude that

Dτ (Tn)2 = #E1
τ (Tn) + #E2

τ (Tn) 6 Dτ ,τ (Tn) + C(τ ) ·
∑

σ∈U2(τ )

Dσ(Tn).

Observe that w(σ) 6 2 · w(τ ) for every σ ∈ U2(τ ). Lemma 9, Corollary 7 and the
fact that U2(τ ) is a finite set imply the desired bound.

For the second assertion, we work conditionally on Fn. As in the discussion after
the proof of Lemma 6, let un+1 be the vertex added to Tn in the transition from Tn
to Tn+1, and c′′n be the corner adjacent to un+1 in Tn+1 (since un+1 is a leaf of Tn+1,
there is only one corner adjacent to it). Also let cn be the corner of Tn in which the
additional edge of Tn+1 is grafted, and denote by cn and c′n the two corners of Tn+1

resulting from splitting cn. Finally let vn, be the vertex adjacent to cn. We refer to
Figure 5 for an example.

un+1

c′′n

cn

c′n
un+1

c′′n

cn

c′n

un+1

c′′n

cn

c′n4

1

2

2

1

1

3

1

2

1

1

2

2

11

cn

Figure 5. Top diagram: Two decorated embeddings φ1 and φ2 of
the decorated tree τ in Tn+1. Both embeddings use corners of
Tn+1 not present in Tn, hence contribute to Dτ (Tn+1) − Dτ (Tn).
Bottom diagram: The overlapping of the two decorated embed-
dings φ1 and φ2 of τ induces a decorated embedding of the decorated
tree σ depicted on the left. To σ we associate the embedding of σ′
in Tn (right diagrams).
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Scaling limits and influence of the seed graph in preferential attachment trees 15

Note that Dτ (Tn+1)−Dτ (Tn) is the number of decorated embeddings of τ in Tn+1

that use at least one of the corners c′n, c′′n. Similarly, (Dτ (Tn+1)−Dτ (Tn))
2 is the

number of decorated maps ψ : τ ∪ τ ′ → Tn+1 such that ψ|τ and ψ|τ ′ both use at
least one of the corners c′n, c′′n. To simplify notation, denote by Eτ (Tn+1) the set of
all such decorated maps. Fix ψ ∈ Eτ (Tn+1). Since w(τ ) > 1, we have vn ∈ ψ(τ) and
vn ∈ ψ(τ ′). As in the proof of (i), we may associate with the decorated map ψ a
decorated embedding φ : σ → Tn+1 of a decorated tree σ ∈ U2(τ ). We shall now
furthermore associate with φ a decorating embedding φ′ : σ′ → Tn of a modified
decorated tree σ′ in Tn.

Let w be the vertex of σ such that φ(w) = vn. Define the modified decorated
tree σ′ by altering σ as follows. Remove from σ the vertex mapped by φ to un+1

as well as the arrow pointing to it, if such a vertex exists. Remove in addition the
arrows of σ mapped by φ to cn or c′n. Finally add an arrow ~a to σ′ pointing to w. The
decorated embedding φ′ : σ′ → Tn is defined to be equal to φ on σ ∩ σ′, and maps
the arrow ~a of σ′ on the corner cn (we stay loose on the order of the distinguished
corners).

To sum up, with every decorated map ψ ∈ Eτ (Tn+1), we have associated a deco-
rated tree σ′ with a distinguished arrow ~a and a decorated embedding φ of σ′ in Tn.
Moreover, we have done this in such a way that φ(~a) = cn. In addition, σ′ satisfies
w(σ′) 6 2w(τ ) − 1 and |σ′| 6 2|τ | − 1. As in (i), this association is not injective
but the number of pre-images of any given image may be bounded by a constant
C(τ ) > 0. Hence

(
Dτ (Tn+1)−Dτ (Tn)

)2
6

∑

σ′;|σ′|<2|τ |,
w(σ′)<2w(τ )

∑

~a∈σ′

∑

φ:σ′→Tn

C(τ ) · 1{φ(~a)=cn},

where the first sum is taken on decorated trees σ′ with the displayed constraints.
Since the corner cn is uniform in Tn, we obtain

E
[(
Dτ (Tn+1)−Dτ (Tn)

)2 ∣∣ Fn
]
6

∑

σ′;|σ′|<2|τ |,
w(σ′)<2w(τ )

∑

~a∈σ′

C(τ )

2n− 2
·Dσ′(Tn)� nw(τ )−3/2.

For the last estimate, we have used the fact that Dσ′(Tn)� nw(τ )−1/2 for all values
of σ′ (see Corollary 7) and that the number of terms in the sum is bounded in
terms of τ only. Taking the expectation of the expression above leads to the desired
inequality. �

2.4. Constructing martingales. — We now use the recurrence relation (3) in order
to construct the martingales of Proposition 5. It may be instructive for the reader to
compute the martingale M (S)

τ (n) using (3) in some simple cases, for instance when τ
is formed of a single vertex with label 2 or 3, or two vertices of label 1 linked by an
edge.

J.É.P. — M., 2015, tome 2



16 N. Curien, Th. Duquesne, I. Kortchemski & I. Manolescu

Proof of Proposition 5. — Fix a seed tree S with |S| = n0 > 2. For a decorated tree τ
and n > 2, set

ατn =

n−1∏

j=2

(
1 +

w(τ )

2j − 2

)−1
, when w(τ ) > 1; ατn =

1

2n− 2
, when w(τ ) = 1.

In particular, if w(τ ) > 1, observe that n−w(τ )/2 � ατn � n−w(τ )/2 . For a sequence
of real numbers (an)n>0 set ∆na = an+1 − an for n > 0.

We start by constructing by induction (on the order ≺ on decorated trees) coeffi-
cients {an(τ , τ ′) : τ ′ ≺ τ , n > n0} such that

an(τ , τ ′)� 1, ∆na(τ , τ ′)� 1/n(7)

and M (S)
τ (n) = ατn

(
Dτ (T (S)

n )−
∑

τ ′≺τ
an(τ , τ ′) ·Dτ ′(T (S)

n )
)

is a martingale.(8)

We emphasize that by construction, the coefficients an(τ , τ ′) will not depend on S

(this is essential). To simplify notation, we write Tn and Mτ (n) for respectively T (S)
n

and M (S)
τ (n). First, M¬(n) = α¬

n ·D¬(Tn) = 1, which is clearly a martingale.
Next, fix a decorated tree τ with w(τ ) > 2 and assume that the coefficients

an(σ,σ′) have been constructed for every σ′ ≺ σ ≺ τ and n > n0, and
that they have the desired properties. Then we claim that there exist constants
(bn(σ,σ′) : σ′ ≺ σ ≺ τ , n > n0) such that bn(σ,σ′)� 1 and

(9) Dσ(Tn) =
1

ασn
Mσ(n) +

∑

σ′≺σ

bn(σ,σ′)
ασ′
n

Mσ′(n), n > n0.

Indeed, define the matrix (An(σ,ρ))σ,ρ≺τ taking value −an(σ,ρ) if ρ ≺ σ, 1 if σ = ρ

and 0 otherwise. Then, by (8), for every n > n0, we have the following equality of
vectors indexed by σ ≺ τ :

( 1

ασn
·Mσ(n)

)
σ≺τ

= An · (Dσ(Tn))σ≺τ .

We may write {σ : σ ≺ τ} = {σ1, . . . ,σK} in such a way that σi ≺ σj ⇒ i < j.
In this setting, An is a triangular matrix with values 1 on the diagonal and all coef-
ficients � 1. It follows that An is invertible, and that its inverse shares this same
property. If we denote by (bn(σ,σ′))σ′≺σ the above-diagonal entries of the inverse
of An, we obtain (9).

Then Lemma 6 and (9) yield, for n > n0,

E
[
ατn+1 ·Dτ

(
Tn+1

) ∣∣ Fn
]

= ατn

(
Dτ
(
Tn
)

+
1

2n− 2 + w(τ )

∑

τ ′≺τ
c(τ , τ ′)Dτ ′

(
Tn
))

= ατn ·Dτ
(
Tn
)

+
∑

σ≺τ

1

2n− 2 + w(τ )
·
(
c(τ ,σ) +

∑

σ≺τ ′≺τ
c(τ , τ ′)bn(σ, τ ′)

)
· α

τ
n

ασn
·Mσ(n).
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Now set

(10) an(τ ,σ) =

n−1∑

j=2

1

2j − 2 + w(τ )
·
(
c(τ ,σ) +

∑

σ≺τ ′≺τ
c(τ , τ ′)bj(τ

′,σ)
)
·
ατj
ασj

,

for n > n0, so that

E
[
ατn+1Dτ

(
Tn+1

)∣∣Fn
]

= ατnDτ
(
Tn
)

+
∑

σ≺τ

(
an+1(τ ,σ)− an(τ ,σ)

)
·Mσ(n).

Since (Mτ ′(n))n>n0
is a (Fn)-martingale for every τ ′ ≺ τ by our induction hypothesis,

the above implies that

Mτ (n) := ατnDτ
(
Tn
)
−
∑

τ ′≺τ
an(τ , τ ′)Mτ ′(n)

= ατn

(
Dτ
(
Tn
)
−
∑

τ ′≺τ
an(τ , τ ′) · α

τ ′

n

ατn
·
(
Dτ ′(Tn) +

∑

σ≺τ ′

an(τ ′,σ) ·Dσ(Tn)
))

= ατn

(
Dτ
(
Tn
)
−
∑

σ≺τ

(
an(τ ,σ) · α

σ
n

ατn
+

∑

σ≺τ ′≺τ
an(τ , τ ′) · α

τ ′

n

ατn
· an(τ ′,σ)

)
·Dσ(Tn)

)
.

is a (Fn) martingale. Finally, for σ ≺ τ and n > n0, set

(11) an(τ ,σ) := an(τ ,σ) · α
σ
n

ατn
+

∑

σ≺τ ′≺τ
an(τ , τ ′) · α

τ ′

n

ατn
· an(τ ′,σ).

With this notation, it is now clear that the martingale (Mτ (n))n>n0
defined as above

satisfies (8).
Let us now analyse the orders of magnitude of the quantities an(τ ,σ) and

∆na(τ ,σ) in order to establish (7). We have 1/(2n− 2 + w(τ )) � 1/n, and for two
decorated trees σ,σ′ with w(σ), w(σ′) > 1 a straightforward computation yields

ασn
ασ′
n

� n(w(σ′)−w(σ))/2 and ∆n
ασ

ασ′ � n[(w(σ′)−w(σ))/2]−1.

In addition, by our induction hypothesis, we have bn(σ, τ ′)� 1 for every σ ≺ τ ′ ≺ τ .
From (10) we get that

∆na(τ ,σ)� n[(w(σ)−w(τ ))/2]−1 and an(τ ,σ)� n(w(σ)−w(τ ))/2

for every σ ≺ τ such that w(σ)>2. Hence, for σ 6= ¬,

(12) an(τ ,σ) · α
σ
n

ατn
� 1 and ∆n

(
a(τ ,σ) · α

σ

ατ

)
� 1

n
.

A separate analysis shows that (12) also holds when σ = ¬. By the induction hypo-
thesis, we have that an(τ ′,σ) � 1 and ∆na(τ ′,σ) � 1/n for every σ ≺ τ ′ ≺ τ .
By combining the previous estimates with Eq. (11) which defines an(τ ,σ), we obtain

an(τ ,σ)� 1 and ∆na(τ ,σ)� 1/n, for every τ ′ ≺ τ .

This completes the induction.
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Finally, let us now prove that the martingalesMτ defined by (8) are indeed bounded
in L2. To this end, since the increments of a martingale are orthogonal in L2, write

E
[
Mτ (n)2

]
=

n−1∑

j=n0

E
[(
Mτ (j + 1)−Mτ (j)

)2]
+ E

[
Mτ (n0)2

]
.

It is clear that E
[
Mτ (n0)2

]
<∞, so it is enough to check that

∑

n>n0

E
[(
Mτ (n+ 1)−Mτ (n)

)2]
<∞.

By (8) and the Cauchy-Schwarz inequality, there exists a constant c > 0, depending
only on τ , such that for n > n0, the quantity c·E

[(
Mτ (n+ 1)−Mτ (n)

)2] is bounded
from above by

E
[(

∆n

(
ατ ·Dτ (T )

))2]
+
∑

τ ′≺τ

((
an+1(τ ′, τ )

)2 · E
[(

∆n

(
ατ

′
·Dτ ′(T )

))2]

+
(
∆na(τ ′, τ )

)2 · E
[(
ατ

′

n ·Dτ ′(Tn)
)2])

.

To bound this quantity, it will be useful to note that, for every σ with w(σ) > 1, by
Lemma 8 and a straightforward computation,

E
[(

∆n

(
ασ ·Dσ(T )

))2]
6 2
(
∆nα

σ
)2 · E

[
Dσ(Tn)2

]
+ 2
(
ασn+1

)2 · E
[(

∆nDσ(T )
)2]

� n−3/2.

In addition, when σ = ¬, we have ∆n

(
ασ ·Dσ(T )

)
= 0. By combining the previous

estimates with (7), we finally get that

E
[
(Mτ (n+ 1)−Mτ (n))2

]
� n−3/2.

This implies
∑
n>n0

E
[(
Mτ (n+ 1)−Mτ (n)

)2]
<∞, and the proof is complete. �

3. Scaling limits of looptrees

In this section, we prove Theorem 2. The main tool is a coupling between the
looptrees of the plane LPAM and a certain modification of binary trees obtained by
Rémy’s algorithm [28]. The coupling between the LPAM and Rémy’s algorithm has
already been noticed in the literature [26], but will be recalled here and extended to
looptrees.

3.1. Coupling with Rémy’s algorithm. — We start by introducing some useful no-
tation. In this section, unless stated otherwise, trees are not considered as embedded
in the plane. A tree is binary when all its vertices have degree at most 3. If x, y ∈ τ
are two vertices of a tree τ , we let [[x, y]] be the geodesic in τ between x and y. If
x0, x1, . . . , xk ∈ τ are distinct vertices, we let

Span(τ ;x0, . . . , xk) =
⋃

06i,j6k
[[xi, xj ]]
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be the tree spanned by these vertices. A labeled tree τ = (τ ;x0, x1, . . . , xn) is a pair
formed of a tree τ and a collection of leaves (x0, . . . , xn) of τ .

For a labeled tree τ = (τ ;x0, x1, . . . , xn) the gluing Glu(τ ) of τ is the graph
constructed as follows. Set p1 = x0, and for 2 6 i 6 n, let pi be the vertex of
Span(τ ;x0, x1, . . . xi−1) which is the closest to xi in τ . Then Glu(τ ) is by definition
the graph obtained from τ by identifying the vertices xi and pi for every 1 6 i 6 n.
See the second line of Figure 6 for an illustration. Formally, the vertices of the graph
Glu(τ ) are the equivalence classes of the vertices of τ for the equivalence relation
generated by xi ∼ pi for every 1 6 i 6 n. We view Glu(τ ) as a compact metric space
by endowing its vertex set with the graph distance.

Next we present Rémy’s algorithm; it is a recursive procedure for building labeled
binary trees. Start with the tree B1 = (B1;A0, A1) consisting of a single edge with
two leaves labeled A0 and A1. At every step n > 1, build Bn+1 from Bn by picking an
edge e of Bn uniformly at random, adding a vertex v on e (thus splitting e into two
edges) and attaching a new edge to v linking it to a new leaf denoted An+1. Rémy
[28] showed that for every fixed n > 1, the labeled tree Bn is uniformly distributed
over the set of all binary trees with n+ 1 labeled leaves.

Let (T(
n )n>1 be the plane LPAM with seed (, as defined in the Introduction.

Recall that Loop(T(
n ) is the looptree associated with T(

n . An important element of
the proof of Theorem 2 is the following.

Proposition 10. — We have the following joint equality in distribution

(Loop(T(
n );n > 1)

(d)
= (Glu(Bn);n > 1).

Proof. — The growth mechanism of Loop(T(
n ) is the following: at each step, an

edge is selected uniformly at random, split in its middle by adding a new vertex,
with attached to it a new loop made of single edge. Let us now turn to the growth
mechanism of Glu(Bn): This graph is the collection of n loops made by the geodesics
starting from Span(Bn;A0, . . . , Ai−1) and going to Ai for i ∈ {1, . . . , n} which are
turned into cycles by identifying their endpoints. Then an edge of Bn is selected
uniformly at random, and split in its middle by adding a new edge carrying An+1.
Then observe that the impact of this splitting on Glu(Bn) is equivalent to the growth
procedure of Loop(T(

n ) we have described (see Figure 6 for an illustration). �

3.2. Definition of the Brownian looptree. — In this section, we define the Brown-
ian looptree L. We first introduce some notation concerning continuous trees. A metric
space (T, d) is an R-tree if it contains no cycle and if for any points x, y ∈ T there
exists a unique geodesic [[x, y]] between x and y which isometric to a segment of R
(see [20, Sec. 3] for a more detailed definition). Moreover we impose that (T, d) be
compact. To mark the difference between R-trees and the regular trees used up to
now, we will sometimes call the latter discrete trees.
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1 1 1 12 2 2 23 3 3

4 4

5

Step:

1

A0

A1 A2A3 A4 A5

n = 1 n = 2 n = 3 n = 4 n = 5

A0 A0 A0 A0

A1 A1 A1 A1A2A2A2 A3A3 A4

Figure 6. Illustration of the proof of Proposition 10, where in ad-
dition the edges that are split have been coupled in such a way
that Loop(T(

n ) = Glu(Bn). The first line represents the evolu-
tion of (T(

n , Loop(T(
n ))16n65 and the second the evolution of

(Bn,Glu(Bn))16n65. In the second line, the dashed lines represent
the identifications that are made.

We extend the notation introduced for discrete trees in Section 3.1 to continuous
trees. If T is an R-tree and x0, x1, . . . , xk ∈ T are distinct points, we let

Span(T;x0, . . . , xk) =
⋃

06i,j6k
[[xi, xj ]]

be the R-tree spanned by these vertices. The degree of a point x ∈ T is the number
of connected components of Tr {x}. A leaf is a point of degree 1. A labeled R-tree is
a pair consisting of an R-tree T and a (finite or infinite) collection of leaves of T.

Consider a labeled compact R-tree T = (T; (xi)06i<N ), where N ∈ N+ :=

{1, 2, . . .} ∪ {+∞}, and assume that T is binary (this assumption is not necessary,
but it holds in our case and simplifies the exposition). The gluing Glu(T) of T is the
quotient compact metric space constructed as follows. Set p1 = x0, and for 2 6 i < N ,
let pi be the point of Span(T;x0, x1, . . . xi−1) which is the closest to xi in τ . Write ∼
for the equivalence relation on T generated by pi ∼ xi for 1 6 i < N . If d denotes the
graph distance on T, we define a pseudo-distance ∆ on T by

∆(a, b) = inf

{ k∑

i=0

d(pi, qi) : p0 = a; qk = b

}
,

where the infimum runs over all choices of k ∈ N and points (pi)06i6k and (qi)06i6k
so that qi ∼ pi+1 for 0 6 i 6 k − 1.

In the case of an generic metric space, defining a “gluing” metric could yield to
more identifications that those prescribed by ∼. This is not the case in our setup, as
explained next.

Lemma 11. — For every a, b ∈ T, ∆(a, b) = 0 if and only if a ∼ b.
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Proof. — We first check that ∼ is closed. For this, consider a sequence (ai, bi)i>0

converging to (a, b) as i → ∞. We can suppose without loss of generality that all
the points {ai, bi}i>0 are distinct. Since T is binary, it is simple to see that we have
u ∼ v if and only if u = v or {u, v} = {pi, xi} for a certain i > 1. In particular, if
{a, b} 6= {c, d} with a ∼ b and c ∼ d we must have ]]a, b[[∩ ]]c, d[[= ∅. By compactness
this implies that d(ai, bi)→ 0, and hence a = b. The relation ∼ is thus closed.

Now let a, b ∈ T be such that ∆(a, b) = 0. For every i > 1, we denote
by ai and bi the projections (i.e. closest point) of respectively a and b on
Span(T;x0, . . . , xi). A moment’s thought shows that ai must be equal to bi in-
side Glu(Span(T;x0, . . . , xi);x0, . . . , xi), since otherwise we would have ∆(a, b) > 0.
In particular, ai ∼ bi. As i → ∞, we have ai → ã where ã is the projection of a on
the closure of

⋃
i Span(T;x0, . . . , xi), and similarly bi → b̃. If a 6= ã (or b 6= b̃), we

would have ∆(a, b) > 0 since there would exist a small ball around a unaffected by
the gluings. Hence (a, b) = (ã, b̃), and ai → a and bi → b. Since ∼ is closed, we have
a ∼ b as desired. �

Using the above we may deduce (see for instance [10, Exercise 3.1.14]) that

(13) Glu(T; (xi)06i<N ) := (T/ ∼,∆).

is a compact metric space, which we call the (continuous) gluing of (T; (xi)06i<N ).
We shall denote by π : T → Glu(T; (xi)06i<N ) the canonical projection.

In the case where T = Te is the Brownian CRT and xi = Xi for i > 0 is a sequence
of i.i.d. random variables sampled according to the mass measure of Te, the random
compact metric space L = Glu(Te, (Xi)i>0) is called the Brownian looptree.

Remark 12. — The Brownian looptree may also be constructed through a line break-
ing procedure, very similar to the one designed by Aldous to construct the Brownian
CRT (see [27, Theorem 7.6]). Consider 0 < θ1 < θ2 < · · · to be the points of a Pois-
son point process on R+ with intensity t/2 · dt. Break the line [0,∞) at points θk to
create segments of length θ1, θ2 − θ1, . . . . Glue the two end-points of each such seg-
ment together to create metric circles C1,C2, . . . . Construct recursively metric spaces
G1,G2, . . . by setting G1 = C1 and, for each k > 1, glueing Ck+1 to a point chosen
uniformly at random on Gk. The Brownian looptree is then the completion of ∪k>1Gk.

3.3. Convergence towards the Brownian looptree. — We briefly describe the
k-pointed Gromov–Hausdorff topology (we refer to [10, 16, 23] for additional details).
A k-pointed compact metric space is a triple (E, d, (x1, . . . , xk)), where (E, d) is a
compact metric space and x1, . . . , xk ∈ E. Two k-pointed compact metric spaces are
said to be isometric if there exists an isometry between them mapping the k distin-
guished points of one of them to the distinguished points of the other (preserving the
order). The set of isometry classes of k-pointed compact metric spaces is endowed
with the k-pointed Gromov–Hausdorff distance defined next. If (E, d, (x1, . . . , xk))
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and (E′, d′, (x′1, . . . , x
′
k)) are two k-pointed compact metric spaces,

dGH

(
(E, d, (x1, . . . , xk)), (E′, d′, (x′1, . . . , x

′
k))
)

= inf
{

dFH(φ(E), φ′(E′)) ∨ max
16i6k

δ(φ(xi), φ
′(x′i))

}
,

where the infimum is taken over all choices of metric spaces (F, δ) and isometric
embeddings φ : E → F and φ′ : E′ → F of E and E′ into F , and where dFH denotes
the Hausdorff distance between compacts sets in F . The k-pointed Gromov–Hausdorff
distance is indeed a metric on the space of isometry classes of k-pointed compact
metric spaces. It renders this space separable and complete. For k = 0, dGH is the
usual Gromov–Hausdorff distance on (isometry classes of) compact metric spaces.

We now state a continuity proposition inspired from [12, Proposition 12]. If (E, d)

is a metric space and x0, . . . , xn ∈ E, we say that x0, . . . , xn is an ε-net in E if
E =

⋃
06i6n{y ∈ E; d(y, xi) < ε}.

Proposition 13. — Let (τ ; (xi)06i<N ) be either a labeled discrete tree, or a labeled
R-tree, with N ∈ N+. Then, for every integer 0 6 k < N ,

dGH

(
Glu(τ ; (xi)06i6k),Glu(τ ; (xi)06i<N )

)
6 2 inf {ε > 0;x0, . . . , xk is an ε-net in τ} ,

where τ is equipped with its graph distance in the discrete case or with its metric in
the continuous case.

Proof. — For k > 0, set τk = Span(τ ;x0, . . . , xk). We clearly have

(14) dH(τ, τk) 6 inf {ε > 0;x0, . . . , xk is an ε-net in τ} .

We thus can bound dGH

(
Glu(τ ; (xi)06i6k),Glu(τ ; (xi)06i<N )

)
above by

dGH

(
Glu(τ ; (xi)06i6k),Glu(τk; (xi)06i6k)

)

+ dGH

(
Glu(τk; (xi)06i6k),Glu(τ ; (xi)06i<N )

)
,

which is less than or equal to dH(τ, τk) + dH(τ, τk) since Glu(τk;x0, . . . , xk) →
Glu(τ ;x0, . . . , xk) and similarly Glu(τk;x0, . . . , xk) → Glu(τ ; (xi)06i<N ) are isometric
embeddings and Glu is a contraction. Combining this with (14) finishes the proof. �

Before proceeding to the proof of of Theorem 2, we state a final simple property
that we will not prove.

Lemma 14. — Fix an integer k > 0. Let (T(n))n>1 =
(
T(n);x

(n)
0 , . . . , x

(n)
k

)
n>1

be a
sequence of labeled R-trees and T = (T;x0, . . . , xk) be a labeled R-tree. Suppose that
T(n) → T holds almost surely for the k-pointed Gromov–Hausdorff topology. Then
Glu(T(n))→ Glu(T) also holds almost surely for the Gromov–Hausdorff topology.

Proof of Theorem 2. — Recall from Section 3.1 the notation Bn = (Bn;A0, . . . , An)

for the sequence of trees grown by Rémy’s algorithm. By [12, Th. 5 (ii)], there exists
a pair (Te, (Xi; i > 0)), where Te is a Brownian CRT and (Xi; i > 0) is a collection
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of i.i.d. vertices sampled according to its mass measure, such that for every k > 1 we
have the following convergence for the k + 1-pointed Gromov-Hausdorff topology

(15)
(
n−1/2 ·Bn;A0, . . . , Ak

) a.s.−−−−→
n→∞

(
2
√

2 · Te;X0, . . . , Xk

)
.

Hence, by Lemma 14, the following holds in the regular Gromov-Hausdorff topology

(16) n−1/2 · Glu(Bn;A0, . . . , Ak)
a.s.−−−−→
n→∞

2
√

2 · Glu(Te;X0, . . . , Xk).

For 0 6 k 6 n, set L
(k)
n = Glu(Bn;A0, . . . , Ak) so that Glu(Bn) = L

(n)
n . Also set

Lk = Glu(Te;X0, . . . , Xk). Now, for n > k > 1,

dGH

(L(n)n√
n
, 2
√

2 · L
)
6 dH

(L(n)n√
n
,
L
(k)
n√
n

)

+ dGH

(L(k)n√
n
, 2
√

2 · Lk
)

+ dH(2
√

2 · Lk, 2
√

2 · L),

Denote by respectively Un,k, Vn,k and Wk the three terms appearing in the previous
sum. In order to prove that the right-hand side above converges to 0 as n → ∞, we
will first take the lim sup of the above as n→∞, then make k tend to ∞.

By (16), limn→∞ Vn,k = 0 for every fixed k > 1. Also, since (Xi)i>0 is a.s. dense
in Te, by Proposition 13 we get that limk→∞Wk = 0. By Proposition 13,

Un,k = dH

(L(n)n√
n
,
L
(k)
n√
n

)
6 2 inf

{
ε > 0;A0, . . . , Ak is an ε-net in n−1/2 ·Bn

}
.

But by (15) we have

inf
{
ε > 0;A0, . . . , Ak is an ε-net in n−1/2 ·Bn

}

a.s.−−−−→
n→∞

inf
{
ε > 0;X0, . . . , Xk is an ε-net in 2

√
2 · Te

}
.

We deduce that

lim sup
k→∞

lim sup
n→∞

dH

(L(n)
n√
n
,
L

(k)
n√
n

)

6 4
√

2 · lim sup
k→∞

inf {ε > 0;X0, . . . , Xk is an ε-net in Te} = 0,

since the collection (Xi; i > 0) is almost surely dense in Te. The proof is complete. �

3.4. Convergence towards Brownian looptrees for general seeds. — In this sec-
tion we prove the Corollary 3. In order to describe the construction of L(S) and prove
this result, a preliminary discussion is required on how T

(S)
n may be constructed from

independent copies of the processes (T(
n )n>1.

For n > 0 and N > 1, denote by Pól(n,N) the law after n draws of the state of a
Pólya urn with N colors, starting with one ball of each color and diagonal replacement
matrix Diag(2, 2, . . . , 2). In other words, consider an urn with N balls of different
colors. At each step a ball is taken out uniformly at random, inspected, and then put
back in the urn along with two additional balls of the same color. Then Pól(n,N) is
the law of (Xn

1 , . . . , X
n
N ), where Xn

i represents the numbers of balls of the i-th color
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after n draws. If P is a plane planted tree and c is a corner of some plane tree S, then
a new plane tree may be obtained by gluing P inside c, as depicted in Figure 7.

c

T P

Figure 7. A plane tree T with a distinguished corner c, a plane
planted tree, and the plane tree obtained by gluing P inside c.

Proposition 15. — Fix a plane tree S and let (c1, . . . , cN ) be an exhaustive enumer-
ation of its corners with N := 2|S| − 2. If n > |S| is an integer, let (αn1 , . . . , α

n
N )

be a random variable sampled according to Pól(n − |S|, N). Then, conditionally on
(αn1 , . . . , α

n
N ), let Pn1 , . . . , PnN be independent random variables distributed as respec-

tively T(
(αn

1 +1)/2, . . . , T
(
(αn

N+1)/2. Finally, let Sn be the tree obtained by gluing, for every
1 6 i 6 N , the planted tree Pni in each each corner ci of S. Then Sn has the same
law as T (S)

n .

Rather than a formal proof, we give a brief explanation of this fact. Combined
with Figure 8, it should be enough to convince the reader. As T (S)

n grows from S,
vertices are added sequentially. For every 1 6 i 6 N , there are (αni − 1)/2 vertices
added to the corner ci of S (that is either direct neighbours of ci, or linked to ci
by edges not belonging S). In particular, the subtree of T (S)

n emanating from ci is
a planted tree with αni corners (including the corners at its base). Thus, in order to
construct T (S)

n+1 from T
(S)
n , in order to construct T (S)

n+1, the new vertex is added in the
tree emanating from ci with probability αni /

∑N
j=1 α

n
j . This shows that (αn1 , . . . , α

n
N )

indeed follows the law Pól(n,N). Moreover, conditionally on the number (αni − 1)/2

of vertices added to ci, these vertices are added following the rules of the LPAM
starting with( as the seed. Hence the tree emanating from ci in T (S)

n has the law of
T(
(αn

i +1)/2. Finally, the trees growing inside the different corners of T are independent
conditionally on their size.

We are now ready to describe the construction of the limit space L(S) of Corollary 3.
For this we need to introduce notation.

If P is a planted tree, define a modified looptree L̃oop(P ) by “cutting” Loop(P ) at
the vertex associated with the root half-edge of P . More precisely delete this vertex
and add two distinct vertices as endpoints of the two edges of Loop(P ) incident to the
removed vertex. Let g(P ), resp. d(P ), denote the endpoints of the edge to the left,
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Figure 8. The tree T (S)
n is obtained by gluing planted trees in the

corners of the seed S.

resp. right, of the root half-edge of P , when the latter is oriented towards its only
endpoint.

d(P ) g(P )

P L̃oop(P )

Figure 9. A planted tree P and its associated modified looptree L̃oop(P ).

A simple extension of Theorem 2 then shows that we have the following almost
sure 2-pointed Gromov–Hausdorff convergence

(
n−1/2 · L̃oop(T(

n ); g(T(
n ), d(T(

n )
) a.s.−→
n→∞

(
2
√

2 · L̃ ; π(X0), π(X1)
)
,

where L̃ is constructed exactly as L except that we do not make the identification
X0 ∼ X1. Equivalently, L̃ is obtained from the Brownian looptree by “cutting” it
at the vertex π(X0) and distinguishing the two newly obtained points. To simplify
notation, write L̃ = (L̃ ; π(X0), π(X1)).

Assume that T (S)
n is constructed as in Proposition 15. By standard results concern-

ing Pólya urns (see e.g [4] or [11, Prop. 3]), we have
(αn1
n
, . . . ,

αnN
n

)
a.s.−→
n→∞

2 · (α1, . . . , αN ),
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where (α1, . . . , αN ) follows the Dirichlet distribution Dir
(
1
2 ,

1
2 , . . . ,

1
2

)
. It follows there

exists a collection (L̃i ; π(X0
i ), π(X1

i ))16i6N of independent pointed modified Brow-
nian looptrees such that the convergence

(17)
( L̃oop(Pni )√

n
; g(Pni ), d(Pni )

)
a.s.−→
n→∞

(
2
√

2 ·
√
αi · L̃i ; π(X0

i ), π(X1
i )
)

holds in the 2-pointed Gromov–Hausdorff topology for every 1 6 i 6 N .
Then L(S) is obtained by gluing these metric spaces along the structure given by the

seed, as described next. Let {m(e) : e ∈ E(S)} denote the collection of midpoints of
edges of S. For each corner ci of S, let eg(i) and ed(i) be the edges to its left and right,
respectively (note that they are not necessarily distinct). For every i > 1, identify the
points π(X0

i ), π(X1
i ) of 2

√
2 · √αi · L̃i to m(eg(i)) and m(ed(i)), respectively. This

creates a compact metric space which we denote by L(S). The same construction may
be performed in the discrete setting, see Figure 10 for an illustration.

Corollary 3 follows readily from (17) and from the fact that Loop(T
(S)
n ) may be ob-

tained from the modified looptrees of Pn1 , . . . , PnN in the same way as L(S) is obtained
from L̃1, . . . , L̃N .

Figure 10. The discrete looptree Loop(T
(S)
n ) can be constructed from

the collection of modified looptrees (L̃oop(Pni ))i by identifying ver-
tices connected by dashed edges.

3.5. Dimension of the Brownian looptree. — In this section we establish Proposi-
tion 4.

Write L = Glu(Te, (Xi)i>0), where Te is a Brownian CRT and (Xi)i>0 is a col-
lection of independent leaves sampled according to its mass measure µ. Recall that
π : Te → L is the canonical projection. The upper bound on the Hausdorff dimension
is a consequence of the fact that π is a contraction. Since dim(Te) = 2, it follows that
dim(L) 6 2 (see e.g. [22, Theorem 7.5]). To establish the lower bound, we will use
the probability mass measure ν on L, which is defined as push-forward of µ by the
canonical projection. We shall show the following result:
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Lemma 16. — For every ε > 0, almost surely, for ν-every x we have

lim sup
r→0

ν(Br(x))

r2−ε
= 0,

where Br(x) denotes the open ball of radius r around the point x in L.

By standard density theorems for Hausdorff measures [22, Theorem 8.8] (this refer-
ence covers the case of measures on Rn, but the proof remains valid here), this implies
that the Hausdorff dimension of L is greater than or equal to 2 − ε, almost surely.
The lower bound will thus follow.

The rest of this section is devoted to the proof Lemma 16. To simplify, we say that
a point is chosen uniformly in Te if it is sampled according to its mass measure µ.
Consider an additional uniform random leaf Y ∈ Te, independent of (Xi)i>0. Note
that almost surely, Y 6= Xi for every i > 0. We shall prove that for every ε ∈ (0, 2),
almost surely,

lim sup
r→0

ν(Br(π(Y )))

r2−ε
= 0,

By Fubini’s theorem, this indeed implies Lemma 16. To this end, define a nested
sequence of rooted subtrees Te = T1 ⊃ T2 ⊃ T3 ⊃ · · · all containing the point Y and
defined recursively as follows. First, set Te = T1 which is rooted at P̃1 := X0. For
every j > 1, if T1, . . . ,Tj have been constructed, set kj = min{i > 1; Xi ∈ Tj}. Next,
consider P̃j+1 the branching point between P̃j , Xkj and Y (if a, b, c are different leaves
of Te, the branching point between a, b and c is defined to be the unique element of
[[a, b]]∩ [[b, c]]∩ [[a, c]]). The tree Tj+1 is finally defined to be the subtree of Tjr{P̃j+1}
containing Y to which we add the vertex P̃j+1. Moreover P̃j+1 is declared to be the
root of Tj+1. We refer to Figure 11 for an illustration.

X0 =

X1 = Xk1

X2

X3 = Xk2

X4

X5

X6 = Xk3

X7

X8 = Xk4

Xk5

Y

P̃1

P̃2

P̃3

P̃4

P̃5

T1 T2

T3

T4

Xk1

Xk2

Xk3

Xk4

Xk5

Y

P̃1

P̃2

P̃3

P̃4

P̃5

Figure 11. Illustration of the construction of Ti for i > 0 and of the
proof of Proposition 18.
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Proposition 17. — The following assertions hold.
(i) The process (− logµ(Ti))i>1 is a random walk, and its step distribution is an

exponential random variable of parameter 1/2.
(ii) For every i > 1, the random tree 1√

µ(Ti)
· Ti has the law of a Brownian CRT.

In addition Y and P̃i are two independent uniform leaves of Ti.

Proof. — We prove the statement by induction on i > 1. For i = 1, this is simply
because X0 and Y are two independent leaves in Te. By induction, at step i > 1,
we assume that Ti is a random multiple of a Brownian CRT and that Z0 := P̃i
and Z1 := Y are two independent uniform leaves of Ti. Observe that by construction,
Z2 := Xki is a uniform leaf of Ti, independent of (Z0, Z1). In addition, if B denotes the
branching point between Z0, Z1 and Z2 , note that Ti is the union of three subtrees
containing respectively Z0, Z1, Z2 and having B as the only common element, and
that the subtree Ti+1 is the one containing Z1, rooted at B. It follows from Aldous’
decomposition in three parts of the CRT [3, Th. 2] that µ(Ti+1) = α · µ(Ti), where α
is the first coordinate of a Dirichlet Dir(1/2, 1/2, 1/2) random variable independent
of Ti, that Ti+1 has the same distribution as

√
α times Ti, and that B and Z1 are

independent uniform leaves in Ti+1. This implies the second assertion. It is a simple
matter to check that α has density (2

√
x)−1 on [0, 1], so that − log(α) is distributed

according to an exponential random variable of parameter 1/2. This completes the
proof. �

Now, for every tree Ti we introduce the quantity

Xi = min
(
dTe(P̃i, P̃i+1), dTe(Xki , P̃i+1)

)
.

The reason for considering this random variable lies in the following geometric propo-
sition:

Proposition 18. — For every i > 2 and every x ∈ Te such that x /∈ Ti, we have

∆
(
π(x), π(Y )

)
> Xi.

Proof (Sketch). — In the construction of the Brownian looptree from Te and (Xi)i>0,
the points Xki are glued to P̃i for every i > 0. Specifically, each segment [[P̃i, Xki ]]

becomes a loop denoted by Li in R, and the loops Li and Li+1 share the common
point π(P̃i+1) = π(Xki). It should then be clear that in R, the region π(T1 r Ti)

is separated from π(Y ) and that the only way to go from π(Y ) to this region is to
travel along R and cross the loop Li from π(P̃i+1) to π(P̃i) but this requires at least
a length Xi. We leave the details to the reader. �

Proof of Lemma 16. — By the first assertion of Proposition 17 and the strong law of
large numbers we have

(18)
log
(
µ(Ti)

)

i

a.s.−−−→
i→∞

−2.
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By the second assertion of the last proposition we have Xi/
√
µ(Ti) = X1 in distri-

bution. In addition, by [20, Theorem 2.11], X1 has the same law as min(`1, `2) where
(`1, `2, `3) has density on R3

+ given by

16(`1 + `2 + `3)e−2(`1+`2+`3)
2

d`1d`2d`3.

From this expression, it is a simple matter to establish the existence of a constant c > 0

such that for every i > 1, P(X1 > i or X1 6 i−2) 6 ci−2. An application of Borel–
Cantelli’s yields that almost surely, for every i sufficiently large, Xi/

√
µ(Ti) > i−2

and Xi/
√
µ(Ti) 6 i2. Combining this with (18), we get that

(19) log(Xi)

i

a.s.−−−→
i→∞

−1.

Now, by Proposition 18, we have BXi(π(Y ))) ⊂ π(Ti). Noting that µ(π−1(π(A))) =

µ(A) for every A ⊂ Te, this implies that ν(BXi(π(Y ))) 6 µ(Ti). By combining (19)
and (18), we finally obtain that

lim sup
i→∞

ν(BXi
(π(Y )))

X2−ε
i

= 0.

Since Xi → 0 a.s. as i→∞, this completes the proof. �

4. Comments, extensions, conjectures and open questions

4.1. Affine reinforcement. — We first investigate the extension of our results to
the more general LPAMδ model, in which vertices are chosen proportionally to an
affine function of their degree. To describe this model, first fix a parameter

δ > −1.

Let S be a finite tree with n0 vertices. Define the random sequence of trees
(T

(S),δ
n )n>n0 by T (S),δ

n0 = S and, for n > n0, conditionally on T (S),δ
n , the tree T (S),δ

n+1

is obtained from T
(S),δ
n by choosing a vertex u ∈ T (S),δ

n with probability proportional
to deg(u) + δ, and connecting it via an edge to a new vertex. We call this the LPAMδ

model. It was first introduced in [24]. For δ = 0 we recover LPAM studied in the
previous sections. The parameter δ has a dramatic impact on the geometry of T (S),δ

n

as n→∞. For instance, it is known that in this context the maximal degree in T(,δ
n

is of order n1/(2+δ), see e.g. [25, 19]. Still, we conjecture that the analogs of our results
hold in this setting with the appropriate modifications.

Conjecture 1 (Influence of the seed). — For two trees S1, S2 set dδ(S1, S2) =

limn→∞ dTV(T
(S1),δ
n , T

(S2),δ
n ). Then the function dδ is a metric on trees with at least

3 vertices.

We believe that a way to prove this conjecture is to use the same observables
(namely the number of embeddings of a certain structure in the tree at step n) as
those used to prove Theorem 1. However we will not pursue this goal in this paper.

A plane version of the above algorithm may also be considered. Assume that T (S),δ
n

is a plane tree and let us describe how to construct T (S),δ
n+1 . Choose a vertex u ∈ T (S),δ

n
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at random as before, and then choose uniformly at random a corner c among all
the corners adjacent to u. Now graft the edge leading to the new vertex of T (S),δ

n+1

in c. Using this construction, T (S),δ
n has indeed the tree structure of the LPAMδ,

and its embedding is a uniform embedding of such a tree (assuming that this is also
true for S). Other planar versions may be considered, but we choose this one for its
symmetry.

Conjecture 2 (Scaling limit). — There exists a random compact metric space L
(S)
δ

such that the convergence

n−1/(2+δ) · Loop(T (S),δ
n )

a.s.−→
n→∞

L
(S)
δ

holds almost surely for the Gromov–Hausdorff convergence. In addition, almost surely,
the Hausdorff dimension of L(S)

δ is 2 + δ.

As seen previously, it is natural to scale Loop(T
(S),δ
n ) by a factor n−1/(2+δ), since

the large degrees of T (S),δ
n are of order n1/(2+δ). We now give some arguments to

support this Conjecture 2. To simplify, as in the introduction, treat only the case
S =(.

It may be shown that the plane LPAMδ is closely related to a modification of
Ford’s algorithm with parameter α = 1/(2 + δ). Ford’s algorithm is a means to
grow recursively a sequence of binary trees that generalizes Rémy’s algorithm. For
references see [17].

Ford’s algorithm. — Fix a parameter α ∈ [0, 1]. We will construct a random sequence
of labeled binary trees (Fn)n>1. Start with F1 being a binary tree with two leaves
labeled A0 and A1. For n > 1, given Fn, to obtain Fn+1 we assign a weight 1− α to
each of the n edges of Fn adjacent to a leaf and a weight α to each of the n− 1 other
edges; then we select at random an edge e proportionally to its weight and split it
as in Rémy’s algorithm. That is we place a middle vertex on e, to which we attach a
new edge carrying a new leaf denoted by An+1.

Modified Ford’s algorithm. — We consider now the following modification of Ford’s
algorithm, which we denote (F̃n)n>1. We proceed exactly as in Ford’s algorithm
except that, once the edge e has been selected at step n, we first find the unique
i ∈ {1, 2, . . . , n} such that e belongs to the geodesic joining the leaf Ai to the set
Span(F̃n;A0, A1, . . . , Ai−1), then we choose a new edge f uniformly at random on
this geodesic, split it as in Rémy’s algorithm and attach the new leaf An+1 to it.

Observe that in the case α = 1/2 both Ford’s algorithm and its modified version
have the same distribution as Rémy’s algorithm. The analog of Proposition 10 is
this case is the following: For α = 1/(2 + δ), we have the following joint equality in
distribution

(Loop(T δn);n > 1)
(d)
= (Glu(F̃n);n > 1).

This follows from the fact that choosing the first edge in modified Ford’s algorithm
amounts to choosing a vertex of T δn according to the LPAMδ rule, and choosing the
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second edge amounts to choosing a corner of this vertex uniformly at random. We
leave details to the reader. We also mention that the original Ford algorithm also
corresponds to a plane LPAMδ, but in which corners do not play exchangeable roles
(the first corner around each vertex has weight 1− α and all others weight α).

An analog of (15) is known for Ford’s algorithm. The sequence of random rescaled
label trees n−α · Fn converges almost surely towards a random compact labeled self-
similar R-tree of Hausdorff dimension 1/α (belonging to the family of so-called frag-
mentation trees). See [18] for details. A way to prove Conjecture 2 would be to first
prove analog convergences for the trees F̃n arising from modified Ford’s algorithm.
We hope to exploit these connections in a future work.

4.2. Connections with the Poisson boundary. — Finally, we connect the concept of
the influence of the seed with the notion of the Poisson boundary of a transient Markov
chain, which captures the information contained in its tail σ-field. Consider a Markov
chainX on a countable state space V . Assume that we may write V = V0tV1tV2t· · ·
in such a way that the transitions from Vi always belong to Vi+1 for i > 0. We call
this the “layer” condition, and call Vi a layer. In our case, Vn is just the set of all
looptrees associated with trees with n vertices. In particular, this Markov chain is
transient. For x ∈ Vi, we denote by (X

(x)
n )n>i the Markov chain started from x. In

particular, X(x)
n ∈ Vn for every n > i. For every starting points x, y ∈ V , we define

the asymptotic total variation:

d(x, y) := lim
n→∞

dTV(X(x)
n , X(y)

n ).

We shall give an alternative expression for the pseudo-distance d by using the Poisson
boundary of the chain. The Poisson boundary of X is a measurable space P = (E,A),
which is also endowed with a family of probability measures (νx)x∈V such that any
bounded harmonic function h on V can be represented as

(20) h(x) =

∫
dνx(ξ)h(ξ)

where h : E → R is a bounded measurable function on E. The measures νx can
be interpreted as the harmonic measures on E seen from x. The most classical way
to construct the Poisson boundary is via the construction of the Martin boundary
of the chain, we refer to [30, Chap. 4] for details. We also mention that the Poisson
boundary captures the information contained in the tail σ-field of X. Indeed, there is
a one-to-one correspondence between bounded harmonic functions h and equivalence
classes of bounded random variables Z measurable with respect to the tail σ-field
of X which is given by the formula h(x) = Ex[Z] for x ∈ V . In our setting, we have

Proposition 19. — For every x, y ∈ V , we have d(x, y) = dTV(νx, νy).

Proof. — We first express d(x, y) in terms of harmonic functions. If x, y ∈ V1 ∪ V2 ∪
· · · ∪ Vi we claim that for n > i we have

(21) dTV(X(x)
n , X(y)

n ) =
1

2
sup
h∈Hn

|h(x)− h(y)|,
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where

Hn =
{
h :
⊔n
i=1 Vi → R, harmonic on V0 t · · · t Vn−1 and ‖h‖∞ 6 1

}
.

To establish this equality, remark that if we denote by ν(n)x the law of the first hitting
point of Vn by the chain starting from x (which is also unique visited point in Vn
by our layer condition). Then observe that by classical potential theory, for every
set A ⊂ Vn we have
∣∣∣P(X(x)

n ∈ A)− P(X(y)
n ∈ A)

∣∣∣ =

∣∣∣∣
∫

Vn

dν(n)x (ξ)1A(ξ)−
∫

Vn

dν(n)y (ξ)1A(ξ)

∣∣∣∣

=
1

2

∣∣∣∣
∫

Vn

dν(n)x (ξ) (1A(ξ)− 1Ac(ξ))−
∫

Vn

dν(n)y (ξ) (1A(ξ)− 1Ac(ξ))

∣∣∣∣ .

It is plain to see that functions hA : x 7→
∫
Vn

dν
(n)
x (ξ)(1A(ξ)−1Ac(ξ)) are the extreme

points of the convex set Hn. Hence, by convexity of h 7→ |h(x)− h(y)|, we get that

dTV(X(x)
n , X(y)

n ) =
1

2
sup
A⊂Vn

|hA(x)− hA(x)| = 1

2
sup
h∈Hn

|h(x)− h(y)|.

This establishes (21).
By taking the limit n→∞, we get then get that

(22) d(x, y) =
1

2
sup

{
|h(x)− h(y)|

}
,

where the supremum runs over all harmonic functions h on V whose ‖ · ‖∞ norm
is bounded by one. Using the Poisson representation of bounded harmonic func-
tions (20), it is a simple matter to check that the supremum on the right-hand side
of (22) is actually equal to

sup
h:E→R

Borel, ‖h‖∞61

∣∣∣∣
∫

dνx(ξ)h(ξ)−
∫

dνy(ξ)h(ξ)

∣∣∣∣

= 2 sup
A⊂E, Borel

∣∣∣∣
∫

dνx(ξ)1A(ξ)−
∫

dνy(ξ)1A(ξ)

∣∣∣∣
= 2 sup

A⊂E, Borel
|νx(A)− νy(A)| = 2dTV(νx, νy).

This completes the proof. �

In view of Proposition 19, a natural open question raised by our work is the fol-
lowing.

Open Question. — Is the measured space of scaling limits of discrete looptrees iso-
morphic to the Poisson boundary of the chain of planar preferential attachment trees
thus implying (1)? Or, equivalently, are all asymptotic events of the chain measurable
with respect to the scaling limit L?

In particular, we believe that for every decorated tree τ , the limiting value of the
martingale M (S)

τ (n) used to prove Theorem 1 is a measurable function of L(S).
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