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ENERGY RELEASE RATE FOR NON-SMOOTH CRACKS

IN PLANAR ELASTICITY

by Jean-François Babadjian, Antonin Chambolle
& Antoine Lemenant

Abstract. — This paper is devoted to the characterization of the energy release rate of a crack
which is merely closed, connected, and with (length) density 1/2 at the tip, without further
regularity assumptions. First, the blow-up limit of the displacement is analyzed, and the con-
vergence to a (known) positively 1/2-homogenous function in the cracked plane is established.
Then, the energy release rate, which is the derivative of the elastic energy with respect to an
infinitesimal additional crack increment, is obtained as the solution of a variational problem.

Résumé (Taux de restitution d’énergie pour des fissures non régulières en élasticité plane)
Cet article est consacré à l’étude du taux de restitution d’énergie associé à une fissure

fermée, connexe et de densité (de longueur) 1/2 en pointe de fissure, sans autre hypothèse de
régularité. Tout d’abord, la limite de blow-up du déplacement à la pointe est analysée, ainsi
que la convergence vers une certaine fonction, positivement 1/2-homogène, explicite. Le taux
de restitution d’énergie, qui est la dérivée de l’énergie élastique par rapport à un incrément
infinitésimal de fissure, est alors obtenu comme solution d’un problème variationnel.
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1. Introduction

Griffith theory [18] is a model explaining the quasi-static crack growth in elastic
bodies under the assumption that the crack set is preassigned. In a two-dimensional
setting, let us denote by Ω ⊂ R2 the reference configuration of a linearly elastic body
allowing for cracks inside Γ̂. To fix the ideas, provided the evolution is sufficiently
smooth, that Γ̂ is a simple curve, and that the evolution is growing only in one
direction, then the crack is completely characterized by the position of its tip, and
thus by its arc length. Denoting by Γ(`) the crack of length ` inside Γ̂, the elastic
energy associated to a given kinematically admissible displacement u : ΩrΓ(`)→ R2

satisfying u = ψ(t) on ∂Ω r Γ(`), is given by

E(t;u, `) :=
1

2

∫
ΩrΓ(`)

Ce(u) : e(u) dx,

where C is the fourth order Hooke’s tensor, e(u) is the symmetrized gradient of u,
and ψ(t) : ∂Ω → R2 is a prescribed boundary datum depending on time, which is
the driving mechanism of the process. If the evolution is slow enough, it is reasonable
to neglect inertia and viscous effects so that the quasi-static assumption becomes
relevant: at each time t, the body is in elastic equilibrium. It enables one to define
the potential energy as

P(t, `) := E(t;u(t, `), `) = minE(t; ·, `),

where the minimum is computed over all kinematically admissible displacements at
time t. Therefore, given a cracking state, the quasi-static assumption permits to find
the displacement. In order to get the crack itself (or equivalently its length), Griffith
introduced a criterion whose fundamental ingredient is the energy release rate. It is
defined as the variation of potential energy along an infinitesimal crack increment, or
in other words, the quantity of released potential energy with respect to a small crack
increment. More precisely, it is given by

G(t, `) := −∂P

∂`
(t, `)

provided the previous expression makes sense. From a thermodynamical point of view,
the energy release rate is nothing but the thermodynamic force associated to the
crack length (the natural internal variable modeling the dissipative effect of fracture).
Griffith’s criterion is summarized into the three following items: for each t > 0

(i) G(t, `(t)) 6 Gc, where Gc > 0 is a characteristic material constant referred to
as the toughness of the body;

(ii) ˙̀(t) > 0;
(iii)

(
G(t, `(t))−Gc

)
˙̀(t) = 0.

Item (i) is a threshold criterion which stipulates that the energy release rate cannot
exceed the critical value Gc. Item (ii) is an irreversibility criterion which ensures
that the crack can only grow. The third and last item is a compatibility condition
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Energy release rate for non-smooth cracks in planar elasticity 119

between (i) and (ii): it states that a crack will grow if and only if the energy release
rate constraint is saturated.

In [17] (see also [3]), it has been observed that Griffith’s criterion is nothing but
the necessary first order optimality condition of a variational model. More precisely,
if for every t > 0, (u(t), `(t)) satisfies:

(i) Unilateral minimality: for any ̂̀> `(t), and any v : Ω r Γ(̂̀) → R2 satisfying
v = ψ(t) on ∂Ω r Γ(̂̀), then
E (t) :=

1

2

∫
ΩrΓ(`(t))

Ce(u(t)) : e(u(t)) dx+Gc `(t) 6
1

2

∫
ΩrΓ(̂̀) Ce(v) : e(v) dx+Gc ̂̀;

(ii) Irreversibility: ˙̀(t) > 0;
(iii) Energy balance:

Ė (t) =

∫
∂ΩrΓ(`(t))

(Ce(u(t))ν) · ψ̇(t) dH 1,

then (u(t), `(t)) is a solution of Griffith’s model. In the previous expression, H 1

denotes the 1-dimensional Hausdorff measure. The energy balance is nothing but a
reformulation of the second law of thermodynamics which asserts the non-negativity
of the mechanical dissipation. It states that the temporal variation of the total energy
(the sum of the elastic and surface energies) is compensated by the power of external
forces, which in our case reduces to the stress (Ce(u(t))ν acting on ∂Ω r Γ(`(t)) and
generated by the boundary displacement ψ(t). This new formulation relies on the
constrained minimization of the total energy of Mumford-Shah type

E (u,Γ) :=
1

2

∫
ΩrΓ

Ce(u) : e(u) dx+GcH
1(Γ)

which puts in competition a bulk (elastic) energy and a surface (Griffith) energy. One
of the main interests is that it makes it possible to get rid of the assumption of the
a priori knowledge of the crack path. Following [17], a quasi-static evolution is defined
as a mapping t 7→ (u(t),Γ(t)) satisfying

(i) Unilateral minimality: for any Ω ⊃ Γ̂ ⊃ Γ(t), and any v : Ωr Γ̂→ R2 satisfying
v = ψ(t) on ∂Ω r Γ̂, then

E (u(t),Γ(t)) 6 E (v, Γ̂);

(ii) Irreversibility: Γ(s) ⊂ Γ(t) for every s 6 t;
(iii) Energy balance:

E (u(t),Γ(t)) = E (u(0),Γ(0)) +

∫ t

0

∫
ΩrΓ(s)

Ce(u(s)) : e(ψ̇(s)) dx ds.

An existence result for this model has been given in [5] (see also [13, 16, 12] in other
contexts) for cracks belonging to the class of compact and connected subsets of Ω.
The main reason of this assumption was to ensure the lower semicontinuity of the
Mumford-Shah type functional (u,Γ) 7→ E (u,Γ) with respect to a reasonable notion
of convergence. The lower semicontinuity of the surface energy with respect to the
Hausdorff convergence of cracks is a consequence of Gołab’s Theorem (see [15]), while
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120 J.-F. Babadjian, A. Chambolle & A. Lemenant

the continuity of the bulk energy is a consequence of continuity results of the Neumann
problem with respect to the Hausdorff convergence of the boundary (see [4, 6]) toge-
ther with a density result [5]. In any cases, all these results only hold in dimension 2

and in the class of compact and connected sets.
If one is interested into fine qualitative results such as crack initiation (see [8])

of kinking (see [7]) it becomes necessary to understand the nature of the singularity
at the crack tip. Therefore one should be able to make rigorous a suitable notion
energy release rate. The first proof of the differentiable character of the potential
energy with respect to the crack length has been given in [14] (see also [22, 28, 27]).
The generalized variational setting described above, a mathematical justification of
the notions of energy release rate for any incremental crack attached to a given initial
crack has been in [7] in the case where the crack is straight in a small neighborhood of
its tip. In the footstep of that work, we attempt here weaken the regularity assumption
on the initial crack, which is merely closed, connected, with density 1/2 at the origin
(that imply to blow up as a segment at the origin, up to rotations).

1.1. Main Results. — Our main results are contained in Theorem 6.4 and Theorem
7.1 respectively in Section 6 and Section 7.

1.1.1. First Result. — The first main result Theorem 6.4 is a purely P.D.E. result. We
analyze the blow-up limit of the optimal displacement at the tip of the given initial
crack. We prove that for some suitable subsequence, the blow-up limit converges to
the classical crack-tip function in the complement of a half-line, i.e., of the form

(1.1) κ1φ1 + κ2φ2,

for some constants κ1 and κ2 ∈ R, while φ1 and φ2 are positively 1/2-homogenous
functions which are explicitly given by (6.15) and (6.16) below.

This part can be seen as a partial generalization in planar elasticity of what was
previously done in the anti-plane case [9]. Mathematically speaking, the corresponding
function to be studied is now a vectorial function satisfying a Lamé type system,
instead of being simply a scalar valued harmonic function. One of the key obstacles
in the vectorial case is that no monotonicity property is known for such a problem,
which leads to a slightly weaker result than in the scalar case: the convergence of
the blow-up sequence only holds up to subsequences, and nothing is known for the
whole sequence. Consequently, the constants κ1 and κ2 in (1.1) a priori depend on
this particular subsequence. As a matter of fact, this prevents us to define properly
the stress intensity factor analogously to what was proposed in [9]. On the other hand,
we believe that the techniques employed in the proof and the results on their own are
already interesting. In addition, the absence of monotonicity is not the only difference
with the scalar case, which led us to find a new proof relying on a duality approach
via the so-called Airy function in order to bypass some technical problems.

Another substantial difference with the scalar case appears while studying homo-
geneous solutions of the planar Lamé system in the complement of a half-line, which
is crucial in the understanding of blow-up solutions at the crack tip. For harmonic
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Energy release rate for non-smooth cracks in planar elasticity 121

functions it is rather easy to decompose any solutions as a sum of spherical-harmonics
directly by writing the operator in polar coordinates, and identify the degree of ho-
mogeneity of each term with the corresponding eigenvalue of the Dirichlet-Laplace-
Beltrami operator on the circle minus a point. For the Lamé system, or alternatively
for the biharmonic equation, a similar naive approach cannot work. The appropriate
eigenvalue problem on the circle have a more complicate nature, and analogous results
rely on an abstract theory developed first by Kondrat’ev which rests on pencil op-
erators, weighted Sobolev spaces, the Fredholm alternative, and calculus of residues.
We used this technology in the proof of Proposition 6.3 for which we could not find
a more elementary argument.

1.1.2. Second result. — The second main result Theorem 7.1 concerns the energy
release rate of an incremental crack Γ, which is roughly speaking the derivative of the
elastic energy with respect to the crack increment (see (7.1) for the precise definition).
We prove that the value of this limit is realized as an explicit minimization problem in
the cracked-plane R2r

(
(−∞, 0]×{0}

)
. One can find a similar statement in [7, Th. 3.1],

but with the additional assumption that the initial crack is a line segment close to
the origin. We remove here this hypothesis, establishing the same result for any initial
crack which is closed, connected and admits a line segment as blow-up limit at the
origin. The starting point for this generalization is the knowledge of the blow-up
limit at the origin for displacement associated to a general initial crack, namely our
first result Theorem 6.4. Since this result holds only up to subsequences, the same
restriction appears in the statement of Theorem 6.4 as well.

Therewith, it should be mentioned that Theorem 7.1 is new even for the scalar case,
for which the conclusion is even more accurate. Indeed in this case, the monotonicity
formula of [9] ensures that the convergence holds for the whole sequence and not only
for a subsequence.

The paper is organized as follows: after introducing the main notation in Section 2,
we describe precisely the mechanical model in Section 3. Section 4 is devoted to
establish technical results related to the existence of the harmonic conjugate and the
Airy function associated to the displacement in a neighborhood of the crack tip. In
Section 5, we prove lower and upper bounds of the energy release rate. The blow-up
analysis of the displacement around the crack tip is the object of Section 6. Section 7 is
devoted to give a formula for the energy release rate as a global minimization problem.
Finally, we shortly review Kondrat’ev theory of elliptic regularity vs singularity inside
corner domains in an appendix.

Acknowledgements. — The authors wish to thank Svitlana Mayboroda for useful dis-
cussions about the subject of this paper, and for having pointed out reference [24].
They are also grateful to Monique Dauge for having sent them a copy of the pa-
per [23], and for the argument leading to the proof of Proposition 6.3. The authors
wish to thank the referees for their very careful reading of the manuscript, and many
comments which helped us to substantially improve the presentation.
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2. Mathematical preliminaries

2.1. General notation. — The Lebesgue measure in Rn is denoted by L n, and the
k-dimensional Hausdorff measure by H k. If E is a measurable set, we will sometimes
write |E| instead of L n(E). If a and b ∈ Rn, we write a · b =

∑n
i=1 aibi for the

Euclidean scalar product, and we denote the norm by |a| =
√
a · a. The open ball

of center x and radius % is denoted by B%(x). If x = 0, we simply write B% instead
of B%(0).

We write Mn×n for the set of real n × n matrices, and Mn×n
sym for that of all real

symmetric n×n matrices. Given a matrix A ∈Mn×n, we let |A| :=
√

tr(AAT ) (AT is
the transpose of A, and trA is its trace) which defines the usual Euclidean norm over
Mn×n. We recall that for any two vectors a and b ∈ Rn, a⊗ b ∈Mn×n stands for the
tensor product, i.e., (a⊗ b)ij = aibj for all 1 6 i, j 6 n, and a� b := 1

2 (a⊗ b+ b⊗a) ∈
Mn×n

sym denotes the symmetric tensor product.
Given an open subset U of Rn, we denote by M (U) the space of all real-valued

Radon measures with finite total variation. We use standard notation for Lebesgue
spaces Lp(U) and Sobolev spaces W k,p(U) or Hk(U) := W k,2(U). If Γ is a closed
subset of U , we denote by Hk

0,Γ(U) the closure of C∞c (U rΓ) in Hk(U). In particular,
if Γ = ∂U , then Hk

0,∂U (U) = Hk
0 (U).

2.2. Capacities. — In the sequel, we will use the notion of capacity for which we
refer to [1, 21]. We just recall the definition and several facts. The (k, 2)-capacity of
a compact set K ⊂ Rn is defined by

Capk,2(K) := inf
{
‖ϕ‖Hk(Rn) : ϕ ∈ C∞c (Rn), ϕ > 1 on K

}
.

This definition is then extended to open sets A ⊂ Rn by

Capk,2(A) := sup
{

Capk,2(K) : K ⊂ A, K compact
}
,

and to arbitrary sets E ⊂ Rn by

Capk,2(E) := inf
{

Capk,2(A) : E ⊂ A, A open
}
.

One of the interests of capacity is that it enables one to give an accurate sense to
the pointwise value of Sobolev functions. More precisely, every u ∈ Hk(Rn) has a
(k, 2)-quasicontinuous representative ũ, which means that ũ = u a.e. and that, for
each ε > 0, there exists a closed set Aε ⊂ Rn such that Capk,2(RnrAε) < ε and ũ|Aε
is continuous on Aε (see [1, Sec. 6.1]). The (k, 2)-quasicontinuous representative is
unique, in the sense that two (k, 2)-quasicontinuous representatives of the same func-
tion u ∈ Hk(Rn) coincide Capk,2-quasi-everywhere. In addition, if U is an open subset
of Rn, then u ∈ Hk

0 (U) if and only if for all multi-index α ∈ Nn with length |α| 6 k,
∂αu has a (k − |α|, 2)-quasicontinuous representative that vanishes Capk−|α|,2-quasi
everywhere on ∂U , i.e., outside a set of zero Capk−|α|,2-capacity (see [1, Th. 9.1.3]).
In the sequel, we will only be interested to the cases k = 1 or k = 2 in dimension
n = 2.
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Energy release rate for non-smooth cracks in planar elasticity 123

2.3. Kondrat’ev spaces. — Following [25, Sec. 6.1], if C is an open cone of Rn with
vertex at the origin, we define for any β ∈ R and ` > 0 the weighted Sobolev
space V `β (C) by the closure of C∞c (C r {0}) with respect to the norm

‖u‖V `
β

(C) :=

Å∫
C

∑
|α|6`

|x|2(β−`+|α|)|∂αu(x)|2dx
ã1/2

.

It will also be useful to introduce the spaces V `β (C) for ` < 0, which is defined as the
dual space of V −`−β (C), endowed with the usual dual norm.

Observe that when ` > 0 then u ∈ V `β (C) if and only if the function x 7→
|x|β−`+|α|∂αu(x) ∈ L2(C) for all |α| 6 `. If one is interested in homogeneous functions,
it turns out that the parameter β plays a different role regarding to the integrability
at the origin or at infinity. To fix the ideas, one can check that in dimension 2, a
function of the form x 7→ |x|γf(x/|x|) around the origin and with compact support
belongs to V `β (C) for every β < 1 − γ. On the other hand, a function having this
behavior at infinity and vanishing around the origin will belong to a space V `β (C) for
every β > 1 − γ. For instance if γ = 3/2, then the corresponding space of critical
exponent would be that with β = −1/2.

2.4. Functions with Lebesgue deformation. — Given a vector field (distribution)
u : U → Rn, the symmetrized gradient of u is denoted by

e(u) :=
∇u+∇uT

2
.

In linearized elasticity, u stands for the displacement, while e(u) is the elastic strain.
The elastic energy of a body is given by a quadratic form of e(u) so that it is natural to
consider displacements such that e(u) ∈ L2(U ;Mn×n

sym ). If U has Lipschitz boundary,
it is well known that u actually belongs to H1(U ;Rn) as a consequence of Korn’s
inequality (see e.g. [10, 31]). However, when U is not smooth, we can only assert that
u ∈ L2

loc(U ;Rn). This motivates the following definition of the space of Lebesgue
deformations:

LD(U) := {u ∈ L2
loc(U ;Rn) : e(u) ∈ L2(U ;Mn×n

sym )}.

If U is connected and u is a distribution with e(u) = 0, then necessarily it is a
rigid movement, i.e., u(x) = Ax + b for all x ∈ U , for some skew-symmetric matrix
A ∈ Mn×n and some vector b ∈ Rn. If, in addition, U has Lipschitz boundary, the
following Poincaré-Korn inequality holds: there exists a constant cU > 0 and a rigid
movement rU such that

(2.1) ‖u− rU‖L2(U) 6 cU‖e(u)‖L2(U), for all u ∈ LD(U).

According to [2, Th. 5.2, Exam. 5.3], it is possible to make rU more explicit in the
following way: consider a measurable subset E of U with |E| > 0, then one can take

rU (x) :=
1

|E|

∫
E

u(y) dy +

Å
1

|E|

∫
E

∇u(y)−∇u(y)T

2
dy

ãÅ
x− 1

|E|

∫
E

y dy

ã
,

provided the constant cU in (2.1) also depends on E.
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2.5. Hausdorff convergence of compact sets. — LetK1 andK2 be compact subsets
of a common compact set K ⊂ Rn. The Hausdorff distance between K1 and K2 is
given by

dH (K1,K2) := max

ß
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

™
.

We say that a sequence (Kn) of compact subsets of K converges in the Hausdorff
distance to the compact set K∞ if dH (Kn,K∞)→ 0. The Hausdorff convergence of
compact sets turns out to be equivalent to the convergence in the sense of Kuratowski.
Indeed Kn → K∞ in the Hausdorff metric if and only if both following properties
hold:

a) any x ∈ K∞ is the limit of a sequence (xn) with xn ∈ Kn;
b) if for all n, xn ∈ Kn, any limit point of (xn) belongs to K∞.

Finally let us recall Blaschke’s selection principle which asserts that from any bounded
sequence (Kn) of compact subsets of K, one can extract a subsequence converging in
the Hausdorff distance.

2.6. Convention. — If f : Rm → Rm is a vector field, the notation ∇f stands for the
m×n matrix whose entries are ∂fi/∂xj (for 1 6 i 6 m and 1 6 j 6 n). In particular,
if m = 1, i.e., if f is scalar valued, ∇f is a row vector. If n = 2 and m = 1, we write

∇⊥f := (−∂2f1, ∂1f1),

while if n = 2 and m = 2, we write

∇⊥f :=

(
−∂2f1 ∂1f1

−∂2f2 ∂1f2

)
.

3. Description of the model

Reference configuration. — We consider a homogeneous isotropic linearly elastic body
occupying Ω in its reference configuration, a bounded and connected open subset of R2

with Lipschitz boundary. We suppose that the stress σ ∈M2×2
sym is related to the strain

e ∈M2×2
sym thanks to Hooke’s law

σ = Ce = λ(tr e)I + 2µe,

where λ, µ ∈ R are the Lamé coefficients satisfying λ+ µ > 0 and µ > 0, and I is the
identity matrix. This expression can be inverted into

(3.1) e = C−1σ =
1 + ν

E
σ − ν

E
(trσ)I,

where E := µ(3λ+ 2µ)/(λ+ µ) is the Young modulus and ν := λ/2(λ+ µ) is the
Poisson coefficient.

External loads. — We suppose that the body is only subjected to a soft device loading,
that is, to a prescribed displacement ψ ∈ H1/2(∂Ω;R2) acting on the entire boundary.
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Admissible cracks. — We further assume that the body can undergo cracks which
belong to the admissible class

K (Ω) := {Γ ⊂ Ω compact, connected, 0 ∈ Γ and H 1(Γ) <∞}.

Admissible displacements. — For a given crack Γ ∈ K (Ω), we define the space of
admissible displacement by

LD(Ω r Γ) := {u ∈ L2
loc(Ω r Γ;R2) : e(u) ∈ L2(Ω r Γ;M2×2

sym)}.

Any point of ∂Ω r Γ is contained in a ball such that B ∩ Γ = ∅ and such that Ω ∩B
has Lipschitz boundary so that Korn’s inequality ensures that u ∈ H1(Ω∩B;R2). As
a consequence, the trace of u is well defined on ∂Ω ∩B. Since this property holds for
any ball as above, then the trace of u is well defined on ∂Ω r Γ.

Initial data. — We consider an initial crack Γ0 ∈ K (Ω) satisfying furthermore

(3.2) lim
%→0

H 1(Γ0 ∩B%)
2%

=
1

2
,

and an associated displacement u0 ∈ LD(ΩrΓ0) given as a solution of the minimiza-
tion problem

(3.3) min

®
1

2

∫
ΩrΓ0

Ce(v) : e(v) dx : v ∈ LD(Ω r Γ0), v = ψ on ∂Ω r Γ0

´
.

Note that u0 is unique up to an additive rigid movement in each connected component
of Ω r Γ0 disjoint from ∂Ω r Γ0. However, the stress, which is given by Hooke’s law

(3.4) σ0 := Ce(u0) ∈ L2(Ω r Γ0;M2×2
sym)

is unique and it satisfies the variational formulation

(3.5)
∫

ΩrΓ0

σ0 : e(v) dx = 0

for any v ∈ LD(Ω r Γ0) such that v = 0 on ∂Ω r Γ0. Note that standard results on
elliptic regularity (see e.g. [10, Th. 6.3.6]) ensure that u0 ∈ C∞(Ω r Γ0;R2).

Energy release rate. — To define the energy release rate, let us consider a crack incre-
ment Γ0∪Γ, where Γ ∈ K (Ω) and an associated displacement uΓ ∈ LD(Ωr (Γ0∪Γ))

solving

min

®
1

2

∫
Ωr(Γ0∪Γ)

Ce(v) : e(v) dx : v ∈ LD(Ω r (Γ0 ∪ Γ)), v = ψ on ∂Ω r (Γ0 ∪ Γ)

´
.

We define

(3.6) G (Γ) :=
1

2

∫
Ω

[
Ce(uΓ) : e(uΓ)− Ce(u0) : e(u0)

]
dx 6 0,

and

(3.7) Gε :=
1

ε
inf
{
G (Γ) : Γ ∈ K (Ω), H 1(Γ) 6 ε

}
.
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4. Construction of dual functions

The goal of this section is to construct the harmonic conjugate and the Airy func-
tion associated to the displacement u0 in a neighborhood of the crack tip which is
assumed to be the origin. Their construction rests on an abstract functional anal-
ysis result (Lemma 4.1 below) which puts in duality gradients and functions with
vanishing divergence outside a (non-smooth) crack.

Let B = BR0
and B′ = BR′0 be open balls centered at the origin with radii R0 < R′0,

such that B′ ⊂ Ω and ∂B′ ∩Γ0 6= ∅. By assumption, since Γ0 ∈ K (Ω) satisfies (3.2),
this property certainly holds true provided R′0 is small enough. Note in particular
that the connectedness of Γ0 ensures that ∂B ∩ Γ0 6= ∅ as well.

The following result is a generalization of [5, Lem. 1].

Lemma 4.1. — Consider the following subspaces of L2(B;R2):

X := {σ ∈ C∞(B;R2) : Supp(σ) ∩ Γ0 = ∅, div σ = 0 in B},
Y := {∇v : v ∈ H1(B r Γ0), v = 0 on ∂B r Γ0}.

Then Y ⊥ = X (thus also X⊥ = Y ).

Proof. — Let σ ∈ X and v ∈ H1(B r Γ0) be such that v = 0 on ∂B r Γ0. It follows
that the product σv belongs to H1

0 (B;R2) and that

(4.1) div(σv) = σ∇v,

from which we deduce that∫
B

σ · ∇v dx =

∫
B

div(σv)dx = 0.

Consequently, X ⊂ Y ⊥, and thus X ⊂ Y ⊥.
We next establish the reverse inclusion. Let Ψ ∈ X⊥. According to De Rham’s The-

orem (see [30, p. 20]), there exists v ∈ H1
loc(B r Γ0) such that ∇v = Ψ ∈ L2(B r Γ0).

If further V is a smooth open set such that V ∩ Γ0 = ∅ and V ∩ ∂B 6= ∅, then the
open set V ∩B has Lipschitz boundary, and thus v ∈ H1(V ∩B). Therefore, the trace
of v on ∂B r Γ0 is well defined, and we claim that we can assume that v = 0 on
∂B r Γ0.

To show this property, we consider a connected component U of B r Γ0, and let
S = ∂B ∩ U . For any g ∈ C∞c (S) with zero average, it is possible to find a smooth,
bounded and connected open set U ′ ⊂ U such that both U1 := U ′∩B and U2 := U ′rB
are connected and have Lipschitz boundary, and with Supp g ⊂ U ′ ∩ ∂B. Next, we
consider a smooth function with compact support in U ′, which coincides with g on
S′ = S ∩ U ′ (and which we still denote g ∈ C∞c (U ′)). We then denote by H1 the
subspace of H1(U1) made of all functions ϕ ∈ H1(U1) satisfying

∫
U1
ϕdx = 0, and

introduce the following variational problem:

inf
ϕ∈H1

®
1

2

∫
U1

|∇ϕ|2dx−
∫
S′
gϕ dH 1

´
.
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It is standard that this problem has a unique minimizer ϕ1 ∈ H1, which is a solution of
−∆ϕ1 = 0 in U1,
∂ϕ1

∂ν
= 0 on ∂U1 r S′,

∂ϕ1

∂ν
= g on S′ ∩ ∂U1.

Since g ∈ C∞c (S′) and S′ is smooth, we deduce that ϕ1 ∈ C∞(U1 ∪ (S′ ∩ ∂U1)) by
elliptic regularity. In addition, since for any ϕ ∈ H1

0 (B),∫
U1

∇ϕ1 · ∇ϕdx = 0

one has div(χU1
∇ϕ1) = 0 in H−1(B). Next, we argue similarly in U2 to get a function

ϕ2 ∈ H1(U2) ∩ C∞(U2 ∪ (S′ ∩ ∂U2)) satisfying
∫
U2
ϕ2 dx = 0, and

−∆ϕ2 = 0 in U2,
∂ϕ2

∂ν
= 0 on ∂U2 r S′,

∂ϕ2

∂ν
= g on S′ ∩ ∂U2,

and in particular div(χU2
∇ϕ2) = 0 in H−1(R2 r B). We finally consider the vector

field defined in R2 by
σ = χU1

∇ϕ1 − χU2
∇ϕ2.

Since the normal trace of σ does not jump across S′, σ is divergence free in H−1(R2).
Therefore, taking a standard sequence of mollifiers (ρε)ε>0, and considering σε =

σ ∗ ρε|B , we get an element of X, and since Ψ ∈ X⊥ we infer that∫
BrΓ0

Ψ · σε dx = 0.

Letting ε→ 0 it follows

0 =

∫
U1

Ψ · ∇ϕ1 dx =

∫
U1

∇v · ∇ϕ1 dx =

∫
S

gv dH 1,

and since g was arbitrary (with zero average on S) we deduce that v is a constant
on S. Since S = ∂B∩U and U is connected, we can remove this constant from v in the
component U of BrΓ0 and assume that v = 0 on S. Doing the same in all connected
components yields a function v which vanishes on ∂B r Γ0. Finally, considering the
truncated function vk := (−k ∨ v) ∧ k, where k ∈ N, we get that vk ∈ H1(B r Γ0),
vk = 0 on ∂B r Γ0, and thus ∇vk ∈ Y . Moreover, since ∇vk → ∇v = Ψ strongly in
L2(B;R2) as k →∞ we get that X⊥ ⊂ Y and that Y ⊥ = (Y )⊥ ⊂ (X⊥)⊥ = X. �

4.1. The harmonic conjugate. — We are now in position to construct the harmonic
conjugate v0 associated to u0 in B. By construction, the displacement u0 satisfies
a Neumann condition on the crack Γ0, while its associated stress σ0 has zero di-
vergence outside the crack, both in a weak sense. The harmonic conjugate v0 is,
roughly speaking, a dual function of u0 in the sense that it satisfies a homogeneous
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Dirichlet boundary condition on the crack Γ0, and its rotated gradient coincides with
the stress σ0. The harmonic conjugate will be of use in the proof of Proposition 5.1
in order to prove a lower bound on the energy release rate. It will also appear in the
construction of the Airy function.

Proposition 4.2. — There exists a function v0 ∈ H1
0,Γ0

(B;R2)∩C∞(BrΓ0;R2) such
that

(4.2) −∇⊥v0 = σ0 in B r Γ0.

Proof. — According to the variational formulation (3.5), for any v ∈ H1(B rΓ0;R2)

with v = 0 on ∂B r Γ0, we have ∫
B

σ0 : ∇v dx = 0.

Consequently, both lines of σ0, denoted by

σ(1) :=
(
(σ0)11, (σ0)12

)
, σ(2) :=

(
(σ0)12, (σ0)22

)
,

belong to Y ⊥. Therefore, Lemma 4.1 ensures the existence of a sequence (σ
(1)
n ) ⊂ X

such that σ(1)
n → σ(1) in L2(B;R2). Since div σ

(1)
n = 0 in B and Supp(σ

(1)
n )∩Γ0 = ∅,

it follows that
σ(1)
n = ∇⊥p(2)

n

for some p(2)
n ∈ C∞(B) with Supp(p

(2)
n ) ∩ Γ0 = ∅. Consequently, by the Poincaré

inequality, we get that p(2)
n → p(2) in H1(B) for some p(2) ∈ H1

0,Γ0
(B) satisfy-

ing ∇⊥p(2) = σ(1). We prove similarly the existence of p(1) ∈ H1
0,Γ0

(B) satisfying
∇⊥p(1) = −σ(2). We then define

v0 :=

Å
−p(2)

p(1)

ã
∈ H1

0,Γ0
(B;R2)

which satisfies (4.2). Finally, since σ0 ∈ C∞(BrΓ0;M2×2
sym), then v0 ∈ C∞(BrΓ0;R2).

�

4.2. The Airy function. — We next construct the Airy function w0 associated to
the displacement u0 in B following an approach similar to [5]. This new function
has the property to be a biharmonic function vanishing on the crack. Therefore, the
original elasticity problem (3.3) can be recast into a suitable biharmonic equation
whose associated natural energy (the L2 norm of the Hessian) coincides with the
original elastic energy. The Airy function will be useful in Section 6 in order to get
an a priori bound on the rescaled elastic energy around the crack tip, as well as in
our convergence result for the blow-up displacement.

Proposition 4.3. — There exists a function w0 ∈ H2
0,Γ0

(B) such that

(4.3) ∆2w0 = 0 in D ′(B r Γ0)

and

(4.4) D2w0 =

Ç
(σ0)22 −(σ0)12

−(σ0)12 (σ0)11

å
.
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Proof. — We reproduce the construction initiated in the proof of Proposition 4.2 with
the larger ball B′ instead of B. It ensures the existence of p(1) and p(2) ∈ H1

0,Γ0
(B′)

such that

∇⊥p(2) =
(
(σ0)11, (σ0)12

)
, ∇⊥p(1) = −

(
(σ0)12, ((σ0)22

)
.

By definition, there exists sequences (p
(1)
n ) and (p

(2)
n ) ⊂ C∞(B′) vanishing in a

neighborhood of Γ0 in B′, and such that p(1)
n → p(1) and p(2)

n → p(2) in H1(B′). For
any v ∈ H1(B′ r Γ0) with v = 0 on ∂B′ r Γ0, we infer thanks to the integration by
parts formula that∫
B′

Å
−p(2)

p(1)

ã
· ∇v dx =

∫
B′

(−p(2)∂1v + p(1)∂2v) dx = lim
n→∞

∫
B′

(−p(2)
n ∂1v + p(1)

n ∂2v) dx

= lim
n→∞

∫
B′

(−∂1p
(2)
n + ∂2p

(1)
n )v dx =

∫
B′

(−∂1p
(2) + ∂2p

(1))v dx = 0.

Therefore, it follows that Å
−p(2)

p(1)

ã
∈ Y ⊥ = X

according again to Lemma 4.1. Arguing as in the proof of Proposition 4.2, we deduce
the existence of some w0 ∈ H1

0,Γ0
(B′) such that

∇w0 = (p(1), p(2)).

By construction, the Airy function w0 satisfies (4.4). Consequently, we have
w0 ∈ H1

0,Γ0
(B′)∩H2(B′) with ∇w0 ∈ H1

0,Γ0
(B′;R2). Observe that since w0 ∈ H2(B′),

we can assume that it is continuous (that is, we consider its continuous representative),
and even in C 0,α(B) for any α < 1.

Let us show that w0 ∈ H2
0,Γ0

(B). This property rests on a capacity argument similar
to that used in [5, Th. 1]. Thanks to [1, Th. 9.1.3], we just need to check that w0

vanishes on Γ0 ∩B, pointwise. First, we consider a cut-off function η ∈ C∞c (B′; [0, 1])

satisfying η = 1 onB. Denoting z0 := ηw0, then one has z0 ∈ H2(B′rΓ0)∩H1
0 (B′rΓ0)

and ∇z0 ∈ H1
0 (B′ r Γ0;R2). In particular, z0 = 0 on ∂(B′ r Γ0) except in a set

of zero Cap1,2-capacity (since being continuous it is obviously the quasicontinuous
representative of z0 in H1). Let K = {x ∈ ∂(B′ r Γ0) : z0(x) 6= 0} (which is a
relatively open subset of Γ0 ∩B′) and consider γ ⊂ K a connected component. Then
the diameter of γ must be zero, otherwise γ would have positive Cap1,2-capacity
(see [21, Cor. 3.3.25]). Therefore it must be at most an isolated point of Γ0. However,
∂(B r Γ0) is connected and therefore has no isolated point, hence K = ∅.

We next show that w0 is a biharmonic function. Indeed, according to (4.4), one has

∆2w0 = ∆((σ0)11 + (σ0)22) in D ′(B r Γ0).

Denoting by e0 := e(u0) the elastic strain, and using the compatibility condition

2∂2
12(e0)12 = ∂2

11(e0)22 + ∂2
22(e0)11 in D ′(B r Γ0)
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together with Hooke’s law (3.1),

(e0)11 =
(σ0)11

E
− ν

E
(σ0)22,

(e0)22 =
(σ0)22

E
− ν

E
(σ0)11,

(e0)12 =
1 + ν

E
(σ0)12,

we infer that

∆2w0 = (1 + ν)[∂2
11(σ0)11 + ∂2

22(σ0)22 + 2∂2
12(σ0)12] in D ′(B r Γ0).

Finally, according to the variational formulation (3.5), we have

div σ0 = 0 in D ′(B r Γ0)

from which (4.3) follows. �

Remark 4.4. — The biharmonicity (4.3) of the Airy function w0 is equivalent to the
following local minimality property∫

B

|D2w0|2 dx 6
∫
B

|D2z|2 dx,

for all z ∈ w0 +H2
0 (B).

Remark 4.5. — According to the results of [24], we get the following estimate of the
energy of w0 around the origin: for every 2% < R 6 R0,∫

B%

|D2w0|2 dx 6
C0%

R

∫
BR

|D2w0|2 dx,

for some universal constant C0 > 0 independent of R and %. Indeed, it suffices to
apply [24, Th. 2] in the open set BrΓ0 with (in their notation) ω = 2π and δ = 1/2.
This is possible since, Γ0 being connected, then for all % < R we have ∂B% ∩ Γ0 6= ∅,
H 1(∂B% r Γ0) 6 2π% and ∂(B r Γ0) ∩ ∂(BR r Γ0) = Γ0 ∩BR ⊂ Γ0 ∩B.

Thanks to the reformulation of the elasticity problem as a biharmonic equation,
and according to Remark 4.5 concerning the behavior of the energy of a biharmonic
function in fractured domains, we get the following result about the elastic energy
concentration around the crack tip. We observe that in [9] a stronger result has been
obtained in the scalar (anti-plane) case where a monotonicity formula has been es-
tablished.

Proposition 4.6. — Let σ0 be the stress defined in (3.4) and R0 > 0 be such that
BR0

⊂ Ω and ∂BR0
∩Γ 6= ∅. Then there exists a universal constant C0 > 0 such that

for all ρ, R > 0 satisfying 2% < R 6 R0,∫
B%

|σ0|2 dx 6
C0%

R

∫
BR

|σ0|2 dx.

Proof. — The result is an immediate consequence of (4.4) together with Remark 4.5.
�
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5. Bounds on the energy release rate

The goal of this section is to establish bounds on the energy release rate. This
is the first step toward a more precise analysis and a characterization of the energy
release rate as a limiting minimization problem (see Section 7). As in [7, Lem. 2.4],
the proof of the upper bound relies on the construction of an explicit competitor
for the minimization problem (3.7) defining Gε. The lower bound rests in turn into
a dual formulation (in term in the stress) of the minimization problem (3.6), and
into the construction, for each crack increment, of an admissible stress competitor for
this new dual variational problem. The construction we use is based on the harmonic
conjugate v0 associated to the displacement obtained in Proposition 4.2.

Proposition 5.1. — There exist two constants 0 < G∗ 6 G∗ <∞ such that

−G∗ 6 lim inf
ε→0

Gε 6 lim sup
ε→0

Gε 6 −G∗.

Proof
Upper bound. — Since 0 ∈ Ω, one can choose ε > 0 small enough so that
Bε/(2π+1) ⊂ Ω. Let

Γ := ∂Bε/(2π+1) ∪ {(t, 0) : 0 6 t 6 ε/(2π + 1)}.

This set clearly belongs to K (Ω) and H 1(Γ) = ε. Defining v := u0χΩrBε/(2π+1)
, we

infer that v ∈ LD(Ω r (Γ0 ∪ Γ)) with v = u0 = ψ on ∂Ω r (Γ0 ∪ Γ). Consequently,

G (Γ) 6
1

2

∫
Ω

[
Ce(v) : e(v) dx− Ce(u0) : e(u0)

]
dx = −1

2

∫
Bε/(2π+1)

Ce(u0) : e(u0) dx.

We then apply Proposition 4.6 which shows that

lim sup
ε→0

Gε 6 −G∗,

for some G∗ > 0.

Lower bound. — Let ε > 0 be small enough so that 2ε 6 R0, B2ε ⊂ Ω. According to
[8, p. 330], for any Γ ∈ K (Ω) with H 1(Γ) 6 ε, one has

(5.1) 1

2

∫
Ω

[
Ce(uΓ) : e(uΓ)− Ce(u0) : e(u0)

]
dx > −1

2

∫
Ω

(τ − σ0) : C−1(τ − σ0) dx

for every statically admissible stress τ ∈ L2(Ω;M2×2) satisfying

(5.2)
∫

Ω

τ : e(v) dx = 0 for any v ∈ LD(Ωr(Γ0∪Γ)) with v = 0 on ∂Ωr(Γ0∪Γ).

We now construct a convenient competitor τ for (5.2). Since Γ is connected, 0 ∈ Γ

and H 1(Γ) 6 ε it follows that Γ ⊂ Bε. Let η ∈ C∞c (Ω; [0, 1]) be a cut-off function
satisfying 

η = 1 in B5ε/4,

η = 0 in Ω rB7ε/4,

‖∇η‖∞ 6 3/ε.
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We define τ ∈ L2(Ω;M2×2) by

(5.3) τ = σ0 +∇⊥(ηv0) =


0 in Bε,
−∇⊥((1− η)v0) in B2ε rBε,

σ0 in Ω rB2ε,

where v0 is the harmonic conjugate of u0 in the ball B = BR0
, which satisfies

−∇⊥v0 = σ0.
Let us check that τ satisfies (5.2). By the density result [5, Th. 1], it is enough to

consider test functions v ∈ H1(Ω r (Γ0 ∪ Γ);R2) with v = 0 on ∂Ω r (Γ0 ∪ Γ). We
have ∫

Ω

τ : e(v) dx =

∫
Ω

(σ0 +∇⊥(ηv0)) : e(v) dx =

∫
Ω

(∇⊥(ηv0)) : e(v) dx.

We recall that there exists a sequence (vn)n ⊂ C∞(B2ε;R2) with vn = 0 in a neigh-
borhood of Γ0 and such that vn → v0 in H1(B2ε;R2). Hence,

lim
n→∞

∫
Ω

(∇⊥(ηvn)) : e(v) dx =

∫
Ω

(∇⊥(ηv0)) : e(v) dx.

On the other hand, since ηvn ∈ C∞c (Ω r Γ0;R2)∫
ΩrΓ0

(∇⊥(ηvn)) : ∇v dx = −
∫

ΩrΓ0

div(∇⊥(ηvn)) · v dx = 0,

simply observing that div∇⊥ = 0), showing that τ satisfies (5.2).
Taking τ defined by (5.3) as competitor in (5.1) and recalling that σ0 = −∇⊥v0,

we infer that

(5.4) 1

2

∫
Ω

(
Ce(uΓ) : e(uΓ)− Ce(u0) : e(u0)

)
dx

> −c
Ç∫

B2ε

|σ0|2 dx+
1

ε2

∫
B2εrBε

|v0|2 dx
å
,

for some constant c > 0 only depending on the Lamé constants λ and µ. We have∫
B2εrBε

|v0|2 dx =

∫ 2ε

ε

∫
∂Br

|v0|2 dH 1 dr.

We know that for a.e. r, v0 ∈ H1(∂Br) with v0 = 0 on Γ0 ∩ ∂Br (which is nonempty
since Γ0 is connected). For such r, if x ∈ ∂Br and ξ ∈ Γ0 ∩ ∂Br, an integration along
the circle shows that v0(x) =

∫
(̄ξ,x)

∂τv0 dH 1 so that (using the smallest arc from ξ

to x)

v0(x)2 6 πr

∫
∂Br

|∂τv0|2dH 1.

Hence ∫
∂Br

|v0|2dH 1 6 2π2r2

∫
∂Br

|∂τv0|2dH 1
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so that ∫
B2εrBε

|v0|2 dx 6 8π2ε2

∫ 2ε

ε

∫
∂Br

|∂τv0|2 dH 1 dr

6 8π2ε2

∫
B2ε

|∇v0|2dx 6 8π2ε2

∫
B2ε

|σ0|2dx.

Inserting this result into (5.4), it follows that
1

2

∫
Ω

[
Ce(uΓ) : e(uΓ)− Ce(u0) : e(u0)

]
dx > −c

∫
B2ε

|σ0|2 dx

for some constant c > 0 only depending on λ and µ. Since this holds for all Γ ∈ K (Ω)

with H 1(Γ) 6 ε, it follows

Gε > −
c

ε

∫
B2ε

|σ0|2 dx.

Then Proposition 4.6 shows that

lim inf
ε→0

Gε > −G∗

for some G∗ > 0. �

6. Blow-up limit of the pre-existing crack

In this section we investigate the nature of the singularity of the displacement u0

and the stress σ0 at the origin, which is the tip of the crack Γ0 having density 1/2 at
that point. We will prove, that along suitable subsequences of radius εk → 0 of balls,
the rescaled crack converges in the Hausdorff sense to a half-line (modulo a rotation),
and the rescaled displacement converges in a certain sense to the usual crack-tip
function in the complement of a half-line. Once again, the analysis strongly relies on
the Airy function introduced in Proposition 4.3. Contrary to [9] where the scalar anti-
plane was treated, we do not have any monotonicity formula on the energy (neither
for the elastic problem nor for the biharmonic one) which prevents one to ensure the
existence of the limit of the rescaled energy, and thus the uniqueness of the limit.
Therefore, in contrast with [9], our result strongly depends upon the sequence (εn).

Let R0 > 0 be such that BR0 ⊂ Ω, and 0 < ε 6 R0/2. According to
[9, Prop. 1&Rem. 2], there exists a sequence of rotations Rε such that the rescaled
crack

(6.1) Σε := ε−1Rε(Γ0 ∩Bε)

locally converges to the half line Σ0 := (−∞, 0] × {0} with respect to the Hausdorff
distance.

In this section we are interested in the asymptotic behavior of the rescaled dis-
placement uε ∈ LD(BR0/ε) defined by

(6.2) uε(y) := ε−1/2u0(R−1
ε (εy)) for every y ∈ BR0/ε.
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To this aim, it will again be convenient to work on the Airy function. Let us consider
the Airy function w0 ∈ H2

0,Γ0
(BR0) associated to u0 in BR0 given by Proposition 4.3

satisfying (4.3) and (4.4). The rescaled Airy function wε ∈ H2
0,Σε

(BR0/ε) is defined by

(6.3) wε(y) := ε−3/2w0(R−1
ε (εy)) for every y ∈ BR0/ε.

6.1. Blow-up analysis of the Airy function. — We first show that the Airy function
blows-up into a biharmonic function outside the half line limit crack, satisfying a
homogeneous Dirichlet condition on the crack, and that its energy computed on a
ball behaves like the radius.

Proposition 6.1. — For every sequence (εn)↘ 0+, there exist a subsequence (εk) ≡
(εnk)↘ 0+ and wΣ0

∈ H2
loc(R2) such that

wεk −→ wΣ0
strongly in H2

loc(R2).

In addition, wΣ0 is a solution of the following biharmonic problem with homogeneous
Dirichlet boundary condition on the crack:

(6.4)
{

∆2wΣ0
= 0 in D ′(R2 r Σ0),

wΣ0
∈ H2

0,Σ0
(BR) for any R > 0,

and it satisfies the following energy bound

(6.5) sup
R>0

1

R

∫
BR

|D2wΣ0
|2 dx <∞.

Proof. — The proof is divided into several steps. We first derive weak compactness on
the rescaled Airy function, according the energy bound of the original Airy function.
We then derive a Dirichlet condition on the crack for the weak limit and its gradient.
Using a cut-off function argument, we establish that the weak convergence is actually
strong, which enables one to show that the limit Airy function is a biharmonic function
outside the crack. In the sequel R > 0 is fixed, and ε > 0 is small enough such that
2R < R0/ε.

Weak compactness. — According to [24, Th. 2], we have∫
B2R

|D2wε(y)|2 dy = ε

∫
B2R

|D2w0(R−1
ε (εy))|2 dy

=
1

ε

∫
B2Rε

|D2w0(x)|2 dx 6 C0R,

(6.6)

where C0 > 0 is independent of ε and R. Since wε ∈ H2
0,Σε

(B2R), Poincaré inequality
implies that the sequence (wε)ε>0 is uniformly bounded in H2(B2R). A standard
diagonalisation argument shows that for each sequence (εn) ↘ 0+, it is possible
to extract a subsequence (εk) ≡ (εnk) ↘ 0+ and find wΣ0

∈ H2
loc(R2) such that

wεk ⇀ wΣ0 weakly in H2
loc(R2). In particular, passing to the lim inf in (6.6) yields

(6.5). In addition, we can assume that, for the same subsequence, wεk → wΣ0 strongly
in H1

loc(R2) ∩ L∞loc(R2), and that |D2wεk |2L 2 ⇀ µ weakly* in Mloc(R2) for some
nonnegative measure µ ∈Mloc(R2).
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Condition on the crack. — Let us show that wΣ0
∈ H2

0,Σ0
(Br) for any r < 2R. Consider

a cut-off function η ∈ C∞c (B2R; [0, 1]) such that η = 1 on Br, and let z := ηwΣ0 ∈
H2

0 (B2R). Note that since wεk → wΣ0 uniformly on B2R and Σεk → Σ0 in the sense
of Hausdorff in B2R, then wΣ0

= 0 on Σ0, and thus z = 0 on ∂(B2R r Σ0). On
the other hand, since ∇(ηwεk) ∈ H1

0 (B2R r Σεk ;R2) and ∇(ηwεk) ⇀ ∇z weakly in
H1(B2R;R2), it follows from [29] that ∇z ∈ H1

0 (B2R r Σ0;R2). Therefore, ∇z has a
Cap1,2-quasicontinuous representative, denoted by ›∇z, such that ›∇z = 0 Cap1,2-q.e.
on ∂(B2R r Σ0). As a consequence of [1, Th. 9.1.3] (see also [21, Th. 3.8.3]), we get
that z ∈ H2

0 (B2R r Σ0), and thus that wΣ0 ∈ H2
0,Σ0

(Br).

Strong convergence. — Our aim now is to prove that wεk → wΣ0
strongly in H2

loc(R2).
By the lower semicontinuity of the norm with respect to weak convergence, we already
have for any r < 2R

(6.7)
∫
Br

|D2wΣ0 |2 dx 6 lim inf
k→∞

∫
Br

|D2wεk |2 dx,

so that it is enough to prove the converse inequality with a lim sup. To this aim we
will use the minimality property of wεk , and suitably modify wΣ0 into an admissible
competitor.

Let us select a radius r ∈ (R, 2R) such that µ(∂Br) = 0. Since wΣ0
∈ H2

0,Σ0
(Br),

for every n ∈ N, there exists a function hn ∈ C∞(Br) such that Supp(hn) ∩ Σ0 = ∅
and hn → wΣ0

in H2(Br) as n → ∞. Note that, by Hausdorff convergence, one also
has that Supp(hn) ∩ Σεk = ∅ for k > kn large enough, for some integer kn ∈ N.

Let us consider a cut-off function ηδ ∈ C∞c (Br; [0, 1]) satisfying

(6.8) ηδ = 1 on Br−δ , |∇ηδ| 6
C

δ
, |D2ηδ| 6

C

δ2
.

We finally define

zδ,n,k := ηδhn + (1− ηδ)wεk = wεk + ηδ(hn − wεk).

Observe that zδ,n,k ∈ H2
0,Σεk

(Br) provided that k > kn is large enough. Consequently,
since zδ,n,k ∈ wεk +H2

0 (Br), we infer thanks to (4.3) and Remark 4.4 that∫
Br

|D2wεk |2 dx 6
∫
Br

|D2zδ,n,k|2 dx,

or still∫
Br

|D2wεk |2 dx 6
∫
Br

|ηδD2hn + (1− ηδ)D2wεk |2 dx

+

∫
Br

|(hn − wεk)D2ηδ + 2∇ηδ ⊗ (∇hn −∇wεk)|2 dx

+ 2

∫
Br

[
ηδD

2hn + (1− ηδ)D2wεk
]

:
[
(hn − wεk)D2ηδ + 2∇ηδ ⊗ (∇hn −∇wεk)

]
dx.
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By convexity, we get that∫
Br

|ηδD2hn + (1− ηδ)D2wεk |2 dx 6
∫
Br

ηδ|D2hn|2 dx+

∫
Br

(1− ηδ)|D2wεk |2 dx,

and thanks to (6.8)∫
Br

ηδ|D2wεk |2 dx 6
∫
Br

ηδ|D2hn|2 dx

+ C

∫
BrrBr−δ

Å
1

δ4
|hn − wεk |2 +

1

δ2
|∇hn −∇wεk |2

ã
dx

+2

∫
BrrBr−δ

[
ηδD

2hn+(1−ηδ)D2wεk
]

:
[
(hn−wεk)D2ηδ+2∇ηδ⊗(∇hn−∇wεk)

]
dx.

Letting first k → ∞ and then n → ∞, using that wεk → wΣ0
in H1(Br) and that

hn → wΣ0
in H2(Br), we obtain

lim sup
k→∞

∫
Br

ηδ|D2wεk |2 dx 6
∫
Br

|D2wΣ0 |2 dx.

On the other hand

lim
k→∞

∫
Br

(1− ηδ)|D2wεk |2 dx =

∫
Br

(1− ηδ)dµ 6 µ(Br rBr−δ).

Therefore we can write that

lim sup
k→∞

∫
Br

|D2wεk |2 6 lim sup
k→∞

∫
Br

ηδ|D2wεk |2 dx+ lim sup
k→∞

∫
Br

(1− ηδ)|D2wεk |2 dx

6

∫
Br

|D2wΣ0 |2 dx+ µ(Br rBr−δ).(6.9)

Finally, letting δ → 0 in (6.9) and using the fact that µ(∂Br) = 0, we get the desired
bound

lim sup
k→∞

∫
Br

|D2wεk |2 6
∫
Br

|D2wΣ0
|2 dx,

which ensures together with (6.7) that wεk converges strongly to wΣ0
in H2(Br).

Biharmonicity. — In order to show that wΣ0
solves a biharmonic Dirichlet problem

outside the crack Σ0 is is enough to check that it satisfies the minimality property∫
BR

|D2wΣ0
|2 dx 6

∫
BR

|D2w|2 dx

for all w ∈ wΣ0
+ H2

0 (BR r Σ0). Let z ∈ H2
0 (BR r Σ0), by density, there exists a

sequence of functions (zn) ⊂ C∞c (BRrΣ0) such that zn → z strongly in H2(BRrΣ0).
Since zn = 0 in a neighborhood of Σ0, it follows by Hausdorff convergence that zn = 0

in a neighborhood of Σεk for k > kn large enough, for some integer kn ∈ N. Therefore,
for any k > kn, wεk + zn ∈ wεk + H2

0,Σεk
(BR) is an admissible competitor for the

minimality property satisfied by the Airy function (see Remark 4.4), and∫
BR

|D2wεk |2 dx 6
∫
BR

|D2wεk +D2zn|2 dx.
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Letting first k → ∞ and then n → ∞, and using the strong convergence of (wεk)

established before yields∫
BR

|D2wΣ0
|2 dx 6

∫
BR

|D2wΣ0
+D2z|2 dx.

The proof of the proposition is now complete. �

Remark 6.2. — By elliptic regularity, it follows that wΣ0
is smooth outside the origin

up to both sides of Σ0. In particular, for every 0 < r < R <∞ and for every k ∈ N,
wΣ0

∈ Hk((BR rBr) r Σ0) and is a solution for problem (6.4) in a stronger sense.

It turns out that wΣ0 can be made explicit by showing that it is a positively 3/2-
homogeneous function. The proof of this result follows an argument given by Monique
Dauge, relying on the theory introduced by Kondrat’ev in [23], that is briefly recalled
in the appendix.

Proposition 6.3. — The function wΣ0
is positively 3/2-homogeneous. More precisely,

in polar coordinates, we have for all (r, θ) ∈ (0,+∞)× (0, 2π),

wΣ0
(r cos θ, r sin θ) = r3/2 [c1ψ1(θ) + c2ψ2(θ)] ,

where c1 and c2 ∈ R are constants, while ψ1 and ψ2 are given by

ψ1(θ) :=

ï
3

2
cos (θ/2)− 1

2
cos (3θ/2)

ò
,(6.10)

ψ2(θ) :=

ï
3

2
sin (θ/2) +

1

2
sin (3θ/2)

ò
.(6.11)

Proof. — Let wΣ0
be the biharmonic function in R2rΣ0 with homogeneous Dirichlet

boundary conditions given by Proposition 6.1, and let χ ∈ C∞c (R2; [0, 1]) be a cut-off
function satisfying χ = 1 in B1 and χ = 0 in R2 rB2. We decompose wΣ0

as follows:

wΣ0
= w0 + w∞

where w0 := χwΣ0
and w∞ := (1 − χ)wΣ0

. Of course both w0 and w∞ still satisfy
homogenous boundary Dirichlet conditions on Σ0, and one can check that

∆2w0 = f0 and ∆2w∞ = f∞ in R2 r Σ0,

for some f0 and f∞ supported in the annulus B2 r B1. In addition, according to
Remark 6.2, it follows that both f0 and f∞ ∈ Hk(R2 r Σ0) for every k ∈ N, and
consequently f0 and f∞ ∈ V `β (R2 r Σ0) for all ` ∈ Z and all β ∈ R (we recall
Section 2.3 for the definition of V `β ). We next intend to apply Theorem A.2 to w0

and w∞ separately.
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Step 1: Analysis of w0. — Since w0 ∈ H2
0 (R2 r Σ0), we get that w0 ∈ V 2

0 (R2 r Σ0).
To establish this property, it suffices to check that the functions x 7→ |x|−1∂αw0(x)

(with |α| = 1) and x 7→ |x|−2w0(x) belong to L2(R2 r Σ0). Indeed,∫
R2rΣ0

|x|−2|∂αw0|2 dx =
∑
j∈Z

∫
(B2j+1rB2j )rΣ0

|x|−2|∂αw0|2 dx

6
∑
j∈Z

2−2j

∫
(B2j+1rB2j )rΣ0

|∇w0|2 dx.

Since all weak derivatives ∂αw0 for |α| = 1 belong to H1
0,Σ0

((B2j+1 r B2j ) r Σ0),
Poincaré inequality yields∫

(B2j+1rB2j )rΣ0

|∇w0|2 dx 6 C022j

∫
(B2j+1rB2j )rΣ0

|D2w0|2 dx,

for some constant C0 > 0 independent of j, and thus

(6.12)
∫
R2rΣ0

|x|−2|∂αw0|2 dx 6 C0

∑
j∈Z

∫
(B2j+1rB2j )rΣ0

|D2w0|2 dx

= C0

∫
R2rΣ0

|D2w0|2 dx <∞.

Similarly, we have∫
R2rΣ0

|x|−4|w0|2 dx =
∑
j∈Z

∫
(B2j+1rB2j )rΣ0

|x|−4|w0|2 dx

6
∑
j∈Z

2−4j

∫
(B2j+1rB2j )rΣ0

|w0|2 dx.

Applying again Poincaré inequality to the function w0 ∈ H1
0,Σ0

((B2j+1 rB2j ) r Σ0),
we obtain ∫

(B2j+1rB2j )rΣ0

|w0|2 dx 6 C022j

∫
(B2j+1rB2j )rΣ0

|∇w0|2 dx,

and thus, according to (6.12),∫
R2rΣ0

|x|−4|w0|2 dx 6 C0

∑
j∈Z

2−2j

∫
(B2j+1rB2j )rΣ0

|∇w0|2 dx

6 4C0

∫
R2rΣ0

|x|−2|∇w0|2 dx <∞.

Since in particular f0 ∈ V −2
β (R2 r Σ0) ∩ V −2

0 (R2 r Σ0) for any β < 0, applying
Theorem A.2 yields that for any β ∈ R−rS , there exists z0 ∈ V 2

β (R2rΣ0) such that

w0 = z0 +
∑

λ∈S∩(1,1−β)

rλϕλ(θ).
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Step 2: Analysis of w∞. — We first observe that the growth condition (6.5) satisfied
by wΣ0 shows that

sup
R>0

1

R

∫
BR

|D2w∞|2 dx <∞

since w∞ is supported in R2 r B1. Let us check that this growth condition implies
w∞ ∈ V 2

β (R2 r Σ0) with β < −1/2. Indeed, for |α| = 2,∫
R2rΣ0

|x|2β |∂αw∞|2dx =

∫
R2r(Σ0∪B1)

|x|2β |∂αw∞|2dx

6
∑
j>0

∫
B2j+1rB2j

|x|2β |D2w∞|2dx

6
∑
j>0

22βj

∫
B2j+1rB2j

|D2w∞|2dx

6
∑
j>0

C22βj2j+1 < +∞

provided that β < −1/2. We next show that the functions x 7→ |x|β−1∇w∞(x) and
x 7→ |x|β−2w∞(x) belong to L2(R2 r Σ0) arguing exactly as in Step 1. It again relies
on a dyadic partition of R2 rB1 together with the following Poincaré inequalities in
each annulus B2j+1 rB2j∫

(B2j+1rB2j )rΣ0

|w∞|2dx 6 C022j

∫
(B2j+1rB2j )rΣ0

|∇w∞|2dx,

and ∫
(B2j+1rB2j )rΣ0

|∇w∞|2dx 6 C022j

∫
(B2j+1rB2j )Σ0

|D2w∞|2dx,

which hold since both w∞ and ∇w∞ vanish on Σ0 allowing us to apply Poincaré
inequality to them. Therefore it leads to w∞ ∈ V 2

β0
(R2rΣ0) for β0 = −1/2−ε, where

ε > 0 is small.

Conclusion. — We finally gather all the results established so far by taking the
same β0 for the above functions w0 and w∞. Observing that S ∩ (1, 1−β0) = {3/2},
we get that, in polar coordinates,

w(r cos θ, r sin θ) = r3/2ϕ3/2(θ)+z(r cos θ, r sin θ) for a.e. (r, θ) ∈ (0,+∞)×(0, 2π),

for some z ∈ V 2
−1/2−ε(R

2 r Σ0). We finally complete the proof of the proposition by
establishing that z = 0. To this aim, we recall that the function (r, θ) 7→ r3/2φ3/2(θ) is
biharmonic on R2rΣ0, and that it vanishes together with its gradient on the crack Σ0.
In other words it is a solution of (P1) with f = 0. We deduce that z ∈ V 2

−1/2−ε(R
2rΣ0)

must be a solution of (P1) with f = 0 as well. But since −1/2− ε 6∈ S , Theorem A.1
(with β = 3/2 and ` = 2) ensures that z = 0. �
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6.2. Blow-up analysis of the displacement. — We are now in position to study the
blow-up of the displacement. We show that, up to a subsequence and rigid movement,
it converges to the usual positively 1/2-homogeneous function satisfying the Lamé
system outside a half-line.

Theorem 6.4. — For every sequence (εn) ↘ 0+, there exist a subsequence (εk) ≡
(εnk)↘ 0+, a sequence (mk) of rigid movements and a function uΣ0

∈LDloc(R2rΣ0)

such that the blow-up sequence of displacements satisfies

(6.13)
{
uεk −mk → uΣ0

strongly in L2
loc(R2;R2),

e(uεk)χR2rΣεk
→ e(uΣ0

) strongly in L2
loc(R2;M2×2

sym).

In addition, the function uΣ0
is positively 1/2-homogeneous and it is given in polar

coordinates by

(6.14) uΣ0(r cos θ, r sin θ) =
√
r[κ1φ1(θ)+κ2φ2(θ)] for all (r, θ) ∈ (0,+∞)×(0, 2π),

where κ1 and κ2 ∈ R are constants, while φ1 and φ2 are defined by

(6.15) φ1(θ) :=

Ö
λ+ µ

2
cos (3θ/2) +

λ− 3µ

2
cos (θ/2)

λ+ µ

2
sin (3θ/2) +

5λ+ 9µ

2
sin (θ/2)

è
,

and

(6.16) φ2(θ) :=

Ö
−λ+ µ

2
sin (3θ/2)− 3λ+ 7µ

2
sin (θ/2)

λ+ µ

2
cos (3θ/2) +

λ+ 5µ

2
cos (θ/2)

è
.

Proof. — A scalar version of that theorem is contained in [9, Th. 1.1], but the proof
does not extend directly to the vectorial case. This is why we present here an alter-
native argument based on the Airy function.

Let (εk) be the subsequence given by Proposition 6.1. As in the proof of that result,
R > 1 is fixed, and k ∈ N is large enough such that 2R < R0/εk.

Compactness. — Let us denote by C := B1/4(1/2, 0) the ball of center (1/2, 0) and
radius 1/4. We consider the following sequence of rigid displacements

uk(x) :=
1

|C|

∫
C

uεk(y) dy +

Å
1

|C|

∫
C

∇uεk(y)−∇uεk(y)T

2
dy

ãÅ
x− 1

|C|

∫
C

y dy

ã
.

Thanks to (4.4), (6.2) and (6.3), the stress is given by

(6.17) Ce(uεk) =

Ç
D22wεk −D12wεk
−D12wεk D11wεk

å
.

Therefore, according to (6.6), we deduce that the sequence (e(uεk))k∈N is uniformly
bounded in L2(BR;M2×2

sym). Consequently, up to a subsequence (not relabeled), there
exists e ∈ L2

loc(R2;M2×2
sym) such that e(uεk) ⇀ e weakly in L2

loc(R2;M2×2
sym). In addi-

tion, the strong H2
loc(R2)-convergence of the Airy function established in Theorem 6.1
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together with (4.4), (6.2) and (6.3) shows that actually e(uεk) → e strongly in
L2

loc(R2;M2×2
sym).

We next show that e is the symmetrized gradient of some displacement. To this
aim, we consider, for any 0 < δ < 1/10, the Lipschitz domain

Uδ := {x ∈ BR : dist(x,Σ0) > δ}.

Note that for such δ, C b Uδ, while Σεk ∩ Uδ = ∅ for k large enough (depending
on δ). By virtue of the Poincaré-Korn inequality [2, Th. 5.2 and Exam. 5.3] we get
that

(6.18) ‖uεk − uk‖H1(Uδ) 6 cδ‖e(uεk)‖L2(Uδ),

for some constant cδ > 0 depending on δ. Thanks to a diagonalisation argument, we
obtain for a subsequence (not relabeled) a function ûΣ0

∈ LDloc(R2 r Σ0) such that
uεk − uk → ûΣ0

strongly in H1(Uδ;R2), for any 0 < δ < 1/10. Necessarily we must
have that e = e(ûΣ0) and{

uεk − uk → ûΣ0 strongly in L2
loc(R2;R2),

e(uεk)χR2rΣεk
→ e(ûΣ0

) strongly in L2
loc(R2;M2×2

sym).

Minimality. — We next show that ûΣ0
satisfies the minimality property∫

BR

Ce(ûΣ0) : e(ûΣ0) dx 6

∫
BR

Ce(ûΣ0 + v) : e(ûΣ0 + v) dx

for all v ∈ LD(BR r Σ0) such that v = 0 on ∂BR r Σ0. According to [5, Th. 1], it
is enough to consider competitors v ∈ H1(BR r Σ0;R2) with v = 0 on ∂BR r Σ0.
Moreover, since {0} has zero Cap1,2-capacity, we can also assume without loss of
generality that v = 0 in a neighborhood of the origin.

Denoting by C±k the connected component of (BRrΣεk)∩{x1 6 0} which contains
the point (−1/2,±1/2), we define vk as follows:

vk(x1, x2) =


v(x1, x2) if (x1, x2) ∈ [BR ∩ {x1 > 0}]

∪[C+
k ∩ {x2 > 0}] ∪ [C−k ∩ {x2 6 0}];

v(x1,−x2) if (x1, x2) ∈ [C+
k ∩ {x2 < 0}] ∪ [C−k ∩ {x2 > 0}];

0 elsewhere.

Then, one can check that vk ∈ H1(BRrΣεk ;R2) and vk = 0 on ∂BRrΣεk . Moreover,
vk → v strongly in L2(BR;R2) and (∇vk)χBRrΣεk

→ ∇v strongly in L2(BR;M2×2
sym).

Therefore, thanks to the minimality property (3.3) satisfied by u0, we infer that∫
BR

Ce(uεk) : e(uεk) dx 6

∫
BR

Ce(uεk + vk) : e(uεk + vk) dx,

so that passing to the limit as k → ∞, and invoking the strong convergences (6.13)
yields the desired minimality property.
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Explicit expression of the displacement. — According to [20, Th. I and Rem. 1.2], (see
also [7, Rem. 2.1]), there exist constants κ1 and κ2 ∈ R, and a function g ∈ H2

loc(R2)

such that

ûΣ0
(r cos θ, r sin θ) =

√
r[κ1φ1(θ) + κ2φ2(θ)] + g(r cos θ, r sin θ)

for a.e. (r, θ) ∈ (0,+∞)× (0, 2π).

The previous expression of the displacement shows that

(6.19) Ce(ûΣ0
) = Φ + Ce(g),

where Φ is a positively −1/2-homogeneous function. On the other hand, passing to
the limit in (6.17) as k →∞ and using Proposition 6.1 yields

(6.20) Ce(ûΣ0) =

Ç
D22wΣ0

−D12wΣ0

−D12wΣ0 D11wΣ0

å
.

According to Proposition 6.3 the right hand side of the previous equality is posi-
tively −1/2-homogeneous as well. Therefore gathering (6.19) and (6.20) ensures that
e(g) = 0 which shows that g = m is a rigid movement. We finally define the rigid
displacement mk := uk +m which fulfills the conclusions of the proposition. �

7. Energy release rate

Following the approach of [7], our aim is to give a definition of energy release
rate by studying the convergence of the blow-up functional 1

εG (εΓ). The following
statement is the same as [7, Th. 3.1], but with the substantial difference that now Γ0

is not assumed to be a straight line segment near the origin, but only blowing-up to
such a segment for the Hausdorff distance.

Theorem 7.1. — Let (Γε)ε>0 be a sequence of crack increments in K (Ω) be such that
supε H 1(Γε) < ∞, and Γε → Γ in the sense of Hausdorff in Ω. Let us consider the
rescaled crack Σε and displacement uε defined, respectively by (6.1) and (6.2). Then
for every sequence (εn) ↘ 0+, there exist a subsequence (εk) ≡ (εnk) ↘ 0+ and a
rotation R ∈ SO(2) such that

(7.1) lim
k→∞

1

εk
G (εkΓεk) = F (Γ)

where F is defined by

(7.2) F (Γ) := min
w∈LD(R2r(Σ0∪R(Γ)))

{1

2

∫
R2

Ce(w) : e(w) dx+

∫
BR

Ce(uΣ0
) : e(w) dx

−
∫
∂BR

Ce(uΣ0) : (w � ν)dH 1
}
,

where R > 0 is any radius such that Γ ⊂ BR, and uΣ0
is the function introduced in

Theorem 6.4.
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Remark 7.2. — The proof of Theorem 7.1 follows the scheme of [7, Th. 3.1], but some
technical issues arise at two main points: 1) the explicit expression for the blow-up at
the origin does not come directly from the literature but now follows from our first
main result Theorem 6.4, and 2) the construction of a recovery sequence of functions
in the moving domains that converges in a strong sense to prove the minimality of
the limit is more involved, since now after rescaling everything in B1 our sequence of
domains also moves on ∂B1.

Remark 7.3. — In the scalar case (antiplane) the limit does actually not depend on
the subsequence due to the existence of blow-up limit for the whole sequence [9].

Proof of Theorem 7.1. — Let (εn) ↘ 0+ and (εk) ≡ (εnk) ⊂ (εn) be the subsequence
given by Theorem 6.4. Let us consider the rotation Rε be introduced at the begin-
ning of Section 6. It is not restrictive to assume that Rεk converges to some limit
rotation R. In particular Rεk(Γεk) converges to R(Γ) in the sense of Hausdorff.

Rescaling. — We denote by uk a solution of the minimization problem

(7.3) min

ß
1

2

∫
Ω

Ce(v) : e(v) dx : v ∈ LD(Ω r (Γ0 ∪ εkΓεk))

and v = ψ on ∂Ω r (Γ0 ∪ εkΓεk)

™
.

Recalling (3.6) and (3.7), we can write
1

εk
G (εkΓεk) =

1

2εk

∫
Ω

[
Ce(uk) : e(uk)− Ce(u0) : e(u0)

]
dx,

and setting ŵk := uk − u0, we obtain that
1

εk
G (εkΓεk) =

1

2εk

∫
Ω

Ce(ŵk) : e(ŵk) dx+
1

εk

∫
Ω

Ce(ŵk) : e(u0) dx.

Since ŵk = 0 on ∂Ω r (Γ0 ∪ εkΓεk), the variational formulation of (7.3) ensures that∫
Ω

Ce(uk) : e(ŵk) dx = 0,

and it follows, writing u0 = uk − ŵk,

(7.4) 1

εk
G (εkΓεk) = − 1

2εk

∫
Ω

Ce(ŵk) : e(ŵk) dx.

On the other hand, from (7.3) it is easy to see that 1
εk

G (εkΓεk) is also resulting
from a minimization problem with homogeneous boundary condition. Indeed, for any
ŵ ∈ LD(Ω r (Γ0 ∪ εkΓεk)) with ŵ = 0 on ∂Ω r (Γ0 ∪ εkΓεk), denoting v = u0 + ŵ,
we obtain that
1

2

∫
Ω

Ce(v) : e(v) dx

=
1

2

∫
Ω

Ce(u0) : e(u0) dx+
1

2

∫
Ω

Ce(ŵ) : e(ŵ) dx+

∫
Ω

Ce(u0) : e(ŵ) dx,
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which implies

(7.5) 1

εk
G (εkΓεk) =

1

εk
min

{1

2

∫
Ω

Ce(ŵ) : e(ŵ) dx+

∫
Ω

Ce(u0) : e(ŵ) dx :

ŵ ∈ LD(Ω r (Γ0 ∪ εkΓεk)) and ŵ = 0 on ∂Ω r (Γ0 ∪ εkΓεk)
}

=
1

2εk

∫
Ω

Ce(ŵk) : e(ŵk) dx+
1

εk

∫
Ω

Ce(u0) : e(ŵk) dx.

According to the assumptions done on Γε, there exists R > 0 such that if ε is
small enough, then Γε ⊂ BR ⊂ Ω, and H 1(εΓε) 6 Cε for some constant C > 0

independent of ε. In addition, thanks to the lower bound in Proposition 5.1, we get
again for ε small enough,

−1

ε
G (εΓε) 6 C,

which implies from (7.4)

(7.6) 1

εk

∫
Ω

Ce(ŵk) : e(ŵk) dx 6 C.

We now proceed to the following change of variable:

Ωk := ε−1
k Rεk(Ω), Σεk := ε−1

k Rεk(Γ0),

and for y ∈ Ωk,

wk(y) := ε
−1/2
k ŵk(R−1

εk
(εky)), uεk(y) := ε

−1/2
k u0(R−1

εk
(εky)).

We easily deduce from (7.6) that

(7.7)
∫

Ωk

Ce(wk) : e(wk) dx 6 C.

We can also recast the minimization problem in (7.5) in terms of wk, which now
writes as

(7.8) 1

εk
G (εkΓεk) = min

{1

2

∫
Ωk

Ce(w) : e(w) dx+

∫
Ωk

Ce(uεk) : e(w) dx :

w ∈ LD(Ωk r (Σεk ∪Rεk(Γεk))) and w = 0 on ∂Ωk r (Σεk ∪Rεk(Γεk))
}

=
1

2

∫
Ωk

Ce(wk) : e(wk) dx+

∫
Ωk

Ce(uεk) : e(wk) dx

where we used (7.4) in the last equality.

Compactness. — We now extend wk by 0 outside Ωk in such a way that wk ∈
LD(R2 r (Σεk ∪Rεk(Γεk))). Defining

ek :=

{
e(wk) in Ωk

0 otherwise,
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and using (7.7) together with the coercivity of C, we infer that the sequence (ek)k∈N
is uniformly bounded in L2(R2;M2×2

sym). Consequently, up to a new subsequence (not
relabeled), we can assume that ek ⇀ e weakly in L2(R2;M2×2

sym) for some function
e ∈ L2(R2;M2×2

sym).
Let us recall that Σεk → Σ0 := (−∞, 0] × {0} locally in the sense of Hausdorff

in R2, and that Γεk → Γ in the sense of Hausdorff in Ω. Let us denote by “B :=

B1/2((R+1, 0)) the ball of R2 centered at the point (R+1, 0) and of radius 1/2. Since
Γ ⊂ BR and thus R(Γ) ⊂ BR, we deduce that (Σ0 ∪R(Γ))∩ “B = ∅. Therefore, for k
large enough, “B ⊂ Ωk r (Σεk ∪ Rεk(Γεk)). Let us consider a bounded and smooth
open set U ⊂ R2 r (Σ0 ∪R(Γ)) containing “B. Then for all k large enough, we have
U ⊂ Ωk r (Σεk ∪Rεk(Γεk)), and we denote by rk the rigid movement defined by

rk(x) :=
1

|“B| ∫B̂ wk(y) dy +

Å
1

|“B| ∫B̂ ∇wk(y)−∇wk(y)T

2
dy

ãÅ
x− 1

|“B| ∫B̂ y dyã.
By Korn’s inequality, we obtain that

‖wk − rk‖H1(U) 6 CU ,

for some constant CU > 0 depending on U but independent of k. This implies that,
up to a subsequence, wk − rk ⇀ w weakly in H1(U ;R2) for some w ∈ H1(U ;R2).
By exhausting R2 r (Σ0 ∪ R(Γ)) with countably many open sets, extracting suc-
cessively many subsequences and using a diagonal argument, we obtain that w ∈
H1

loc(R2 r (Σ0 ∪R(Γ));R2) and

wk − rk ⇀ w weakly in H1
loc(R2 r (Σ0 ∪R(Γ));R2).

Moreover by uniqueness of the limit we infer that e(w) = e a.e. in R2 r (Σ0 ∪R(Γ)),
therefore that e(w) ∈ L2(R2;M2×2

sym) and w ∈ LD(R2 r (Σ0 ∪R(Γ))).

Lower bound inequality. — Let ζ ∈ W 1,∞(R2; [0, 1]) be a cut-off function such that
ζ = 1 on BR and ζ = 0 on R2 r BR′ for some given R′ > R. Recalling (7.8) we can
write

1

εk
G (εkΓεk) =

1

2

∫
Ωk

Ce(wk) : e(wk) dx

+

∫
BR′

ζ Ce(uεk) : e(wk) dx+

∫
ΩkrBR

(1− ζ)Ce(uεk) : e(wk) dx

=
1

2

∫
Ωk

Ce(wk − rk) : e(wk − rk) dx

+

∫
BR′

ζ Ce(uεk) : e(wk − rk) dx+

∫
ΩkrBR

(1− ζ)Ce(uεk) : e(wk − rk) dx.

Since Γεk ⊂ BR, then (1−ζ)wk+ζrk = rk in BR. On the other hand, (1−ζ)wk+ζrk =

wk = 0 on ∂Ωk r Σεk so that it is and admissible variation for the minimization
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problem defining uεk . We deduce∫
ΩkrBR

Ce(uεk) : e
(
(1− ζ)(wk − rk))

)
dx =

∫
Ωk

Ce(uεk) : e
(
(1− ζ)wk + ζrk)

)
dx = 0,

and it follows
1

εk
G (εkΓεk) =

1

2

∫
Ωk

Ce(wk − rk) : e(wk − rk) dx

+

∫
BR′

ζ Ce(uεk) : e(wk − rk) dx+

∫
ΩkrBR

(∇ζ � (wk − rk)) : Ce(uεk) dx.

Recalling from Theorem 6.4 that uεk → uΣ0
strongly in L2

loc(R2;R2), and e(uεk)→
e(uΣ0

) strongly in L2
loc(R2;M2×2

sym), while wk − rk → w strongly in L2
loc(R2;R2), and

e(wk − rk) ⇀ e(w) weakly in L2(R2;M2×2
sym), we infer that

(7.9) lim inf
j→∞

1

εk
G (εkΓεk) >

1

2

∫
R2

Ce(w) : e(w) dx

+

∫
BR′

ζ Ce(uΣ0
) : e(w) dx+

∫
ΩkrBR

(∇ζ � w) : Ce(uΣ0
) dx.

We now let ζ be the Lipschitz and radial function defined by

(7.10) ζ(x) =


1 if x ∈ BR,
|x| −R
R′ −R

if x ∈ BR′ rBR,

0 if x ∈ R2 rBR′ .

Letting R′ → R in the right-hand side of (7.9) we finally get that, for L 1-a.e. R > 0,

lim inf
j→∞

1

εk
G (εkΓεk) >

1

2

∫
R2

Ce(w) : e(w) dx

+

∫
BR

Ce(uΣ0
) : e(w) dx+

∫
∂BR

w · (Ce(uΣ0ν)) dH 1.

Reduction to competitors in H1(R2 r (Σ0 ∪ R(Γ));R2) with compact support. — In
order to show that w is a minimizer of the limit problem (7.2), we start by esta-
blishing that, without loss of generality, competitors in (7.2) can be taken in
H1(R2 r (Σ0 ∪R(Γ));R2) with compact support. First we reduce to the case where
the competitor belong to LD(R2 r (Σ0 ∪ R(Γ))) have compact support. To this
purpose, let us show that any z ∈ LD(R2 r (Σ0 ∪ R(Γ))) can be approximated
strongly in LD(R2 r (Σ0 ∪R(Γ))) by functions with compact support. To this aim
we consider ϕ ∈ C∞c (B2; [0, 1]) satisfying ϕ = 1 on B1, and define

ϕR(x) := ϕ (x/R) .

We assume that R is large enough so that Γ ⊂ BR. Then we set zR := (z −mR)ϕR
where mR is a suitable rigid movement associated to the Poincaré-Korn inequality
in the domain B2R r (BR ∪ Σ0) (note that this domain is not Lipschitz but it is a
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connected finite union of Lipschitz domains in which Korn’s inequality remains valid),
namely

(7.11)
∫
B2Rr(BR∪Σ0)

|z −mR|2 dx 6 CR2

∫
B2Rr(BR∪Σ0)

|e(z)|2 dx

Moreover a immediate computation yields

e(zR) = ϕRe(z) +
1

R
∇ϕ

( ·
R

)
� (z −mR).

The first term converges strongly to e(z) in L2(R2;M2×2
sym), while the second term

converges to 0 strongly in L2(R2;M2×2
sym) due to (7.11). As a consequence zR → z

strongly in LD(R2 r (Σ0 ∪R(Γ))).
Next, we reduce to the case where z lies in the Sobolev space

H1(R2 r (Σ0 ∪R(Γ));R2).

Let D and D′ be bounded open sets such that Supp(z) ⊂ D′ b D. According to the
density result [5, Th. 1], we get the existence of a sequence

(zn) ⊂ H1(D r (Σ0 ∪R(Γ));R2)

such that zn → z strongly in L2(D;R2) and e(zn) → e(z) both strongly in
L2(D;M2×2

sym). This implies in particular that zn → 0 in L2(D r D′;R2). Let
ϕ ∈ C∞c (D; [0, 1]), ϕ = 1 on D′, and set ẑn = ϕzn ∈ H1(R2 r (Σ0 ∪ R(Γ))) with
Supp(ẑn) ⊂ D, and satisfying ẑn → z strongly in L2(R2;R2), and e(ẑn) → e(z)

strongly in L2(R2;M2×2
sym).

Upper bound and minimality. — We now assume that z ∈ H1(R2 r (Σ0 ∪R(Γ));R2)

with compact support, contained in some bounded open set D. Clearly the number
of connected components of ∂D ∪ ((Σεk ∪ Rεk(Γεk)) ∩ D) is bounded. Hence by [4]
or [6] we get the existence of zk ∈ H1(D r (Σεk ∪Rεk(Γεk));R2) such that zk → z

strongly in L2(D;R2) and (∇zk)χDr(Σεk∪Rεk
(Γεk )) → ∇z strongly in L2(D;M2×2

sym).
Multiplying by the same cut-off function ϕ as in the previous step, we can also assume
that zk = 0 in a neighborhood of ∂D. In this way we have obtained

zk ∈ H1(R2 r (Σεk ∪Rεk(Γεk));R2)

satisfying

Supp(zk) ⊂ D ⊂ Ωk (for k large enough),
zk −→ z strongly in L2(R2;R2),

(∇zk)χR2r(Σεk∪Rεk
(Γεk )) −→ ∇z strongly in L2(R2;M2×2

sym).
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According to the minimality property of wk (see (7.8)), we have

(7.12) 1

2

∫
Ωk

Ce(wk) : e(wk) dx+

∫
Ωk

Ce(uεk) : e(wk) dx

6
1

2

∫
Ωk

Ce(zk) : e(zk) dx+

∫
Ωk

Ce(uεk) : e(zk) dx.

Let ζ be the cut-off function defined in (7.10), then performing an integration by parts
exactly as we did in step 3 (with zk instead of wk − rk) we arrive at the following

1

εk
G (εkΓεk) =

1

2

∫
Ωk

Ce(wk) : e(wk) dx

+

∫
Ωk

ζCe(uεk) : e(wk) dx+

∫
Ωk

[∇ζ � wk] : Ce(uεk) dx

6
1

2

∫
Ωk

Ce(zk) : e(zk) dx+

∫
Ωk

ζCe(uεk) : e(zk) dx+

∫
Ωk

[∇ζ � zk] : Ce(uεk) dx.

The convergences established so far for the sequences (zk) and (uεk) enable one to
pass to the limit in the previous expression, first as k → ∞ and then R′ → R. We
finally get that

(7.13) lim sup
j→∞

1

εk
G (εkΓεk) 6

1

2

∫
R2

Ce(z) : e(z) dx

+

∫
BR

Ce(uΣ0) : e(z) dx+

∫
∂BR

z · (Ce(uΣ0)ν) dH 1

for almost every R > 0. By the density result established in step 4, inequality (7.13)
holds for any z ∈ LD(R2 r (Σ0 ∪ R(Γ))). Taking z = w, and gathering with (7.9)
yields

lim
j→∞

1

εk
G (εkΓεk) =

1

2

∫
R2

Ce(w) : e(w) dx

+

∫
BR

Ce(uΣ0) : e(w) dx+

∫
∂BR

w · (Ce(uΣ0)ν) dH 1,

and using again (7.13), we deduce that w is a solution of the minimization prob-
lem (7.2) for a.e. R > 0 with Γ ⊂ BR. Finally, an integration by parts ensures that
the value of F (Γ) is independent of R > 0 and a fortiori holds for every R > 0. �

Appendix. A short review of Kondrat’ev theory

We follow the notations and statements of the book [25, Sec. 6.1] that we briefly
recall here in the case of the bilaplacian in the cracked plane R2 rΣ0. Let us consider
weak solutions of the problem

(P1)

{
∆2w = f in R2 r Σ0,

w = 0 and ∂w/∂ν = 0 on Σ0,
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in weighted Sobolev spaces of type V `β (R2 r Σ0) (see the definition in Section 2.3)
which is the core of Kondrat’ev’s Theory. It is easily seen that ∆2 (associated with
homogenous Dirichlet conditions) maps w ∈ V `β (R2 r Σ0) to f ∈ V `−4

β (R2 r Σ0).
For ` > 4 this fact is quite obvious from the definition, and for ` < 4, it follows
from a standard extension argument (see [25, Th. 6.1.2]). Kondrat’ev theory ensures
that this operator is actually of Fredholm type, and that it defines an isomorphism
provided β ∈ R r S and ` ∈ Z, where S is an exceptional countable set. In our
special case it turns out to be contained in the set of half integers 1

2Z, as for most
elliptic operators (see [11]). Indeed, this set appears as the spectrum of the Mellin
transform of the operator written in polar coordinates, with corresponding boundary
conditions. In the language of [25] this will be called the Pencil operator, denoted by
A(λ) and studied in [25, Chap. 5] (and defined pp. 197 in [25] in the case that we are
interested in). The exact computations in the special case of the bilaplacian are quite
standard, and can be found for instance in [26, Chap. 7.1] (see also [19, Sec. 7.2.1],
but with different notations and conventions leading to slightly different characteristic
equations). Let us recall here those computations, still using the language of [25].

First we recall that the Mellin transform of a function g ∈ C∞c (R+) is given by

(A.1) û(λ) =

∫ +∞

0

r−λ−1g(r)dr, for all λ ∈ C.

Another way to understand this transformation is by taking the Laplace transform of
the function t 7→ g(et). Relevant properties are recalled in [25, Lem. 6.1.3], and one of
the most important is probably

(A.2) ‘r∂rg = λĝ.

Now let us look for the pencil operator. Since it is obtained via the Mellin transform
of ∆2 (up to a factor r4), we need to write it in polar coordinates (r, θ) which gives

∆2 = ∂4
r +

2∂3
r

r
− ∂2

r

r2
+
∂r
r3

+
∂4
θ

r4
+

4∂2
θ

r4
− 2∂2

θ∂r
r3

+
2∂2
θ∂

2
r

r2
.

We then identify the terms of the form (r∂r)
k, and for this purpose we shall use the

following elementary formulas

(r∂r)
2 = r∂r + r2∂2

r

(r∂r)
3 = r∂r + 3r2∂2

r + r3∂3
r

(r∂r)
4 = r∂r + 7r2∂2

r + 6r3∂3
r + r4∂4

r

which imply

∆2 = r−4
(
[(r∂r)

4 − 4(r∂r)
3 + 4(r∂r)

2] + [2(r∂r)
2 − 4r∂r + 4]∂2

θ + ∂4
θ

)
=: r−4L (∂θ, r∂r)

The pencil operator A(λ) is then obtained by taking the Mellin transform (A.1)
in the r variable of the operator L (∂θ, r∂r) defined above. Using (A.2) we therefore
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obtain
A(λ) = (λ4 − 4λ3 + 4λ2) + (2λ2 − 4λ+ 4)∂2

θ + ∂4
θ

= (∂2
θ + (λ− 2)2)(∂2

θ + λ2),
(A.3)

and the boundary conditions in the variable θ are still zero (i.e., acting on functions ϕ
with the boundary conditions ϕ(0) = ϕ(2π) = ϕ′(0) = ϕ′(2π) = 0). The set S is then
the spectrum of A(λ), and according to the terminology of Operator Pencils this means
the set of λ for which the operator is non invertible [25, Chap. 5]. By [26, Chap. 7.1]
(see in particular the last paragraph before Section 7.2 for the special case α = 2π),
this set is real and

S =

ß
1± k

2
; k ∈ Nr {0}

™
.

All of them, except λ = 0 and λ = 2, have geometric and algebraic multiplicities
equal to 2. The associated eigenfunctions are given by explicit functions that one can
find in [26, Eq. (7.1.14) and (7.1.15)]. We shall only give the ones corresponding to
λ = 3/2, which are the functions defined in (6.10) and (6.11).

According to all the above facts, a direct application of [25, Th. 6.1.3] yields

Theorem A.1. — If β ∈ R and ` ∈ Z are such that

−β + `− 1 6∈ S ,

then for every f ∈ V `−4
β (R2 r Σ0), there exists a unique solution w ∈ V `β (R2 r Σ0)

of (P1).

In addition, a direct application of [25, Th. 6.1.5] implies that

Theorem A.2. — Let β2 < β1 be two real numbers, ` ∈ Z, and assume that

−βi + `− 1 6∈ S , for all i ∈ {1, 2}.

If w ∈ V `β1
(R2 r Σ0) is a solution of (P1) with f ∈ V `−4

β1
(R2 r Σ0) ∩ V `−4

β2
(R2 r Σ0),

then there exists z ∈ V `β2
(R2 r Σ0) such that

w − z =
∑

λ∈S∩(1−β1,1−β2)

rλϕλ(θ),

where the ϕλ are linear combinations of eigenfunctions of A(λ). In particular ϕ3/2 =

c1ψ1 + c2ψ2 where ψ1 and ψ2 are defined in (6.10) and (6.11).
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