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1. Introduction

Computing periods in words has important applications in data compression,
string searching and pattern matching algorithms. The notion of period is central in
combinatorics on words. Although there are many fundamental results on periods
of words, the one of Fine and Wilf is perhaps the best known [18]. It states that any
word having two periods p, q and length at least p+q−gcd(p, q) also has the greatest
common divisor of p and q, gcd(p, q), as a period. The length p + q − gcd(p, q) is
optimal since there are examples of shorter words that have periods p and q but
are not gcd(p, q)-periodic [11]. Extensions of Fine and Wilf’s result to more than
two periods are given in [10, 12, 20, 26]. In particular, Constantinescu and Ilie [12]
extend Fine and Wilf’s result to words having an arbitrary number of periods and
prove that their lengths are optimal. Fine and Wilf’s periodicity theorem has been
generalized to partial words, or finite sequences of symbols over a finite alphabet
that may have some don’t care symbols or holes [3, 4, 6, 7, 19, 23–25].

The notion of abelian period, a generalization of the one of period (see Def. 1.1),
was recently introduced by Constantinescu and Ilie. Letting A = {a1, a2, . . . , ak}
be an alphabet, the number of occurrences of the letter ai ∈ A in a word w over A
is denoted by |w|ai . The length of w is |w| =

∑
1≤i≤k |w|ai and the Parikh vector of

w is ‖w‖ = (|w|a1 , |w|a2 , . . . , |w|ak
). Note that, for two words u and v, ‖u‖ = ‖v‖

means that u is a permutation of v and ‖u‖ ≤ ‖v‖ means that u can be obtained
from v by permuting and, possibly, deleting some of v’s letters.

Definition 1.1 [13]. A word w over an alphabet A has abelian period p if w =
u0u1u2 . . . umum+1, where m ≥ 1, |u1| = |u2| = . . . = |um| = p, |u0| > 0, and
‖u0‖ ≤ ‖u1‖ = ‖u2‖ = . . . = ‖um‖ ≥ ‖um+1‖.

For example, the word bbaaabaaaabaaba has abelian period 4 since it can be
factorized as b.baaa.baaa.abaa.ba. Here, we have used “.” to separate the factors
of the word for showing it has abelian period 4 (in the paper, we also use “|” to
separate the factors). In [17], Fici et al. show that a word of length n can have O(n2)
distinct abelian periods and present a number of algorithms for computing all the
abelian periods of a given word. Abelian periods also appear in the literature
under the names of weak repetitions or abelian powers when u0 and um+1 are
the empty word and m > 1 [14]. Several recent works relate to these notions
in both the context of ordinary words and the context of partial words (see, for
example, [1, 2, 5, 8, 15, 16, 21, 22]).

Constantinescu and Ilie prove a variant of Fine and Wilf’s theorem in the case of
two relatively prime abelian periods, while they conjecture that any word having
two non-relatively prime abelian periods p, q has at most cardinality gcd(p, q) (or
the word contains at most gcd(p, q) distinct letters) [13]. More precisely, they prove
that any word having two coprime abelian periods p, q and length at least 2pq− 1
has also gcd(p, q) = 1 as a period. Among a number of problems they suggest, we
investigate the following: (1) Is the length 2pq−1 optimal? (2) Is it true that from
gcd(p, q) = d, d > 1, it follows that the word has at most cardinality d?
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In this paper, we answer Problem (1) affirmatively and Problem (2) negatively.
However, we prove that it is true that from gcd(p, q) = d, d > 1, it follows that the
word has at most cardinality d if the word is “long enough”, and we give bounds,
that depend on p and q, on the length. We also extend Constantinescu and Ilie’s
result to the context of partial words, giving optimal lengths and describing an
algorithm for constructing optimal partial words (a partial word w with h holes and
having abelian periods p, q is optimal if the length of w is one less than the optimal
length for the parameters h, p and q, and the cardinality of w is gcd(p, q) + 1). In
addition, we have created a World Wide Web server interface which is located at
www.uncg.edu/cmp/research/finewilf6 for automated use of a program which
constructs an optimal partial word with abelian periods p, q and h holes. For p
and q with gcd(p, q) > 1, the program produces an optimal partial word for the
case where the periods “match up”.

2. Notation and terminology

In this section, we review basic definitions on partial words.
An alphabet A is a non-empty finite set of letters. A partial word over A is a

finite sequence over the augmented alphabet A� = A∪{�}, where � �∈ A plays the
role of a don’t care symbol or hole. More precisely, a partial word u of length n (or
|u|) over A is a function u : {0, . . . , n − 1} → A�. For 0 ≤ i < n, if u(i) ∈ A, then
i belongs to the domain of u, denoted by i ∈ D(u), and if u(i) = �, then i belongs
to the set of holes of u, denoted by i ∈ H(u). We refer to a partial word with
an empty set of holes as a (full) word. The empty partial word is the sequence of
length zero and is denoted by ε. The cardinality of a partial word u is the number
of distinct letters in u. For example, ab�bbab�� has cardinality two since it contains
two distinct letters a and b. The set of all full (respectively, partial) words over A
of finite length is denoted by A∗ (respectively, A∗�).

For any partial word u, u[i..j) is the factor of u that starts at position i and
ends at position j − 1. In particular, u[0..j) is the prefix of u of length j and
u[|u| − j..|u|) is the suffix of u of length j. A period of u is a positive integer p
such that u(i) = u(j) whenever i, j ∈ D(u) and i ≡ j mod p (in such a case, u is
p-periodic).

If u and v are two partial words of equal length, then u is contained in v, denoted
by u ⊂ v, if u(i) = v(i) for all i ∈ D(u). The partial words u and v are compatible,
denoted by u ↑ v, if there exists a partial word w such that u ⊂ w and v ⊂ w.

When w is a partial word over A = {a1, . . . , ak}, the number of occurrences of ai

in w is denoted by |w|ai , while the Parikh vector of w by ‖w‖ = (|w|a1 , . . . , |w|ak
).

Definition 2.1. A partial word w over an alphabet A has abelian period p if
w = u0u1u2 . . . umum+1, where m ≥ 1, |u1| = |u2| = . . . = |um| = p, 0 < |u0| ≤ p,
|um+1| ≤ p, and there exists a full word v over A, |v| = p, such that for all
0 ≤ i ≤ m + 1, ‖ui‖ ≤ ‖v‖.
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Let u0u1 . . . um+1 and v0v1 . . . vn+1 be factorizations of a partial word w into
abelian periods p and q, respectively. We say that the periods p and q match
up if the equality u0u1 . . . ui = v0v1 . . . vj holds for some integers i ≤ m, j ≤ n.
For example, the partial word a.b|a.ab.|ab.a|b.a�.|ab.a|b has the abelian periods
p = 2 and q = 3 that do match up. Here u0 = a, u1 = ba, u2 = u3 = u4 = ab,
u5 = a�, u6 = u7 = ab, v0 = ab, v1 = aab, v2 = aba, v3 = ba�, v4 = aba, and
v5 = b (there are actually two matching points: one after u2 and v1 and the other
after u5 and v3). However, the word ab.aaa|b.aaab.a|aab.aba|a.aaab.b|aaa.ab has
the abelian periods p = 4 and q = 6 that do not match up.

3. Relatively prime abelian periods

Constantinescu and Ilie’s result is stated as follows.

Theorem 3.1 [13]. If a word w has abelian periods p and q which are relatively
prime and |w| � 2pq − 1, then w has period gcd(p, q) = 1.

Constantinescu and Ilie proved that the length 2pq − 1 is an upper bound but
they did not prove that it is optimal. But it is! Indeed, in Section 4 we give an
algorithm for constructing non-unary words of length 2pq − 2 that have abelian
periods p and q for any coprime positive integers p, q. For instance, on input p and
q = p + 1, our algorithm outputs the optimal word

ap−1.b|ap−1.ab|ap−2.a2b| . . . |a.ap−1b.|ap−1b.a|ap−2b.a2| . . . |ab.ap−1|b.ap−1

of length 2pq − 2.
Here, we repeat Constantinescu and Ilie’s proof from [13] since it contains the

ideas that we use later for our own results. For convenience, we adopt their no-
tation. To prove their theorem, they first calculate how many letters in a word w
with abelian periods p and q, where p and q are relatively prime and p < q, are
needed for the two periods to first match up. If u0u1 . . . um+1 and v0v1 . . . vn+1

are factorizations of w into abelian periods p and q, respectively, they calculate
how many letters are needed for the periods to match up or for the equality
u0u1 . . . ui = v0v1 . . . vj to hold for some integers i, j ≤ m. They conclude that the
periods match up at or before pq − 1 letters. After the first matching, all other
matchings occur pq letters after the previous one. So, a word of length 2pq − 1 or
greater has at least two matchings.

To calculate this they first write each vi, 1 ≤ i ≤ n, in terms of u’s. They set vi =
xiubi+1ubi+2 . . . ubi+1−1yi, where xi is a suffix of ubi , yi is a prefix of ubi+1 , and ubi is
the first u such that |u0u1 . . . ubi | ≥ |v0v1 . . . vi−1|. This notation is made clearer by
Figure 1. So, by definition, |xi| < p. Both |xi|+ |yi| ≡ q mod p and |xi+1|+ |yi| = p
hold. Subtracting the first from the second we get |xi+1| ≡ |xi| − q mod p and, by
induction on r, r ≥ 1, we obtain |xi+r−1| ≡ |xi|−(r−1)q mod p. In the case where
i = 1 we get |xr| ≡ |x1|−(r−1)q mod p. Letting r = ((|x1| (q−1 mod p)) mod p)+1
we obtain |xr| ≡ 0 mod p. So xr = ε and r ≤ p.
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Figure 1. The abelian periods of w.

Hence v0v1 . . . vr−1 = u0u1 . . . ubr where |v0v1 . . . vr−1| = |v0| + (r − 1)q and
1 ≤ |v0| ≤ q. Since r ≤ p we get |v0| + (r − 1)q ≤ pq. However, if |v0| = q then
|xr−1| ≡ |x0| − (r − 1)q mod p which implies |xr−1| ≡ 0 mod p and so xr−1 = ε.
This means that v0v1 . . . vr−2 = u0u1 . . . ubr and |v0v1 . . . vr−2| = |v0|+ (r − 2)q ≤
q(p − 1). So, if |v0| = q we obtain the equality q letters sooner and so the value
is largest when |v0| �= q. This implies, however, that |v0| + (r − 1)q ≤ pq − 1. So
the first matching occurs at or before pq − 1 letters. Note that the first matching
occurs at exactly pq − 1 letters when |u0| = p − 1 and |v0| = q − 1.

For any integers i and j, 1 � i � n, 1 � j � m, α = ‖vi‖ and β = ‖uj‖ have
the same non-zero components. Further, since there are q letters in vi, the sum
of the non-zero components in α is equal to q. Denote αl (respectively, βl) to be
the number of times the letter al occurs within one abelian q-period (respectively,
p-period). Now the number of times al occurs in the subword vrvr+1 . . . vr+p−1 =
ubr+1ubr+2 . . . ubr+q, which is the subword between the first two matchings of p
and q, is αlp = βlq times. Combining these facts, if α has more than one non-
zero component, then some component, say αl, is less than q. So p

q = βl

αl
which

implies that p
q is reducible, a contradiction. Hence α can only contain one non-zero

component, so w has period 1.
Using similar logic, we now extend Theorem 3.1 to apply to partial words.

Theorem 3.2. Let w be a partial word with an arbitrary number of holes h. If w
has abelian periods p and q which are relatively prime and |w| � (h + 2)pq − 1,
then w has period 1.

Proof. As mentioned earlier, since gcd(p, q) = 1 the abelian periods p and q first
match up at or before pq − 1 letters and the subsequent matches occur every pq
letters later. A partial word w with |w| � (h + 2)pq − 1 contains at least h + 2
matchings of p and q, and h + 1 subwords between these matchings. Denoting as
above the first matching by w1 = v0v1 . . . vr−1 = u0u1 . . . ubr , for 0 ≤ i ≤ h let

wi+2 = vr+ipvr+ip+1 . . . vr+(i+1)p−1 = ubr+iq+1ubr+iq+2 . . . ubr+(i+1)q

be the subword between the (i + 1)st and (i + 2)nd matching points of p and q.
Since w has only h holes, one of the subwords w2, w3, . . . , wh+2 does not contain
any hole. Examining this subword which is full, we get by the argument given in
the proof of Theorem 3.1 that the Parikh vector of any ul or vl within this subword
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cannot contain more than one non-zero component. So for any ui and vi in w we
have ‖ui‖ ≤ ‖ul‖ and ‖vi‖ ≤ ‖vl‖. Therefore all ui and vi in w contain at most
one non-zero component, so w has period 1. �

Further, we claim that the length (h + 2)pq − 1 is optimal for h holes as our
algorithm in Section 4 constructs non-unary partial words with h holes of length
(h+2)pq−2 that have abelian periods p and q for any coprime positive integers p, q.

4. Constructing optimal partial words

A partial word w with h holes and having abelian periods p and q is optimal if
the length of w is one less than the optimal length for the parameters h, p and q,
and the cardinality of w is gcd(p, q) + 1.

We start our discussion with optimal full words. First, suppose that p < q and
gcd(p, q) = 1. We would like to construct a word w over the alphabet A = {a, b}
such that w has abelian periods p and q, and w has length 2pq− 2. Let αa and αb

be the number of times the letters a and b, respectively, occur within one abelian
q-period and let βa and βb be the number of times the letters a and b, respectively,
occur within one abelian p-period.

For our word to have optimal length, the periods p and q must match up after
exactly pq − 1 letters. So |u0| = |um+1| = p − 1 and |v0| = |vn+1| = q − 1, where
u0u1 . . . um+1 and v0v1 . . . vn+1 are factorizations of w into abelian periods p and
q, respectively. For simplicity we assume βa ≥ βb and, whenever possible, we place
a’s before b’s. For example, letting p = 3 and q = 7, the word

w = aa.aab.b|aa.aab.ab|a.aab.aab.|aab.aab.a|ab.aab.aa|b.aab.aa

of length 2pq − 2 = 40 is optimal. We can write w = w1w2, where w1 =
w[0..pq−1) = w1,9w1,8w1,7w1,6w1,5w1,4w1,3w1,2w1,1 and w2 = w[pq−1..2pq−2) =
w2,1w2,2w2,3w2,4w2,5w2,6w2,7w2,8w2,9, where w1,1 = w2,1 = aab, w1,2 = w2,2 =
aab, w1,3 = w2,3 = a, w1,4 = w2,4 = ab, etc. More generally, subwords in w are
created by both the p and q-periods as follows: if we look at the two subwords on
each side of the first matching point, denote the first subword to the left of the
matching w1,1 and the first subword to the right w2,1 and continue this labeling
outward. We write w1 = revp,q(w2). Note that in w2, we have βbq−αbp = ±1. So,
in order to construct an optimal word the key is to determine for which values of
βb and αb we have βbq − αbp = ±1.

Further, we can extend this idea to construct an optimal word w with abelian
periods p = dp′ and q = dq′ such that gcd(p, q) = d in the case where p and q have
matching points. In this case, the key is to determine for which values of α and β
we have βq′ −αp′ = ±1. Algorithm 1 gives a construction for optimal words when
p and q have matching points.
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Algorithm 1 Constructing an optimal partial word for two abelian periods
Input: Non-negative integer h and positive integers p and q, p < q
Output: An optimal partial word w with h holes, abelian periods p and q, and length
(h + 2) lcm(p, q)− 2

1. d← gcd(p, q), p′ ← p
d

and q′ ← q
d

2. Find smallest positive integer β and corresponding positive integer α such that βq′−
αp′ = ±1

3. Define Parikh vectors for periods p and q with distinct letters a1, . . . , ad+1

U ← (p′, p′, . . . , p′, p′ − β, β) and V ← (q′, q′, . . . , q′, q′ − α, α)
4. Generate subword w2 of w from position lcm(p, q)− 1 up to position 2 lcm(p, q)− 3

(a) U ′ ← U // U ′ represents the number of each letter left to be filled into the
current p-period

(b) w2 ← ε and L← 0
(c) while L < lcm(p, q)− q

V ′ ← V // V ′ represents the number of each letter left to be filled into the
current q-period

w2 ← w2u
′ // u′ is some word with ||u′|| = U ′

l ← |u′| // l represents the number of letters added to the current q-period
L← L + l and V ′ ← V ′ − U ′ and U ′ ← U
while l + p < q

w2 ← w2u // u is some word with ||u|| = U
l ← l + p and L← L + p and V ′ ← V ′ − U ′

w2 ← w2v
′ and U ′ ← U ′ − V ′ // v′ is some word with ||v′|| = V ′

L← L + |v′|
(d) V ′ ← V
(e) w2 ← w2u

′ and l← |u′| // u′ is some word with ||u′|| = U ′

(f) V ′ ← V ′ − U ′ and U ′ ← U
(g) while l + p < q

w2 ← w2u // u is some word with ||u|| = U
l ← l + p and V ′ ← V ′ − U ′

(h) for i = 1 to d + 1
for j = 1 to min {#ai(U

′), #ai(V
′)}

w2 ← w2ai

5. w1 ← revp′,q′(w2) and w ← w1w2(�w2)
h

Theorem 4.1. Given as input a non-negative integer h and positive integers p
and q, p < q, Algorithm 1 outputs an optimal partial word w with h holes, abelian
periods p and q, and length (h + 2) lcm(p, q) − 2 in O((d + 1)|w|) time. Moreover,
Algorithm 1’s complexity is exponential in the input data, which has size log(p) +
log(q) + log(h).

Proof. Algorithm 1 outputs optimal partial words with h holes when p and q match
up by constructing the subword w2 after the first matching and then concatenating
w1 = revp′,q′(w2) with w2, and then with (�w2)h. Algorithm 1 effectively constructs
the word, so its complexity is exponential in the size of the input. �
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Letting p = 2 and q = 3, the binary word a.b|a.ab.|ab.a|b.a�.|ab.a|b.a with one
hole of length 3pq− 2 = 16 with abelian periods p and q is first constructed. Algo-
rithm 1 then starts with the above word as the base word and adds (�.|ab.a|b.a)h−1.
For h = 3 we get

a.b|a.ab.|ab.a|b.a�.|ab.a|b.a�.|ab.a|b.a�.|ab.a|b.a

More generally, on input p, q = p + 1 and h, our algorithm outputs the optimal
word w1w2(�.|w2)h of length (h + 2) lcm(p, q) − 2, where

w1 = ap−1.b|ap−1.ab|ap−2.a2b| . . . |a.ap−1b.|
w2 = ap−1b.a|ap−2b.a2| . . . |ab.ap−1|b.ap−1

Remark 4.2. The position in which a hole is placed within a subword contained
between two matching points to construct an optimal partial word does not matter
so long as the hole represents letter a in terms of p and letter b in terms of q, say,
where a, b are distinct. To see this, if we add one more letter to an optimal full
word, creating a second matching point between p and q, we have βaq′−αap

′ = ±1
and βbq

′−αbp
′ = ∓1. So, when we add a hole this way, βaq′−αap′+βbq

′−αbp
′ = 0,

we can complete the first matching and continue the word from the new matching.
Otherwise, we still cannot construct an optimal partial word longer than a full
one. The same applies for each hole that we add.

The following illustrates all the possible positions of the hole:

a.b|a.ab.|ab.a|b.a�.|ab.a|b.a a.b|a.ab.|ab.a|�.ab.|ab.a|b.a
a.b|a.ab.|ab.�|a.ab.|ab.a|b.a a.b|a.ab.|a�.b|a.ab.|ab.a|b.a

Remark 4.3. Modifying Algorithm 1 to output all the optimal partial words for
two abelian periods first involves permuting the letters within each p- or q-period
of any word it currently outputs. Our algorithm now gives precedence to the first
letter available to complete each p- or q-period. Second, it involves putting holes
in all possible ways according to Remark 4.2.

5. Non-relatively prime abelian periods

As observed in [13], Fine and Wilf’s theorem cannot in general be extended to
non-relatively prime abelian periods. That is, if gcd(p, q) = d, d > 1, then the two
abelian periods p and q cannot impose the abelian period d no matter how long
the word is. For example, the infinite word (aabbcc.abc|abc.aabbcc)ω has abelian
periods p = 6 and q = 9 but does not have abelian period gcd(p, q) = 3 (note that
if v is a non-empty finite word, then we denote by vω the unique infinite word w
such that w has period |v| and w(0) . . . w(|v| − 1) = v).

Conjecture 5.1 [13]. If a word w has abelian periods p and q with gcd(p, q) = d,
d > 1, then w has at most cardinality d.
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There are words for which this conjecture does not hold, hence it is false. For
example, the word

ap′
bp′−1.ac|ap′−1bp′−1.a2bc|ap′−2bp′−2.a3b2c|ap′−3bp′−3.a4b3c| . . . |ab.ap′

bp′−1c.|
has abelian periods p = 2p′ and q = 2q′ = 2(p′ + 1) = p + 2 and cardinality
3 = gcd(p, q) + 1.

In this section, we prove however that if a word w has abelian periods p and q
with gcd(p, q) = d, d > 1, and |w| ≥ L for some L (that depends on p and q), then
w has at most cardinality d (see Thms. 5.5, 5.11 and 5.18). We say that the length
(or the bound) L is optimal if there are examples of words with length L − 1 that
have abelian periods p and q with gcd(p, q) = d, d > 1, and have cardinality at
least d + 1.

For the remainder of this section, we assume that all words are full and that
p, q are integers satisfying p < q, gcd(p, q) = d, d > 1, and p = dp′, q = dq′ (we
can assume that p′ > 1). Here u0u1 . . . um+1 and v0v1 . . . vn+1 are factorizations
of w into abelian periods p and q, respectively.

We will need a result from number theory, which we state now.

Lemma 5.2. Let α, β ∈ N be two coprime integers such that 1 < α < β. Then for
all 0 ≤ μ < β, there exist s, t ∈ N such that 0 ≤ s < β, 0 ≤ t < α, and sα−tβ = μ.

Proof. By the Euclidean Algorithm, there exist integers s0 and t0 such that s0α−
t0β = 1 = gcd(α, β) with |s0| < β and |t0| < α. Either s0, t0 < 0 or s0, t0 > 0. If
the former, then let s = s0 +β and t = t0 +α so that s, t > 0; equality is preserved
because s0α − t0β = (s − β)α − (t − α)β = sα − tβ. And if the latter, then let
s = s0 and t = t0.

Simply by multiplying both sides of the equation sα − tβ = 1 by μ, where
0 ≤ μ < β, we get (μs)α − (μt)β = μ. First, if μs < β and μt < α, then we are
done. Second, if μs ≥ β and μt ≥ α, then let s(1) = μs − β and t(1) = μt − α and
notice

s(1)α − t(1)β = (μs − β)α − (μt − α)β = (μs)α − (μt)β

Again, if s(1) < β and t(1) < α, we are done. If s(1) ≥ β and t(1) ≥ α, let
s(2) = s(1) − β and t(2) = t(1) − α, and so on.

Assume at some point in this process that s(i) < β but t(i) ≥ α. Then since
−t(i)β ≤ −αβ,

μ = s(i)α − t(i)β ≤ s(i)α − αβ < βα − αβ = 0 ≤ μ

which is a contradiction. On the other hand, if we have s(i) ≥ β but t(i) < α, then
s(i)α ≥ βα, and so

μ = s(i)α − t(i)β ≥ βα − t(i)β ≥ βα − (α − 1)β = β > μ

Thus the case where only one of s and t is out of bounds is impossible. Because
we may always reduce (μs)α − (μt)β, the lemma follows. �
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Figure 2. The subword u1u2 . . . umum+1 = v′0v1 . . . vnvn+1.

Let sα− tβ = 1 be as in the Proof of Lemma 5.2. Note that if s′, μ < β, t′ < α,
and s′α− t′β = μ, then s′ = μs mod β and t′ = μt mod α. For example, let α = 3
and β = 7. Then (−2)3 − (−1)7 = 1, and set s = −2 + 7 = 5 and t = −1 + 3 = 2,
so that (5)3 − (2)7 = 1. Let μ = 5. Then

5 = (25)3 − (10)7 = (25 − 7)3 − (10 − 3)7 = (18 − 7)3 − (7 − 3)7
= (11 − 7)3 − (4 − 3)7 = (4)3 − (1)7

and s′ = 4 = 25 mod 7 and t′ = 1 = 10 mod 3 satisfy the conditions of Lemma 5.2.

Lemma 5.3. For a word w with abelian periods p and q such that gcd(p, q) = d,
d > 1, and |w| � lcm(p, q) − 1, p and q match up if and only if ||u0| − |v0|| = μd
for some integer μ ≥ 0.

Proof. Let us suppose that ||u0| − |v0|| = μd for some integer μ ≥ 0. Since our
argument does not depend on which length is greater, we may assume that |v0| ≥
|u0|. Consider the subword w′ = u1 . . . um+1 = u′

0u
′
1 . . . u′

m+1 where u′
0 = ε, u′

1 =
u1, . . . , u

′
m+1 = um+1, and w′ = v′0v

′
1 . . . v′n+1 where v′0 = v0[|u0|..|v0|), v′1 =

v1, . . . , v
′
n+1 = vn+1. This is illustrated by Figure 2. Note that |v′0| = μd and since

|v′0| < |v0| ≤ q = q′d, we get that 0 ≤ μ < q′. Thus, periods p and q match up if
there exist non-negative integers s and t, s ≤ m and t ≤ n, such that sp = μd+ tq,
where the s p-periods of the matching end at length sp = d(sp′) and the t q-periods
of the matching end at length μd + tq = d(μ + tq′). The lengths sp and μd + tq
are equal when sp′ and μ + tq′ are equal, which is possible for any 0 ≤ μ < q′

by Lemma 5.2. In the other case where |v0| ≤ |u0|, the problem boils down to
equating μ + sp′ and tq′, which is similarly always possible.

The bound on |w| is found by maximizing |u0| and |v0|. From above, we see the
length before the first matching is μd + sp or μd + tq, depending on whether |u0|
or |v0| is larger. Because s ≤ q′ − 1 and t ≤ p′ − 1 by Lemma 5.2, if we choose
μ such that q′ − p′ = μ then we can achieve the maximum for both |u0| and |v0|.
Additionally, under this circumstance we have (q′ − 1)p = q′p− p = p′q− q +μd =
(p′ − 1)q + μd, as required. Therefore the longest length before p and q match is

(q − 1) + (p′ − 1)q = (p − 1) + (q′ − 1)p = lcm(p, q) − 1

which proves the backward direction of the lemma.
For the forward direction, assume that p and q match up. This is equivalent to

|u0| + sp = |v0| + tq, where we restrict s and t as in the premise, reformulated as
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sp− tq = |v0| − |u0|. Then since d divides both p and q, any linear combination of
p and q will also be divisible by d. So |v0| − |u0| = sp − tq ≡ 0 mod d. Therefore
the lemma holds in both directions. �

5.1. The case where ||u0| − |v0|| is a multiple of d

We start with a word w having abelian periods p and q, gcd(p, q) = d > 1, with
factorizations u0 . . . um+1, v0 . . . vn+1 of p and q, respectively. Under the conditions
that ||u0| − |v0|| = μd for some integer μ ≥ 0 and |w| ≥ 2 lcm(p, q)−1, we will first
show that w contains at least two matchings of p and q. Using them along with
ideas of Section 3 related to number of occurrences of letters in p- and q-periods,
we will then proceed by contradiction to prove that w has at most d distinct letters.
In this case, the length 2 lcm(p, q) − 1 turns out to be optimal.

Lemma 5.4. If a word w has abelian periods p and q with gcd(p, q) = d, d > 1,
|w| � 2 lcm(p, q)−1, and ||u0| − |v0|| = μd for some integer μ ≥ 0, then the abelian
periods p and q have at least two matchings.

Proof. By Lemma 5.3, p and q have their first matching before length lcm(p, q)−1.
Their next matching occurs lcm(p, q) letters later, and the result follows. �

Theorem 5.5. If a word w has abelian periods p and q with gcd(p, q) = d, d > 1,
and ||u0| − |v0|| = μd for some integer μ ≥ 0, then w has at most cardinality d for
|w| ≥ 2 lcm(p, q) − 1.

Proof. By Lemma 5.4, w contains at least two matchings of p and q. Now, we
use these matchings to prove that the cardinality of w is at most d. Suppose w
has cardinality d + 1. Let p = dp′, q = dq′, for p′, q′ coprime. After p and q
first match up our second matching occurs q′p = p′q = lcm(p, q) letters later. As
in Section 3, let v0v1 . . . vr−1 = u0u1 . . . ubr be the first matching, where r and
br are positive integers. Then the next matching is v0 . . . vr−1vrvr+1 . . . vr+p′−1 =
u0 . . . ubrubr+1ubr+2 . . . ubr+q′ . Consider vr . . . vr+p′−1 = ubr+1 . . . ubr+q′ . For a let-
ter al in w let αl represent the number of times that letter occurs in one q-period
and βl represent the number of times that letter occurs in one p-period. Then we
have αlp

′ = βlq
′. This implies that αl

βl
= q′

p′ . But gcd(p′, q′) = 1 so we must have
q′ | αl and p′ | βl. Therefore, for αl �= 0 and βl �= 0 we must have αl ≥ q′ and
βl ≥ p′. Let our letters be indexed such that a1, . . . , ad+1 are the letters with non-
zero components. So we have q =

∑d+1
l=1 αl � (d+1)q′ and p =

∑d+1
l=1 βl � (d+1)p′.

This gives p � (d + 1)p′ and q � (d + 1)q′, a contradiction. Hence the cardinality
of w is at most d. �

This bound is also optimal. For example, the word

ap′
bp′−1.ac|ap′−1bp′−1.a2bc|ap′−2bp′−2.a3b2c|ap′−3bp′−3.a4b3c| . . . |ab.ap′

bp′−1c.|
ap′

bp′−1c.ab| . . . |a4b3c.ap′−3bp′−3|a3b2c.ap′−2bp′−2|a2bc.ap′−1bp′−1|ac.ap′
bp′−1
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of length 2 lcm(p, q) − 2 = 2(q − 1 + (p′ − 1)q), which can be constructed by
Algorithm 1, has abelian periods p = 2p′ and q = 2q′ = 2(p′ + 1) = p + 2 and
cardinality 3 = gcd(p, q) + 1.

Based on Algorithm 1, we give some closed forms. Letting p, q, p′, q′, d, γ be
positive integers such that p = dp′, q = dq′ = γp + d, and gcd(p, q) = d, define

v0 = ap′
1 . . . ap′

d−1a
p′−1
d (.ap′

1 . . . ap′
d−1a

p′−1
d ad+1)γ−1.a1 . . . ad−1ad+1|

vi = |ap′−i
1 . . . ap′−i

d−i ap′−i
d (.ap′

1 . . . ap′
d−1a

p′−1
d ad+1)γ−1.

ai+1
1 . . . ai+1

d−1a
i
dad+1|

vp′ = |(.ap′
1 . . . ap′

d−1a
p′−1
d ad+1)γ .a1 . . . ad−1ad|

vp′+j = |ap′−j
1 . . . ap′−j

d−1 ap′−1−j
d ad+1(.a

p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1.

aj+1
1 . . . aj+1

d−1a
j+1
d |

v2p′−1 = |a1 . . . ad−1ad+1(.a
p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1.ap′

1 . . . ap′
d−1a

p′−1
d

for 0 < i < p′ and 0 < j < p′ − 1.

Theorem 5.6. If ||u0| − |v0|| = μd for some integer μ ≥ 0, then w = u0u1 . . . =
v0v1 . . . v2p′−1 is an optimal word of cardinality d+1, length 2 lcm(p, q)−2, having
abelian periods p and q, that can be constructed by Algorithm 1.

Proof. Since q′ = γp′ + 1, we have from Algorithm 1 that β = 1 and α = γ, and
therefore ‖u1‖ = (p′, p′, . . . , p′, p′ − 1, 1) and ‖v1‖ = (q′, q′, . . . , q′, q′ − γ, γ). Also,
the subword of length q after the matching, denoted vz, contains γ full p-periods
followed by one of each of the letters a1, . . . , ad−1, ad. So,

vz = (ap′
1 . . . ap′

d−1a
p′−1
d ad+1)γa1 . . . ad−1ad.

Since q = γp + d and from the proof of Theorem 5.5 we know that w contains
only one matching of p and q, w can contain only two full q-periods, vz−1 and vz,
containing γ full p-periods. Based on ‖u1‖ and ‖v1‖, we find that

vz+1 = ap′−1
1 ap′−1

2 . . . ap′−1
d−1 ap′−2

d ad+1(a
p′
1 ap′

2 . . . ap′
d−1a

p′−1
d ad+1)γ−1a2

1 . . . a2
d−1a

2
d.

By induction, we can show that for 0 ≤ i ≤ p′ − 2,

vz+i = ap′−i
1 . . . ap′−i

d−1 ap′−1−i
d ad+1(a

p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1ai+1

1 . . . ai+1
d−1a

i+1
d .

Thus,

vz+p′−2 = a2
1 . . . a2

d−1adad+1(a
p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1ap′−1

1 . . . ap′−1
d−1 ap′−1

d .

So based on ‖u1‖, we know vz+p′−1 must begin with a1 . . . ad−1ad+1. In order to
complete the q-period, we must add q′ − 1 = γp′ each of the letters a1, . . . , ad−1,
γ(p′−1)+1 ad’s, and γ−1 ad+1’s. Since we can only add γ−1 ad+1’s, we can only
add γ − 1 full p-periods. Now, in order to complete our q-period vz+p′−1, we still
need γp′−(γ−1)p′ = p′ each of the letters a1, . . . , ad−1, γ(p′−1)+1−(γ−1)(p′−1) =
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p′ ad’s, and no ad+1’s. So, we add all the letters from the next p-period, except
ad+1. We now have q′ each of a1, . . . , ad−1, γp′−γ ad’s, and γ ad+1’s. So from ‖u1‖
we can only add an ad+1, but from ‖v1‖ we can only add an ad. These conflict so
our word must end here with

vz+p′−1 = a1 . . . ad−1ad+1(a
p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1ap′

1 . . . ap′
d−1a

p′−1
d

and |vz . . . vz+p′−1| = (p′ − 1)q + q − 1. We can similarly argue that for 0 ≤
i ≤ z − 1, vi = ap′−i

1 . . . ap′−i
d−i ap′−i

d (ap′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1ai+1

1 . . . ai+1
d−1a

i
dad+1,

and also that v0 = ap′
1 . . . ap′

d−1a
p′−1
d (ap′

1 . . . ap′
d−1a

p′−1
d ad+1)γ−1a1 . . . ad−1ad+1, and

|v0 . . . vz−1| = (p′−1)q + q−1. This gives us z = p′ and |v0 . . . v2p′−1| = 2p′q−2 =
2 lcm(p, q) − 2. �

The following corollary states the d = 1 case of the previous theorem.

Corollary 5.7. Let p, q, γ be positive integers such that q = γp+1 and gcd(p, q) =
1. Then the word w = v0v1 . . . v2p−1 =

ap−1(.ap−1b)γ−1.b︸ ︷︷ ︸
v0

| . . . | ap−i(.ap−1b)γ−1.aib︸ ︷︷ ︸
vi,0<i<p

| . . .

| (.ap−1b)γ .a︸ ︷︷ ︸
vp

| . . . | ap−1−ib(.ap−1b)γ−1.ai+1

︸ ︷︷ ︸
vp+i,0<i<p−1

| . . . | b(.ap−1b)γ−1.ap−1

︸ ︷︷ ︸
v2p−1

is an optimal word of cardinality 2, length 2pq− 2, having abelian periods p and q,
that can be constructed by Algorithm 1.

5.2. The case where ||u0| − |v0|| is not a multiple of d (q = γp + d)

We start with a word w having abelian periods p and q, gcd(p, q) = d > 1, with
factorizations u0 . . . um+1, v0 . . . vn+1 of p and q, respectively. Under the conditions
that ||u0| − |v0|| �= μd for any integer μ ≥ 0, |w| ≥ 2 lcm(p, q)−2, and q = γp+d =
γp′d+d for some integer γ ≥ 1, we will first show that w contains at least 2p′−1 full
q-periods and there must be one of them, say vi, that contains γ full p-periods,
i.e., vi = xiubi+1 . . . ubi+γyi according to the notation of Section 3 (we assume
that vi is the first such q-period). We will then suppose, towards a contradiction,
that w has d + 1 distinct letters, and consequently at least one of these letters,
say a, has a number of occurrences in a q-period which is exactly γ times its
number of occurrences in a p-period. Arguing on the number of a’s in the x and
y segments preceding and following xi and yi, we will be able to assume without
loss of generality that vi = vp′ . Finally, arguing on the number of occurrences of
each of the d + 1 letters in the x and y segments preceding and following xp′ and
yp′ , a contradiction will be reached.

Lemma 5.8. For a word w with abelian periods p and q, where gcd(p, q) = d > 1
and ||u0| − |v0|| �= μd for any integer μ ≥ 0, if w contains at least p′ full q-periods
and q = γp + d for some integer γ ≥ 1, then there exists at least one q-period in
w that contains γ full p-periods.
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Proof. We show that at least one of v1, . . . , vp′ contains γ full p-periods. Suppose
v1 contains only γ − 1 full p-periods. Then, as in Section 3, v1 can be written as
x1ub1+1 . . . ub1+γ−1y1, where x1 is a suffix of ub1 and y1 is a prefix of ub1+γ . Since
|x1| , |y1| < p and |x1ub1+1 . . . ub1+γ−1y1| = γp + d we have that d < |x1| , |y1| < p.
So, let |x1| = d + δ and |y1| = p + d − |x1| = p− δ for some integer 0 < δ < p− d.

Now consider v2 = x2 . . . y2 factorized similarly, where |x2| = p − |y1| = δ. If
|x2| ≤ d then v2 contains γ full p-periods. Otherwise, |x2| > d and suppose v2

contains only γ − 1 full p-periods. In this case, |y2| = γp + d − (γ − 1)p − |x2| =
p + d − δ > d.

By induction, if none of v1, . . . , vp′−1 contains γ full p-periods, then |xi| =
δ−(i−2)d and |yi| = p−δ+(i−1)d for 1 ≤ i ≤ p′−1. We get |xp′ | = p−|yp′−1| =
δ−(p′−2)d = δ−p+2d < p−d−p+2d = d and vp′ contains γ full p-periods. �

Theorem 5.9. For a word w with abelian periods p and q, where gcd(p, q) = d > 1
and ||u0| − |v0|| �= μd for any integer μ ≥ 0, if |w| ≥ 2 lcm(p, q)−2 and q = γp+d
for some integer γ ≥ 1, then w has cardinality at most d.

Proof. Suppose w has cardinality d + 1 and q = γp + d = γdp′ + d. Since |w| ≥
2 lcm(p, q) − 2, w contains at least 2p′ − 1 full q-periods, i.e., n ≥ 2p′ − 1.

By Lemma 5.8, some q-period must contain γ full p-periods. Let vi be this first q-
period containing γ full p-periods. We can write vi as xiubi+1 . . . ubi+γyi and vi−1 as
xi−1ubi−1+1 . . . ubi−1+γ−1yi−1. Since we have γ full p-periods in vi, there must exist
a letter a such that αa = γβa (otherwise, αal

> γβal
for all l ∈ {1, . . . , d + 1} and

q, which is the length of vi, would be bigger than γp+ d). We assume without loss
of generality that a = a1. Thus, |xi|a = |yi|a = 0. Further, since yi−1xi forms a full
p-period, |yi−1|a = βa, which implies |xi−1|a = 0. As we work backwards through
w, this pattern continues with |yi−i′ |a = βa and |xi−i′ |a = 0. Note that vi−p′ , if
it were a full q-period, would be another q-period containing γ full p-periods (but
then we would have that |yi−p′ |a = βa and αa = |vi−p′ |a ≥ (γ + 1)βa > βa, which
would be a contradiction). We can similarly argue that our word must end with
the vi+p′ subword. Since w contains 2p′− 1 full q-periods, either vp′−1 or vp′ must
be a subword containing γ full p-periods. Without loss of generality, we let vp′ be
this subword.

Let vp′ = xp′ubp′+1 . . . ubp′+γyp′ , where xp′ is a suffix of ubp′ and yp′ is a prefix
of ubp′+γ+1. Let |xp′ |al

+ |yp′ |al
= gl and |xp′ |al

= hl. So, |yp′ |al
= gl − hl,

|vp′ |al
= γβl + gl, and

∑d+1
l=1 gl = d. To see the latter, note that |vp′ | = q =

γp + d = γp + |xp′ | + |yp′ | and so d = |xp′ | + |yp′ |.
Then |yp′−1|al

= βl−hl and |xp′−1|al
= gl +hl. By induction, we get |xp′−j |al

=
jgl +hl. We also have |xp′+1|al

= βl−gl+hl and |yp′+1|al
= 2gl−hl. By induction,

we get |yp′+j |al
= (j + 1)gl − hl. So, βl ≥ |x1|al

= (p′ − 1)gl + hl = glp
′ − gl + hl

and βl ≥ |y2p′−1|al
= glp

′ − hl. Since 0 ≤ hl ≤ gl,

βl ≥ max {glp
′ − gl + hl, glp

′ − hl} ≥ glp
′ −

⌊gl

2

⌋
·

Note that each letter with αl = γβl must satisfy βl ≥ 1.
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Suppose αl = γβl for l = 1, . . . , h (in which cases gl = 0) and αl > γβl for
l = h + 1, . . . , d + 1 (in which cases gl > 0). Note that d =

∑d+1
l=1 gl =

∑d+1
l=h+1 gl.

Then

p =
d+1∑
l=1

βl ≥ h +
d+1∑

l=h+1

βl ≥ h +
d+1∑

l=h+1

(glp
′ −

⌊gl

2

⌋
) = h + dp′ −

d+1∑
l=h+1

⌊gl

2

⌋

and since p = dp′, we get
∑d+1

l=h+1

⌊
gl

2

⌋ ≥ h.
Suppose h = 1. Then we have d letters with αl > γβl. So, for h + 1 ≤ l ≤ d + 1,

gl = 1, and
∑d+1

l=h+1

⌊
gl

2

⌋
= 0 < 1 = h, a contradiction. Thus h > 1, and a

word with d + 1 letters has at most 2p′ − 2 full q-periods, i.e., n ≤ 2p′ − 2, a
contradiction. �

Based on Algorithm 1, we give some closed forms. Letting p, q, p′, q′, d, γ be
positive integers such that p = dp′, q = dq′ = γp+ d, and gcd(p, q) = d > 1, define

v0 = ap′
1 ap′

2 . . . ap′
d−1a

p′−1
d (.ap′

1 . . . ap′
d−1a

p′−1
d ad+1)γ−1.a2 . . . ad−1ad+1|

vi = |ap′+1−i
1 ap′−i

2 . . . ap′−i
d (.ap′

1 . . . ap′
d−1a

p′−1
d ad+1)γ−1.

ai
1a

i+1
2 . . . ai+1

d−1a
i
dad+1|

vp′ = |a1(.a
p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ .a2a3 . . . ad−1ad|

vp′+j = |ap′+1−j
1 ap′−j

2 . . . ap′−j
d−1 ap′−1−j

d ad+1(.a
p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1

.aj
1a

j+1
2 . . . aj+1

d |
v2p′−1 = |a2

1a2 . . . ad−1ad+1(.a
p′
1 . . . ap′

d−1a
p′−1
d ad+1)γ−1.

ap′−1
1 ap′

2 . . . ap′
d−1a

p′−1
d

for 0 < i < p′ and 0 < j < p′ − 1.

Theorem 5.10. If ||u0| − |v0|| �= μd for any integer μ ≥ 0, then w = u0u1 . . . =
v0v1 . . . v2p′−1 is an optimal word of cardinality d+1, length 2 lcm(p, q)−3, having
abelian periods p and q, that can be constructed by Algorithm 1.

Proof. The proof is similar to that of Theorem 5.6. �

5.3. The case where ||u0| − |v0|| is not a multiple of d (q = γp + rd)

Here the situation becomes more complicated. Write q = γp + rd for some
γ > 0 and some r where 0 ≤ rd < p. Assume that d �= p, since the case d = p is
trivial. Similarly, the case r = 0 is trivial. This implies that gcd(p′, r) = 1, since
d gcd(p′, r) divides both p and q.

We begin with an initial bound on the length, given in Theorem 5.11.

Theorem 5.11. For a word w with abelian periods p and q, where gcd(p, q) =
d > 1 and ||u0| − |v0|| �= μd for any integer μ ≥ 0, if |w| > 2(p′ − 1) lcm(p, q) − 2,
then w has cardinality at most d.
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Proof. There exists an integer s such that 0 < s < p′ and rs = tp′ + 1 for some
integer t. Then note that w has abelian period sq, where sq = (t + sγ)p + d. It
then follows by Theorem 5.9 that since gcd(sq, p) = d and since |w| > 2(p′ −
1) lcm(p, q) − 2 ≥ 2s lcm(p, q) − 2 = 2 lcm(p, sq) − 2 that w has cardinality at
most d. �

Theorem 5.18 below provides an improved bound. Start with u0u1 . . . um+1

and v0v1 . . . vn+1, two factorizations of a word w into abelian periods p and q,
respectively, where gcd(p, q) = d > 1 and ||u0| − |v0|| �= μd for any integer μ ≥ 0.
Recall that for each i, 1 ≤ i ≤ n, we can write vi = xiubi+1 . . . ubi+1−1yi, where
|xi| < p and |yi| < p. In case |v0| = q, write v0 similarly.

• Our first step will be to show that for 1 ≤ i ≤ n, |xi| ≡ |x1| − (i − 1)(|x1| +
|y1|) mod p. This will be implied by Corollary 5.14 below. Using |v1| = γp+ rd
and gcd(r, p′) = 1, we will show the existence of some i, 1 ≤ i ≤ p′, so that
|xi| ≡ |x1| − (i − 1)rd mod p and |xi| < d.

• Our second step will be to consider the word v = vi . . . vn+1, with |vi| =
q. Our bound |w| ≥ lcm(p, q) + pq − 1 will imply that n − i ≥ p − 1, and
consequently v will have factorizations into abelian periods p and q that satisfy
some conditions. Corollary 5.17 below will then imply that v contains at most
d distinct letters, and so will w.

We begin with the following lemma showing that the number of occurrences of
letter a in xi, where a occurs in w, can be expressed by some function f : Z

+ → N.

Lemma 5.12. Let w be a word with abelian periods p and q, where gcd(p, q) = d >
1 and ||u0| − |v0|| �= μd for any integer μ ≥ 0. There exists a function f : Z

+ → N

so that, for i, where 1 ≤ i ≤ n, and a ∈ A such that a occurs in w, the equality

|xi|a = f(i)|u1|a − (i − 1)(|x1|a + |y1|a) + |x1|a (1)

holds. Furthermore, if i = n + 1 and |yi−1xi| = p then equality (1) also holds.

Proof. We proceed by induction on i. Equality (1) holds trivially when i = 1
by letting f(i) = 0, so assume that it holds for 1, 2, . . . , i − 1. Then note that
|x1|a + |y1|a + (b2 − b1 − 1)|u1|a

= |x1ub1+1 . . . ub2−1y1|a
= |xi−1ubi−1+1 . . . ubi−1yi−1|a since |v1|a = |vi−1|a
= |xi−1|a + |yi−1|a + (bi − bi−1 − 1)|u1|a
= c′|u1|a − (i − 2)(|x1|a + |y1|a) + |x1|a + |yi−1|a by ind. hyp.

for some integer c′. This implies that

c|u1|a + (i − 1)(|x1|a + |y1|a) − |x1|a = |yi−1|a
where c is some integer.

Since yi−1xi = ubi , we have

(1 − c)|u1|a − (i − 1)(|x1|a + |y1|a) + |x1|a = |u1|a − |yi−1|a = |xi|a.
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Note that since |u1|a > 0, (i − 1)(|x1|a + |y1|a) ≥ 0, and |x1|a ≥ 0 we get that
1 − c ≥ 0. Thus set f(i) = 1 − c, and the claim follows. �

We get the following corollaries giving relationships on the length of xi.

Corollary 5.13. For 1 ≤ i ≤ n, the equality

|xi| = f(i)|u1| − (i − 1)(|x1| + |y1|) + |x1|

holds, where f is defined as in Lemma 5.12.

Proof. This follows from Lemma 5.12 when we sum over all a ∈ A. �

Corollary 5.14. For 1 ≤ i ≤ n, |xi| ≡ |x1| − (i − 1)(|x1| + |y1|) mod p. Further-
more, for 1 ≤ i + p′ ≤ n, |xi| = |xi+p′ |.
Proof. Since by Corollary 5.13, |xi| = f(i)|u1|− (i−1)(|x1|+ |y1|)+ |x1| = f(i)p−
(i− 1)(|x1|+ |y1|) + |x1|, the first claim follows easily. Then note that this implies
|xi+p′ | ≡ |xi| mod p (here we use the fact that |v1| = q = γp + rd implies |x1| +
|y1| ≡ rd mod p). Since 0 ≤ |xl| < p for all l, we get |xi| = |xi+p′ |. �

The next lemma gives some of the f values.

Lemma 5.15. Assume that s ≥ 0 is an integer and that |x1| + |y1| = rd. If f is
defined at sp′ + 1, then f(sp′ + 1) = sr.

Proof. Let i = sp′ + 1. Note that |xi| = |x1+sp′ | = |x1+(s−1)p′ | = . . . = |x1+p′ | =
|x1| by Corollary 5.14. Thus we get by Corollary 5.13 that

|x1| = |xi| = f(i)p − (i − 1)rd + |x1|

so that f(i)p = spr, and thus f(i) = sr. �

Using the previous lemma, we next prove, under some conditions on w’s factor-
ization into abelian period q, some relationships on |x0| + |y0| and |x0|a + |y0|a,
for all a ∈ A.

Lemma 5.16. Assume that |v0| = q, |x0| < d, n ≥ p − 1. Then |x0| + |y0| = rd
and r|u1|a − p′(|x0|a + |y0|a) = 0 for all a ∈ A.

Proof. Without loss of generality we can assume that n = p − 1 and vn+1 = ε. If
A = {a1, . . . , ak}, then let ci = |u1|ai − |um+1|ai . Define

xp = a1
c1 . . . ak

ck .

Then wxp has abelian periods p and q.
Note that for each i, 0 ≤ i ≤ n, either |xi|+ |yi| = rd or |xi|+ |yi| = p+rd. Since

|y0| < p by assumption and |x0| < d, it follows that |x0| + |y0| < p + d ≤ p + rd,
so it must be that |x0| + |y0| = rd.
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Assume that r|u1|a − p′(|x0|a + |y0|a) �= 0 for some a ∈ A. Assume r|u1|a −
p′(|x0|a + |y0|a) < 0, the case where r|u1|a − p′(|x0|a + |y0|a) > 0 being similar.
Then if i = p we get that, since |x0|a < d,

0 ≤ |xi|a = f(i)|u1|a − (i − 1)(|x0|a + |y0|a) + |x0|a
< f(i)|u1|a − (i − 1)(|x0|a + |y0|a) + d
= d(r|u1|a − p′(|x0|a + |y0|a)) + d by Lemma 5.15
≤ −d + d = 0.

This is a contradition, so the claim follows �

We can deduce, as a corollary, that if w’s factorization into abelian period q
satisfies the conditions of Lemma 5.16, then w contains at most d distinct letters.

Corollary 5.17. If w is as in Lemma 5.16, then w has cardinality at most d.

Proof. By Lemma 5.16, we get that r|u1|a−p′(|x0|a+|y0|a) = 0 for all a ∈ A. Since
gcd(p′, r) = 1 this implies that r divides |x0|a+|y0|a, so that either |x0|a+|y0|a = 0
or |x0|a + |y0|a ≥ r. Note that if |x0|a + |y0|a = 0 then it must be the case that
|u1|a = 0, so that a does not occur in w. However, if B is the set of all letters that
occur in w then

r|B| =
∑
a∈B

r ≤
∑
a∈B

|x0|a + |y0|a = |x0| + |y0| = rd.

This implies that |B| ≤ d, which is what we wanted. �

We are now ready to prove our bound.

Theorem 5.18. For a word w with abelian periods p and q, where gcd(p, q) =
d > 1 and ||u0| − |v0|| �= μd for any integer μ ≥ 0, if |w| ≥ lcm(p, q)+ pq− 1, then
w has cardinality at most d.

Proof. It is worth noting that n > p′. We know by Corollary 5.14 that for 1 ≤ i ≤
n, |xi| ≡ |x1|−(i−1)(|x1|+|y1|) ≡ |x1|−(i−1)rd mod p (the latter equivalence can
be deduced since |v1| = q = γp + rd and so |x1| + |y1| ≡ rd mod p). The fact that
gcd(r, p′) = 1 implies that there is an i, 1 ≤ i ≤ p′, so that c ≡ |x1| − (i − 1)rd ≡
|xi| mod p for some c, where 0 ≤ c < d. Moreover, since 0 ≤ |xi| < p, this
implies that |xi| = c. Therefore consider the word v = vi . . . vnvn+1, where (since
pq
d = lcm(p, q))

|v| = |w| − |v0 . . . vi−1| ≥ |w| − |v0| − (p′ − 1)q

≥ |w| − q + 1 − (p′ − 1)q ≥ lcm(p, q) + pq − 1 − q + 1 − lcm(p, q) + q = pq.

Note that v is a word with abelian periods p and q. Indeed, we can write v =
v′0v

′
1 . . . v′n1

v′n1+1, where v′0 = vi, v′1 = vi+1, and so on. Then n1 ≥ p− 1. Similarly,
we can write v = u′

0u
′
1 . . . u′

n2
u′

n2+1 where u′
0 = xi, u′

1 = ubi+1, u′
2 = ubi+2, and

so on. Then we can write each v′i so that x′
iu

′
ci+1 . . . u′

ci+1−1y
′
i as before. Moreover,

note that x′
0 = xi, so |x′

0| < d. Therefore by Corollary 5.17 we get that v contains
at most d distinct letters, and thus w contains at most d distinct letters. �
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6. Conclusion

We proved that for a full word w with abelian periods p and q such that
gcd(p, q) = d, d > 1, p and q match up if and only if ||u0| − |v0|| = μd for some
integer μ ≥ 0. We then proved that if a word w has abelian periods p and q with
gcd(p, q) = d, d > 1, and p and q match up, then w has at most cardinality d for
|w| ≥ 2 lcm(p, q)− 1 (see Thm. 5.5). We believe that the optimal length for words
where the abelian periods do not match up is shorter than the one for when they
do match up.

Conjecture 6.1. If a word w has abelian periods p and q with gcd(p, q) = d,
d > 1, and ||u0| − |v0|| �= μd for any integer μ ≥ 0, then w has at most cardinality
d for |w| ≥ 2 lcm(p, q) − 2.

If Conjecture 6.1 is true, then a word w having abelian periods p and q with
gcd(p, q) = d, d ≥ 1, has at most cardinality d for |w| ≥ 2 lcm(p, q) − 1 (see
Thms. 3.1 and 5.5). We did prove Conjecture 6.1 true when q = γp + d for some
integer γ ≥ 1 (see Thm. 5.9).

Further, if Conjecture 6.1 is true, then Algorithm 1, when h = 0, gives a
construction for all optimal words. Indeed, if Conjecture 6.1 is true, the Parikh
vectors that create optimal length words for when the abelian periods do not match
up are the same as the Parikh vectors for when they do match up. In other words,
for any p and q, if we calculate their Parikh vectors based on Algorithm 1, we
can construct an optimal word of length 2 lcm(p, q) − 3 in which p and q do not
match up. For instance, the words w of Theorem 5.10 have abelian periods p and
q = γp + d and length 2 lcm(p, q) − 3.
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[1] S.V. Avgustinovich, A. Glen, B.V. Halldórsson and S. Kitaev, On shortest crucial words
avoiding abelian powers. Discrete Appl. Math. 158 (2010) 605–607.
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[23] A.M. Shur and Y.V. Gamzova, Partial words and the interaction property of periods.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 68 (2004) 191–214.

[24] A.M. Shur and Y.V. Konovalova, On the periods of partial words. In MFCS 2001, 26th
International Symposium on Mathematical Foundations of Computer Science, Lect. Notes
Comput. Sci. Vol. 2136 edited by J. Sgall, A. Pultr and P. Kolman. London, UK, Springer-
Verlag. (2001) 657–665.

[25] W. F. Smyth and S. Wang, A new approach to the periodicity lemma on strings with holes.
Theoret. Comput. Sci. 410 (2009) 4295–4302.

[26] R. Tijdeman and L. Zamboni, Fine and Wilf words for any periods. Indagationes Math. 14
(2003) 135–147.

Communicated by O. Serre.
Received November 2, 2010. Accepted January 21, 2013.


	Introduction
	Notation and terminology
	Relatively prime abelian periods
	Constructing optimal partial words
	Non-relatively prime abelian periods
	The case where ||u0|-|v0|| is a multiple of d
	The case where ||u0|-|v0|| is not a multiple of d (q = p+d)
	The case where ||u0|-|v0|| is not a multiple of d (q = p+rd)

	Conclusion
	References

