
RAIRO-Theor. Inf. Appl. 47 (2013) 111–132 Available online at:

DOI: 10.1051/ita/2012031 www.rairo-ita.org

A NON-UNIFORM FINITARY RELATIONAL SEMANTICS
OF SYSTEM T ∗

Lionel Vaux
1

Abstract. We study iteration and recursion operators in the denota-
tional semantics of typed λ-calculi derived from the multiset relational
model of linear logic. Although these operators are defined as fixpoints
of typed functionals, we prove them finitary in the sense of Ehrhard’s
finiteness spaces.
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1. Introduction

Since its inception in the late 1960s, denotational semantics has proved to be
a valuable tool in the study of programming languages, by recasting the equal-
ities between terms induced by the operational semantics into an more abstract
algebraic setting. By the Curry–Howard correspondence between proofs and pro-
grams, this concept also provided important contributions to the design of logical
systems. Notably, the invention of linear logic by Girard [17] followed from his
introduction of coherences spaces as a refinement of Scott’s continuous semantics
of the λ-calculus [26], moreover taking into account the property of stability put
forward by Berry [5].

The design of coherence spaces was moreover largely based on the ideas previ-
ously developed by Girard about a quantitative semantics of the λ-calculus [18]:
the property that the behaviour of a program is specified by its action on finite ap-
proximants of its argument can be related with the fact that analytic functions are
given by power series. This suggests interpreting types by particular topological
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1 Institut de Mathématiques de Luminy (IML), Aix-Marseille Université, 163 avenue de
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vector spaces, and terms by analytic functions between them: Girard proposed
such an interpretation using the notion of normal functor, a categorical analogue
of analytic functions.

Applying these ideas in a qualitative setting (i.e. forgetting about coefficients in
power series) led Girard to the definition of qualitative domains [16], later refined
into coherence spaces. These models, together with the so-called graph models
introduced by Engeler, Plotkin and Scott [4], share the following basic idea: one
may interpret types as sets, which we will call webs, possibly with some additional
structure (order, coherence, etc.); and then one may interpret terms as subsets of
the webs of their types, respecting the additional structure (ideals, cliques, etc.).

The properties of the interpretations of programs (continuity, stability, etc.)
are put to use in that they allow the particular morphisms associated with
λ-abstractions to be unambiguously represented by their traces, i.e. sets of (input
bits/output bit)-pairs. Notice the plural in “input bits”: intuitively, a program
may need several bits of input information to produce one bit of output. Scott’s
continuity roughly means that each bit of output requires only finitely many bits of
input. Berry’s stability indicates that each output bit produced by a deterministic
program is characterized by a minimal set of input bits. Girard’s linearity speci-
fies those programs which use exactly one input bit per output bit. Such webbed
models can be refined as models of linear logic, so that every morphism from A
to B becomes a linear morphism from !A to B, where !A stands for the type of
“chunks” of information (precisely those that are sufficient to obtain one output
bit).

The most simple webbed model is the relational one: types are interpreted by
sets without any additional structure, and any subset is (potentially) the interpre-
tation of a term. Linear morphisms from A to B are simply relations, i.e. subsets
of A × B. The exponential modality ! is represented by the finite multiset con-
struction, so that arbitrary morphisms from A to B are relations between finite
multisets over A and elements of B. Despite its apparent simplicity, the relational
model of the λ-calculus thus obtained has many interesting properties: for instance
it is injective on βη-classes [27], and it is closely connected with intersection types
and execution time [9].

Ehrhard introduced finiteness spaces [11] by refining this relational model. A
finiteness space is a set equipped with a finiteness structure, i.e. a particular set
of subsets which are said to be finitary; and the model is such that the relational
denotation of a proof in linear logic is always a finitary subset of its conclusion.
The distinctive property of finiteness spaces is that the intersection of two fini-
tary subsets of dual types is always finite. In the associated model of the simply
typed λ-calculus, this feature allowed Ehrhard to reformulate Girard’s quantita-
tive semantics in a standard algebraic setting, where morphisms interpreting typed
λ-terms are analytic functions between the topological vector spaces generated by
vectors with finitary supports. More explicitly:

• the vectors of type A are of the form (vα)α∈|A| where |A| is the web of the
associated finiteness space;
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• !A is similar to the symmetric algebra on A, in particular |!A| is the set of all
finite multisets of elements of |A|;

• an analytic function from A to B is given by a power series:

(f(v))β =
∑

α∈|!A|
f(α,β) · vα

where vα denotes
∏n

i=1 vαi when α = [α1, . . . , αn];
• considering only vectors with finitary supports ensures the convergence of the

previous sum, because it has only finitely many non-zero terms.

This provided the semantic foundations of Ehrhard–Regnier’s differential
λ-calculus [13] and motivated the general study of a differential extension of linear
logic (e.g., [12, 14, 15, 24, 28, 31, 33]).

It is worth noticing that finiteness spaces can accommodate typed λ-calculi
only. In particular, we will see the relational semantics of fixpoint combinators is
finitary only on empty types: this strengthens a previous remark by Ehrhard. The
whole point of the finiteness construction is actually to reject infinite computa-
tions, by ensuring the intermediate sets involved in the relational interpretation
of a cut are all finite. This contrasts with the purely relational model where the
inclusion order defines a cpo on homsets and fixpoints are available at all types –
the relational semantics even admits reflexive objects, hence models of the untyped
λ-calculus [6,10]. Despite this restrictive design, Ehrhard was able to define a fini-
tary interpretation of tail-recursive iteration (Sect. 3 of [11]): this indicates that
the finiteness semantics can accommodate a form of typed recursion. This interpre-
tation, however, is not completely satisfactory: tail recursive iteration is essentially
linear, thus it does not provide a type of natural numbers in the associated model
of the λ-calculus.

The main result of the present paper is that finiteness spaces can actually ac-
commodate the standard notion of primitive recursion in the λ-calculus, Gödel’s
system T : we prove Fin admits a weak natural number object in the sense of [22,30],
and we more generally exhibit a finitary recursion operator for this interpretation
of the type of natural numbers. This achievement is twofold:

• Before considering finiteness, we must define a recursion operator in the carte-
sian closed category deduced from the relational model of linear logic. As we
have already stated, Ehrhard’s proposition does not match this requirement,
which has nothing to do with the finiteness structure: this is essentially due
to the fact that the interpretation of natural numbers is flat (in the sense of
domains). In fact, a similar effect was already noted by Girard in the design
of his coherence semantics of system T [19]: his solution was to propose a lazy
interpretation of natural numbers, where laziness refers to the possibility of
pattern matching on non normal terms. We adapt Girard’s solution to the
purely relational case.

• The second aspect of our work is to establish that this relational semantics is
finitary. This is far from immediate because the recursion operator is defined
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as the union of its finitary approximants, by a fixpoint construction: since
the fixpoint operator itself is not a finitary relation, it is necessary to obtain
stronger properties of these approximants to deduce finitariness.

Parigot proved by syntactic means that no term in the iterator variant of system T
could define a valid predecessor operator, i.e. a formal inverse of the successor on
Church natural numbers [25]. This implies in particular that the recursion operator
of system T cannot be recovered from the sole iterator. A notable outcome of our
relational interpretation of system T is that it provides semantic evidence of this
gap in expressive power between iterator and recursor (although we did not manage
to turn this evidence into a fully new proof).

The present paper takes place in a series of works, aiming to extend the quan-
titative semantics of the simply typed λ-calculus in vectorial finiteness spaces to
functional programming with base types. This would broaden the scope of the
already well developed proof theory of differential linear logic: quantitative se-
mantics provides more precise information on cut elimination, and is thus a better
guide in the design of syntax than the plain relational interpretation.

Earlier achievements in this direction include Tasson’s extension of the algebraic
λ-calculus [32] with a type of booleans, together with a semantic characterization of
total terms which is proved to be complete on boolean functions [28]. The present
work contributes an important step by defining precisely the relational framework
in which a quantitative semantics of system T could be developed.

Since such quantitative approaches are known to extend the proofs-as-programs
paradigm to parallel [7], non deterministic [8], concurrent [12] or even quantum [1]
programming features, our hope is that recasting standard datatypes in this setting
will bring interesting new ideas on how to integrate such features within functional
programming languages.

1.1. Structure of the paper

In Section 2, we briefly describe two cartesian closed categories: the category
Rel of sets and multirelations, and the category Fin of finiteness spaces and fini-
tary multirelations. In Section 3, we give an explicit presentation of the relational
semantics of typed λ-calculi in Rel and Fin, which we extend to system T in
Section 4. In Section 5, we establish a uniformity property of iteration-definable
morphisms, which does not hold for recursion in general. Finally, we discuss pos-
sible further developments of this work.

2. Sets, relations and finiteness spaces

2.1. Notations

If A is a set, we write # A for the cardinality of A, P (A) for the powerset
of A and Pf (A) for the set of all finite subsets of A. We identify multisets of
elements of A with functions A −→ N. If μ is such a multiset, we write Supp (μ)
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for its support set {α ∈ A; μ(α) �= 0}. A finite multiset is a multiset with finite
support. We write A! for the set of all finite multisets of elements of A. Whenever
(α1, . . . , αn) ∈ An, we write α = [α1, . . . , αn] for the corresponding finite multiset:
α ∈ A �→ # {i; αi = α}. We also write # [α1, . . . , αn] = n for the cardinality of
multisets. The empty multiset is [] and we use the additive notation for multiset
union, i.e. μ + μ′ : α ∈ A �→ μ(α) + μ′(α).

2.2. Sets and (multi-)relations

Let f ⊆ A × B be a relation from A to B. We write f⊥ = {(β, α); (α, β) ∈ f}.
For all a ⊆ A, we write f · a for the direct image of a by f :

f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f} .

We call multirelation from A to B any relation from A! to B. We define the
category Rel of sets and multirelations:

• objects are sets;
• morphisms are multirelations, i.e. Rel(A, B) = P

(
A! × B

)
;

• the identity on A is idA = {([α] , α); α ∈ A};
• if f ∈ Rel(A, B) and g ∈ Rel(B, C) then their composite is g ◦ f ={

(
∑n

i=1 αi, γ) ; ∃β = [β1, . . . , βn] ∈ B!, (β, γ) ∈ g ∧ ∀i (αi, βi) ∈ f
}
.

This construction can be thought of as follows: ([α1, . . . , αp] , β) ∈ f represents the
instance of f which produces the result β by consuming the resources [α1, . . . , αp].
Then the definition of composition is quite natural: to produce γ, g might consume
resources [β1, . . . , βn], each βi being produced by f , consuming αi; the overall
process builds γ from

∑n
i=1 αi.

Let us mention that Rel is the co-Kleisli category of the comonad (−)! in the
relational model of linear logic. Beyond the motivations and general line of work
exposed in our introduction, this point is however of marginal interest in the
remaining of the paper. The careful reader may nonetheless refer to the addendum
of [11] for a formal definition of this model of linear logic.

The category Rel is cartesian closed. The cartesian product is given by the
disjoint union of sets A � B = ({1} × A) ∪ ({2} × B), with terminal object
the empty set ∅. Projections are {([(1, α)] , α) ; α ∈ A} ∈ Rel(A � B, A) and
{([(2, β)] , β) ; β ∈ B} ∈ Rel(A � B, B). If f ∈ Rel(C, A) and g ∈ Rel(C, B),
pairing is given by: 〈f, g〉 = {(γ, (1, α)) ; (γ, α) ∈ f} ∪ {(γ, (2, β)) ; (γ, β) ∈ g} ∈
Rel(C, A � B). The unique morphism from A to ∅ is ∅. The adjunction for
closedness is Rel(A � B, C) ∼= Rel(A, B! × C) which boils down to the bijec-
tion (A � B)! ∼= A! × B!: this is a typical feature of cartesian closed categories
derived from models of linear logic by the co-Kleisli construction (see, e.g., the
comprehensive survey by Melliès [23]).
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Moreover, Rel is enriched on cpos: the inclusion of multirelations is a complete
partial order.

2.3. Finiteness spaces and finitary multirelations

The construction of finiteness spaces follows a well established pattern [21].
It is given by the following notion of orthogonality on subsets a, a′ ⊆ A: a ⊥
a′ iff a ∩ a′ is finite. Then one unrolls the familiar definitions associated with
biorthogonal closure. We retain only what is necessary for our exposition: for a
detailed presentation, the obvious reference is [11].

Let F ⊆ P (A) be any set of subsets of A. We define the pre-dual of F in A
as F⊥ = {a′ ⊆ A; ∀a ∈ F, a ⊥ a′}. We have the following immediate properties:
F ⊆ F⊥⊥ and, if G ⊆ F, F⊥ ⊆ G⊥. By the last two, we get F⊥ = F⊥⊥⊥. Moreover,
Pf (A) = P (A)⊥ ⊆ F⊥. A finiteness structure on A is a set F of subsets of A such
that F⊥⊥ = F. Then a finiteness space is a dependent pair A = (|A| , F (A)) where
|A| is the underlying set, called the web of A, and F (A) is a finiteness structure on
|A|. We write A⊥ for the dual finiteness space:

∣∣A⊥∣∣ = |A| and F
(
A⊥)

= F (A)⊥.
The elements of F (A) are called the finitary subsets of A.

For every set A, (A, Pf (A)) is a finiteness space and (A, Pf (A))⊥ = (A, P (A)).
In particular, each finite set A is the web of exactly one finiteness space:
(A, Pf (A)) = (A, P (A)). We introduce the empty finiteness space E = (∅, {∅})
and the finiteness space of flat natural numbers N = (N, Pf (N)). If A and B are
finiteness spaces, we define A & B and A ⇒ B as follows:

• |A & B| = |A| � |B| and F (A & B) = {a � b; a ∈ F (A) ∧ b ∈ F (B)};
• |A ⇒ B| = |A|! × |B| and f ∈ F (A ⇒ B) iff ∀a ∈ F (A), f · a! ∈ F (B), and

∀β ∈ |B|, (f⊥ · {β}) ⊥ a!.

For instance, setting S = {([k] , k + 1); k ∈ N}, we have S ∈ F (N ⇒ N ). It is
easily seen that A&B is a finiteness space, but the same result for A ⇒ B is quite
technical [11]. We call finitary multirelations the elements of F (A ⇒ B).

Notice that F (A ⇒ B) ⊆ Rel(|A| , |B|). Moreover the identity idA = id|A| is
always finitary from A to itself, and finitary multirelations compose. We write Fin
for the category of finiteness spaces with Fin(A,B) = F (A ⇒ B) and composition
defined as in Rel. It is cartesian closed with terminal object E , product − & −
and exponential − ⇒ −: the definitions of those functors on morphisms, the
natural transformations, and the adjunction required for cartesian closedness are
exactly the same as for Rel, applied to the webs of finiteness spaces and to finitary
multirelations. By contrast with Rel, Fin is not cpo-enriched: the union of finitary
multirelations might not be finitary – see Section 4.2. Again, for reference, the
reader may check that Fin is the co-Kleisli category of the exponential comonad
in the finitary relational model of linear logic, which is detailed in the Section 1
of [11].
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(Var)
Γ, x : A, Δ � x : A

(Unit)
Γ � 〈〉 : �

a ∈ CA (Const)
Γ � a : A

Γ, x : A � s : B
(Abs)

Γ � λx s : A → B

Γ � s : A → B Γ � t : A (App)
Γ � s t : B

Γ � s : A Γ � t : B (Pair)
Γ � 〈s, t〉 : A × B

Γ � s : A1 × A2 (Proji)
Γ � πis : Ai

Figure 1. Rules of typed λ-calculi with products.

3. The multiset relational semantics of typed λ-calculi

3.1. Typed λ-calculi

In this section, we give an explicit description of the interpretation in Rel and
Fin of the basic constructions of typed λ-calculi with products. Type expressions
are given by:

A, B ::= X | A → B | A × B | �

where X ranges over a fixed set A of atomic types. Term expressions are given by:

s, t ::= x | a | λx s | s t | 〈s, t〉 | π1 s | π2 s | 〈〉

where x ranges over term variables and a ranges over term constants. To each
variable and to each constant, we associate a type: we write CA for the collection
of constants of type A, and we assume that every type admits a countably infinite
set of variables.

A typing judgement is an expression Γ � s : A derived from the rules in Figure 1
where contexts Γ and Δ range over lists (x1 : A1, . . . , xn : An) of typed variables.
Clearly, if a term s is typable, then its type is uniquely determined, say A, and
then Γ � s : A iff Γ contains the free variables of s. We denote by s [x := t] the
capture avoiding substitution of t for x in s.

The operational semantics of a typed λ-calculus is given by a congruence � on
typed terms: if s � t, then s and t have the same type, say A; we then write Γ �
s � t : A for any suitable Γ . In general, we will give � as the reflexive, symmetric
and transitive closure of a contextual relation > on typed terms. We define >0

as the least one such that: πi〈s1, s2〉 >0 si and (λx s) t >0 s [x := t] (with the
obvious assumptions ensuring typability), and we write �0 for the corresponding
equivalence.

Pure typed λ-calculi are those with no additional constant or conversion rule:
fix a set A of atomic types, and write ΛA

0 for the calculus where CA = ∅ for all A,
and s � t iff s �0 t.
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�Var�
Γ [], x[α] : A, Δ[] � xα : A

a ∈ CA α ∈ �a�
�Const�

Γ [] � aα : A

Γ, xα : A � sβ : B
�Abs�

Γ � λx s(α,β) : A → B
Γ0 � s([α1,...,αk ],β) : A → B Γ1 � tα1 : A · · · Γk � tαk : A

�App�∑k
j=0 Γj � s tβ : B

Γ � sα
i : Ai

�Pairi�
Γ � 〈s1, s2〉(i,α) : A1 × A2

Γ � s(i,α) : A1 × A2 �Proji�
Γ � πis

α : Ai

Figure 2. Computing the elements of the relational semantics.

3.2. Relational interpretation and finiteness property

Assume a set �X� is given for each base type X ; then we interpret type con-
structions by �A → B� = �A�

! × �B�, �A × B� = �A� � �B� and ��� = ∅. Further
assume that with every constant a ∈ CA is associated a subset �a� ⊆ �A�. The
relational semantics of a derivable typing judgement

x1 : A1, . . . , xn : An � s : A

will be a relation

�s�x1:A1,...,xn:An
⊆ �A1�

! × · · · × �An�! × �A� .

We first introduce the deductive system of Figure 2, which is a straightforward
adaptation of de Carvalho’s system R [10] to the simply typed case. In this system,
derivable judgements are semantic annotations of typing judgements:

xα1
1 : A1, . . . , x

αn
n : An � sα : A

stands for
(α1, . . . , αn, α) ∈ �s�x1:A1,...,xn:An

.

In rules �Var� and �Const�, Γ [] denotes an annotated context of the form x
[]
1 :

A1, . . . , x
[]
n : An. In rule �App�, the sum of annotated contexts is defined pointwise:

(
xα1

1 : A1, . . . , x
αn
n : An

)
+

(
x

α′
1

1 : A1, . . . , x
α′

n
n : An

)
=

(
x

α′′
1

1 : A1, . . . , x
α′′

n
n : An

)

where α′′
i = αi + α′

i for all i. The semantics of a term is then simply obtained as
the set of its annotations:

�s�x1:A1,...,xn:An
=

{
(α1, . . . , αn, α); xα1

1 : A1, . . . , x
αn
n : An � sα : A

}
.

Notice there is no rule for 〈〉 in Figure 2, hence �〈〉�Γ = ∅ for all Γ .
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Theorem 3.1 (Invariance). If Γ � s �0 t : A then �s�Γ = �t�Γ .

Proof. We followed the standard interpretation of typed λ-calculi in cartesian
closed categories, in the particular case of Rel. A direct proof is also easy, first
proving a substitution lemma: if Γ0, x : A[α1,...,αk], Δ0 � sβ : B, and, for all
j ∈ {1, . . . , k}, Γj , Δj � tαj : A, then

∑k
j=0 Γj ,

∑k
j=0 Δj � s [x := t]β : B. �

The relational interpretation also defines a semantics in Fin: assume a finiteness
structure F (X) is given for each atomic type X , so that X∗ = (�X� , F (X)) is a
finiteness space, and let (A → B)∗ = A∗ ⇒ B∗, (A × B)∗ = A∗ & B∗ and �∗ = E .
Then, further assuming that, for all a ∈ CA, �a� ∈ F (A∗), we obtain:

Theorem 3.2 (Finiteness). If x1 : A1, . . . , xn : An � s : A then �s�x1:A1,...,xn:An
∈

F (A∗
1 ⇒ · · · ⇒ A∗

n ⇒ A∗).

Proof. This is a straightforward consequence of the fact that the cartesian closed
structure of Fin is given by the same morphisms as in Rel. A direct proof is also
possible, by induction on typing derivations. �

3.3. On the relations denoted by λ-terms

We have just shown that Rel and Fin model �0 in pure typed λ-calculi. Be
aware that if we introduce no atomic type, then the semantics is actually trivial:
in Λ∅

0, all types and terms are interpreted by ∅.
By contrast, we can consider the internal language ΛRel of Rel in which all

relations can be described: fix A as the collection of all sets (or a fixed set of sets)
and CA = P (�A�). Then let s �Rel t iff �s�Γ = �t�Γ , for any suitable Γ . The
point in defining such a language is to enable very natural notations for relations:
in general, we will identify closed terms in ΛRel with the relations they denote
in the empty context. For instance, we write idA = λx x with x of type A; and
if f ∈ Rel(A, B) and g ∈ Rel(B, C), we have g ◦ f = λx (g (f x)). Similarly, the
internal language ΛFin of Fin, where A is the collection of all finiteness spaces and
CA = F (A∗), allows us to denote conveniently all finitary relations.

Before we address the main subject of the paper, system T , let’s just review
some easy examples of usual λ-calculus constructions that can be modelled in
Rel and Fin. First, being cartesian closed categories, they are actually models of
pure typed λ-calculi with extensionality, surjective pairing and terminal object:
Theorem 3.1 still holds if we add the reductions λx (u x) >0 u, 〈π1 s, π2 s〉 >0 s
and v >0 〈〉 as soon as x is not free in u and v has type � (although, in that case,
>0 is no longer confluent).

We can also extend the language with particular base types and constants. For
instance, we can introduce base type Bool together with constants T and F of type
Bool, and DA of type Bool → A → A → A, with the additional reductions D T s t >
s and D F s t > t (we will in general omit the type subscript of such constants
and keep the obvious hypotheses on typability implicit) and fix interpretations as
follows: let B a finiteness space with a two element web |B| = {tt, ff}; then let
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Bool∗ = B, �T� = {tt}, �F� = {ff} and �DA� = DA = {([tt] , [α] , [] , α); α ∈ |A∗|} ∪
{([ff ] , [] , [α] , α); α ∈ |A∗|}. That these interpretations are finitary should be clear.
Then one retains that Γ � s � t : A implies �s�Γ = �t�Γ . But the essential point
is that this semantics is internal: in ΛRel and ΛFin, x : A, y : A � DA T x y � x : A
and x : A, y : A � DA F x y � y : A. This means that booleans interact as
expected with all relations of appropriate types and not just with those derived
from λ-terms.

Much more structure can be revealed in Rel and Fin, with computational coun-
terparts in ΛRel and ΛFin. Most importantly, the semantics of the λ-calculus in Fin
lead Ehrhard and Regnier to the definition of the differential λ-calculus in [13].
One can present this calculus in the current framework by introducing, for all types
A and B, a new constant DiffA,B of type (A → B) → A → A → B subject to a
new reduction rule (Diff λx s) t > λx

(
∂ s
∂ x · t

)
where ∂ s

∂ x · t is the linearized version
of substitution defined in [13].

3.4. System T

The main contribution of the present paper is to establish that Fin models
Gödel’s system T , which can be presented in various ways. The iterator version of
system T is the typed λ-calculus with an atomic type Nat of natural numbers, and
constants O of type Nat (corresponding to zero), S of type Nat → Nat (correspond-
ing to successor) and for every type A, IA of type Nat → (A → A) → A → A, sub-
ject to the following additional conversions: I O u v > v and I (S t)u v > u (I t u v).
The recursor variant is similar, but the iterator is replaced with RA of type
Nat → (Nat → A → A) → A → A subject to conversions R O u v > v and
R (S t)u v > u t (R t u v). Yet another possible system is obtained with tail recur-
sive iteration: take JA of type Nat → (A → A) → A → A and let J O u v > v and
J (S t)u v > J t u (u v).

These systems allow us to represent exactly the same functions on the set of
natural numbers, where the number n is denoted by Sn O: this is the consequence
of a normalization theorem (see [19]). Notice in particular that, when applied to
a canonical integer, I and J coincide: I (Sn O)uv � J (Sn O)uv � un v; this does not
hold for all terms of type Nat, however (consider, e.g., a variable of type Nat).
Moreover, we can define a recursor using iteration and products with the standard
encoding rec = λxλy λz π1 (I x (λw 〈y (π2 w) (π1 w), S (π2 w)〉) 〈z, O〉), and we get
rec (Sn O)uv � R (Sn O)uv: the idea is to reconstruct the integer argument on the
fly. But this encoding is valid only for ground terms of type Nat: rec (S t)u v �
u t (rec t u v) holds only if we suppose t is of the form Sn O, or reduces to such
a term (notice we could as well use J in the definition of rec). By contrast, the
encoding of the iterator by iter = λxλy λz (R x (λx′ y) z) is extensionally valid:
iter O u v � v and iter (S t) u v � u (iter t u v) for all t, u, v.

The fact that one direction of the encoding holds only on ground terms
indicate that the algorithmic properties of both systems may differ. And these
differences will appear in the semantics (see Sect. 5). Also, recall the discussion
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in our introduction: the tail recursive variant of iterator, J subject to J (S t)u v >
J t u (u v), uses its integer argument linearly. This enabled Ehrhard to define a
semantics of iteration, with Nat∗ = N = (N, Pf (N)), �O� = O = {0} and
�S� = S = {([n] , n + 1); n ∈ N}. Such an interpretation of natural numbers,
however, fails to provide a semantics of I or R, in Rel or Fin.

Lemma 3.3. Assume �Nat� = |N |, �O� = O and �S� = S, and let A be any type
such that �A� �= ∅. Then there is no IA ⊆ �Nat → (A → A) → A → A� such that,
setting �IA� = IA, we obtain �I O u v�Γ = �v�Γ and �I (S t) u v�Γ = �u (I t u v)�Γ as
soon as Γ � t : Nat, Γ � u : A → A and Γ � v : A.

Proof. By contradiction, assume the above equations hold. We can then de-
rive the following in ΛRel: λx λy (I O (λz x) y) � λx λy y and, observing that
∅ ⊆ N, λxλy (I (S ∅) (λz x) y) � λx λy x. Since moreover S ∅ � ∅, and the se-
mantics is monotonic for relation inclusion, we obtain: λx λy (I (S ∅) (λz x) y) �
λx λy (I ∅ (λz x) y) ⊆ λxλy (I O (λz x) y). We conclude that �λx λy x�x:A,y:A ⊆
�λx λy y�x:A,y:A for every type A, which obviously fails as soon as �A� �= ∅. �

4. A finitary relational interpretation of primitive

recursion

4.1. Lazy natural numbers

We say a multirelation from A to B is:

• linear if it contains only elements of the form ([α] , β);
• affine if it contains only elements of the form ([α] , β) or ([] , β);
• strict if it contains no element of the form ([] , β).

In the proof of Lemma 3.3, S ∅ = ∅ holds because S is linear, hence strict. This
reflects the general fact that, if s is a strict multirelation from A to B then, for
all t ∈ Rel(B, C), ([] , γ) in t ◦ s iff ([] , γ) ∈ t. Such a phenomenon was also noted
by Girard in his interpretation of system T in coherence spaces [19]. His evidence
that there was no interpretation of the iteration operator using the linear successor
relied on a coherence argument. The previous lemma is stronger: it holds in any
webbed model as soon as the interpretation of successor is strict.

In short, strict morphisms cannot produce anything ex nihilo; but the suc-
cessor of any natural number should be marked as non-zero, for the iterator to
distinguish between both cases. Hence the successor should not be strict: simi-
larly to Girard’s solution, we will interpret Nat by so-called lazy natural num-
bers. Let Nl = (|Nl| , Pf (|Nl|)) be such that |Nl| = N ∪ N>, where N> is just
a disjoint copy of N. The elements of N> are denoted by k>, for k ∈ N: k>

represents a partial number, not fully determined but strictly greater than k. If
ν ∈ |Nl|, we define ν+ as k + 1 if ν = k and (k + 1)> if ν = k>. Then we set
Sl = {([] , 0>)} ∪ {([ν] , ν+); ν ∈ |Nl|}, which is affine. Notice that O ∈ F (Nl) and
Sl ∈ F (Nl ⇒Nl).
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We will show that these allow us to provide an interpretation of recursion, hence
iteration, in system T : for all finiteness space A, there exists

RA ∈ F (Nl ⇒ (Nl ⇒A⇒A) ⇒A⇒A)

such that, in ΛFin,

y : Nl ⇒A⇒A, z : A � RO y z � z : A

and
x : Nl, y : Nl ⇒A⇒A, z : A � R (Sl x) y z � y x (Rx y z) : A.

4.2. Fixpoints

For all finiteness space A, write Rec [A] = Nl ⇒ (Nl ⇒A⇒A) ⇒A⇒A. We
want to introduce a recursion operator RA ∈ F (Rec [A]) intuitively subject to the
following definition:

R t u v = match t with
{

O �→ v
S t′ �→ u t′ (R t′ u v) .

This definition is recursive, and a natural method to obtain such an operator is as
the fixpoint of

Step = λX λx λy λz

(
match x with

{
O �→ z

S x′ �→ y x′ (X x′ y z)

)
.

The cartesian closed category Rel is cpo-enriched, the order on morphisms being in-
clusion. Hence it has fixpoints at all types: for all set A and f ∈ Rel(A, A), the least
fixpoint of f is

⋃
k≥0 fk ∅, which is an increasing union. The least fixpoint opera-

tor is itself definable as the supremum of its approximants, FixA =
⋃

k≥0 Fix
(k)
A ,

where Fix
(0)
A = ∅ and Fix

(k+1)
A = λf

(
f

(
Fix

(k)
A f

))
. More explicitly, Fix

(k+1)
A ={

([([α1, . . . , αn] , α)] +
∑n

i=1 ϕi, α) ; ∀i, (ϕi, αi) ∈ Fix
(k)
A

}
: the reader may check

that this equation holds by inspecting all the possible annotations of λf (f (a f))
by the rules of Figure 2, where a is any constant of type (A → A) → A. Intuitively,
the pair ([α1, . . . , αn] , α) corresponds to the head instance of f in f (a f), while
each ϕi holds the instances of f used by a in order to produce αi in the recursive
call (a f).

Notice that these approximants are finitary: if A is a finiteness space then, for
all k, Fix

(k)
A = Fix

(k)
|A| ∈ F ((A⇒A) ⇒A). The fixpoint, however, is not finitary

in general: for instance FixSl = N> �∈ F (Nl) hence Fix �∈ F ((Nl ⇒Nl) ⇒Nl).
In fact Fix ∈ F ((A⇒A) ⇒A) only for the empty type A = E :

Lemma 4.1. If |A| �= ∅, then Fix �∈ F ((A⇒A) ⇒A).
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Proof. Let α ∈ |A| and f = {([] , α)} ∪ {([α] , α)} ∈ Pf (A⇒A) ⊆ F (A⇒A).
Observe that ([([] , α)] , α) ∈ Fix(1), ([([] , α), ([α] , α)] , α) ∈ Fix(2), and more gen-
erally ([([] , α)] + n [([α] , α)] , α) ∈ Fix(n+1). Hence f ! ∩

(
Fix⊥ · {α}

)
is infinite

although f ∈ F (A⇒A), which contradicts the definition of finitary multirela-
tions. �

This result indicates that the finitary semantics refuses infinite computations and
will not accommodate general recursion. It is thus very natural to investigate the
nature of the algorithms that can be studied in a finitary setting, hence our interest
in typed recursion and system T . So we proceed in two steps: we first introduce
the finitary approximants R(k)

A ∈ F (Rec [A]) by R(k)
A = Stepk

A ∅, then we prove
RA =

⋃
k≥0 R

(k)
A ∈ F (Rec [A]).

On a side note, recall that coherence spaces accommodate fixpoints without
difficulty [19]: in particular, the coherence semantics of system T is very similar to
the relational interpretation we give in the following. By contrast, the finiteness
property is completely new. We will moreover show in Section 5 that, despite its
similarity with the coherence semantics, the relational interpretation itself brings
new light on the nature of iteration and recursion, which would not be accessible
in the uniform setting of coherence spaces.

4.3. Pattern matching on lazy natural numbers

We introduce a finitary operator Case, intuitively defined as:

Case t u v = match t with
{

O �→ v
S t′ �→ u t′.

More formally:

Definition 4.1. If ν = [ν1, . . . , νk] ∈ |Nl|!, we write ν+ =
[
ν+
1 , . . . , ν+

n

]
. Then for

all set A, let

CaseA = {([0] , [] , [α] , α); α ∈ A}
∪

{
([0>] + ν+, [(ν, α)] , [] , α); ν ∈ |Nl|! ∧ α ∈ A

}
.

Lemma 4.2. The operator Case performs pattern matching on natural numbers:

y : Nl ⇒A, z : A � CaseO y z � z : A

and
x : Nl, y : Nl ⇒A, z : A � Case (Sl x) y z � y x : A.

Moreover, pattern matching is finitary:

CaseA = Case|A| ∈ F (Nl ⇒ (Nl ⇒A) ⇒A⇒A) .
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Proof. That the equations hold is by now a routine exercise. To prove that Case
is finitary, we check the definition of F (− ⇒ −). For the first direction: for all
n ∈ F (Nl), Casen ⊆ {([] , [α] , α); α ∈ |A|}∪

{
([(ν, α)] , [] , α); ν+ ∈ n! ∧ α ∈ |A|

}
;

hence, setting n′ = {ν; ν+ ∈ n} ∈ F (Nl), we obtain Casen ⊆ (λy λz z) ∪
(λy λz (y n′)), and we conclude since the union of two finitary subsets is finitary.
In the reverse direction, we prove that, for all γ ∈ |(Nl ⇒A) ⇒A⇒A|, setting
N ′ = Case⊥ · {γ}, n! ∩ N ′ is finite: this is immediate because N ′ has at most one
element (by the definition of Case). �

4.4. A relational recursor

We introduce the relation R as the fixpoint of Step.

Definition 4.2. Fix a set A. Let

StepA = λX λx λy λz (CaseA x (λx′ (y x′ (X x′ y z))) z)

and, for all k ∈ N, let R(k)
A = Stepk

A ∅. Then we define RA =
⋃

k≥0 R
(k)
A , and fix

�R� = R.

Lemma 4.3. For all finiteness space A, StepA = Step|A| ∈ F (Rec [A] ⇒ Rec [A])
and, for all k, R(k)

A = R(k)
|A| ∈ F (Rec [A]). Moreover, we have: R(0)

A = ∅ and

R(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|} ∪{ (

[0>] +
∑n

i=0 ν+
i , [(ν0, [α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ R(k)
A

}
.

Proof. The finiteness of the approximants follows from Theorem 3.2. The explicit
description of R(k)

A is a direct application of the definition of the relational seman-
tics. �

Theorem 4.4 (Correctness). For all suitable Γ and Δ, �R O y z�Γ = �z�Γ and
�R (S x) y z�Δ = �y x (R x y z)�Δ.

Proof. This follows directly from Lemma 4.2 and the fact that R = StepR. �

4.5. Finiteness

It only remains to prove R is finitary. Following the definition of (− ⇒ −), we
proceed in two steps: the image of a finitary subset of Nl is finitary; conversely,
the preimage of a singleton is “anti-finitary”.

Definition 4.3. If n ∈ F (Nl), we set max (n) = max {k; k ∈ n ∨ k> ∈ n}, with
the convention max (∅) = 0. Then if ν ∈ |Nl|! we set max (ν) = max (Supp (ν)),
and if N ⊆ n! for some n ∈ F (Nl), max (N) = max

(⋃
ν∈N Supp (ν)

)
.
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Lemma 4.5. For all γ = (ν, ϕ, α, α) ∈ RA, γ ∈ R(max(ν)+1)
A .

Proof. By induction on max (ν), using Lemma 4.3. �

Lemma 4.6. If n ∈ F (Nl), then RA n ∈ F ((Nl ⇒A⇒A) ⇒A⇒A).

Proof. The previous Lemma entails RA n = R(max(n)+1)
A n. We conclude recalling

that R(max(n)+1)
A ∈ F (Rec [A]). �

Definition 4.4. For all ϕ = [(ν1, α1, α1), . . . , (νk, αk, αk)] ∈ |Nl ⇒A⇒A|!, let
♦ϕ =

∑k
j=1 # νj.

Lemma 4.7. If (ν, ϕ, α, α) ∈ RA, then # ν = # α + # ϕ + ♦ϕ.

Proof. Using Lemma 4.3, the result is proved for all (ν, ϕ, α, α) ∈ R(k)
A , by induc-

tion on k. �

Theorem 4.8 (The recursion operator is finitary). RA ∈ F (Rec [A]).

Proof. By Lemma 4.6, we are left to prove that, for all n ∈ F (Nl) and γ =
(ϕ, α, α) ∈ |(Nl ⇒A⇒A) ⇒A⇒A|, N = n! ∩

(
R⊥ · {γ}

)
is finite. But by

Lemma 4.7,

N ⊆
{
ν ∈ |Nl|!; # ν = # α + # ϕ + ♦ϕ ∧ max (ν) ≤ max (n)

}

which is finite. �

Remark 4.5. We keep calling R “the” recursion operator, but notice such an
operator is not unique in Rel or Fin: let Case′A = {([0, 0] , [] , [α] , α); α ∈ A} ∪{(

[0>] + ν+, [(ν, α)] , [] , α
)
; ν ∈ |Nl|! ∧ α ∈ A

}
, for instance; this variant of

matching operator behaves exactly like Case, and one can reproduce our construc-
tion of the recursor based on that. This is to be related with the fact that neither Rel
nor Fin admit coproducts: in other terms, there is no canonical way to implement
sum types and pattern matching in these categories.

5. About iteration

5.1. A weak natural number object

We have just provided a semantics of system T with recursor. Now let IA =
λx λy λz (RA x (λx′ y) z) for all set A. By Theorem 4.8, IA = I|A| ∈ F (Iter [A]),
where Iter [A] = Nl ⇒ (A⇒A) ⇒A⇒A. Moreover, by Theorem 4.4 this defines
an iteration operator and we obtain that the triple (|Nl| ,O,Sl), resp. (Nl,O,Sl),
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is a weak natural number object [22,30] in the cartesian closed category Rel, resp.
Fin. Indeed:

Lemma 5.1. For all f ∈ Fin(A,A) and all a ∈ F (A), there exists h ∈ Fin(Nl,A)
such that hO = a and h ◦ Sl = f ◦ h.

Proof. Take h = λx (I x f a). �

According to Remark 4.5, there is no hope of finding a strong natural number
object in these categories, i.e. to require h to be unique in the above lemma.

We could also have introduced I by a construction similar to that of R:

Definition 5.1. Let

ItStep = λX λx λy λz (Case x (λx′ (y (X x′ y z))) z)
∈ F (Iter ⇒ Iter)

and, for all k ∈ N, I(k) = ItStepk ∅ ∈ F (Iter).

Lemma 5.2. The relations I(k)
A are given by: I(0)

A = ∅ and

I(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|}∪{(

[0>] +
∑n

i=1 ν+
i , [([α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ I(k)
A

}
.

Proof. Again, routine exercise. �

Lemma 5.3. We have
⋃

k≥0 I
(k)
A = IA.

Proof. Check that, for all k, I(k) = λx λy λz
(
R(k) x (λx′ y) z

)
. �

5.2. Uniformity of iteration

We now develop a semantic investigation of the gap in expressive power between
iteration and recursion, which was formally established by Parigot [25].

One distinctive feature of the (pure or finitary) relational model is non-
uniformity: if a, a′ ∈ F (A) then a ∪ a′ ∈ F (A); and in the construction of a!,
there is no restriction on the elements of the multisets we consider. It is very
different from the setting of coherence spaces for instance. But we can show the it-
erator only considers uniform sets of lazy numbers, in the following sense: if k ∈ N,
we define k = Sk

l O = {l>; l < k} ∪ {k} ∈ F (Nl); we say n ⊆ |Nl| is uniform if
n ⊆ k for some k. Notice that, in the coherence space of lazy natural numbers used
by Girard in [19] to interpret system T , the sets k are the finite maximal cliques:
coherence is given by k ¨ l iff k = l, k ¨ l> iff k > l and k> ¨ l> for all k, l. The
only infinite maximal clique is N> which is not finitary (recall this is the fixpoint
of Sl). We prove I considers only uniform sets of lazy numbers.
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Let Stage
(0)
A = {([0] , [] , [α] , α); α ∈ |A|} and, for all k ∈ N,

Stage
(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|} ∪{(

[0>] +
∑n

i=1 ν+
i , [([α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ Stage
(k)
A

}
.

Setting Stage
(−1)
A = ∅, one can check that Stage

(k−1)
A ⊆ I(k)

A ⊆ Stage
(k)
A for all k,

and then IA =
⋃

k≥0 Stage
(k)
A .

Lemma 5.4. If A �= E then, for all k ∈ N,

⋃{
Supp (ν) ; ∃(ϕ, α, α), (ν, ϕ, α, α) ∈ Stage

(k)
A \ Stage

(k−1)
A

}
= k.

Proof. The first inclusion (⊆) is easy by induction on k. For the reverse (⊇), check
that ([0>, 1>, . . . , (k − 1)>, k] , (k−1) [([α] , α)] , [α] , α) ∈ Stage

(k)
A \Stage

(k−1)
A for

all α ∈ |A|. �

As a consequence, for all (ν, ϕ, α, α) ∈ I, Supp (ν) is uniform. Of course, no
such property holds for R, because

R(1)
A ⊇

{([
0>

]
+ ν+, [(ν, [] , α)] , [] , α

)
; α ∈ |A| ∧ ν ∈ |Nl|!

}
.

Actually, this non-uniformity of recursion is not related with our specific choice
of the interpretation of R . Rather, it follows from the fact that, in the equation
R (S t)u v � u t (R t u v), u can take arbitrary arguments. Let us make this remark
precise:

Lemma 5.5. Fix a set A �= ∅, α ∈ A and let r be a relation of type |Nl| →
(|Nl| → A → A) → A → A, such that r (Sl t)u v � u t (r t u v) for all terms t, u

and v of suitable type in ΛRel. Then, for all ν ∈ |Nl|!, r admits an element of the
form (ν+ + [0>, . . . , 0>] , φ, [] , α) ∈ r.

Proof. Fix α ∈ A and let f = {(ν, [] , α)}, which is a singleton relation of type
|Nl| → A → A. Then, if x is a variable of type |Nl|, r (Sl x) f ∅ � f x (r x f ∅) holds
in ΛRel. Now observe that, by the definition of f , �f x (r x f ∅)�x:|Nl| = {(ν, α)}.
Hence xν : |Nl| � (r (Sl x) f ∅)α : A. By inspecting the rules of Figure 2, we
necessarily have xν : |Nl| � (r (Sl x) f)([],α) : A → A. By the same argument,
we obtain xν : |Nl| � (r (Sl x))(ϕ,[],α) : (|Nl| → A → A) → A → A for some
ϕ ∈ f !. Finally, there exist finite multisets [μ1, . . . , μk] , ρ1, . . . , ρk ∈ |Nl|! such
that x[] : |Nl| � r([μ1,...,μk],ϕ,[],α) : |Nl| → (|Nl| → A → A) → A → A and
xρj : |Nl| � (Sl x)μj : |Nl| for all j, with moreover

∑
j ρj = ν. Since (ρj , μj) ∈ Sl

for all j, we conclude that [μ1, . . . , μk] is of the form ν+ + [0>, . . . , 0>]. �
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The contrast between Lemma 5.4 and Lemma 5.5 reflects a gap in expressive
power between iteration and recursion. Indeed, from Lemma 5.4, we can deduce
the following result:

Lemma 5.6. Consider the iterator variant of system T , and fix the interpretations
�Nat� = Nl, �O� = O, �S� = Sl and �I� = I. Fix a variable x of type Nat. Let s be
a term such that:

(i) all occurrences of x are of the form I x;
(ii) no occurrence of I x is inside the argument of an application.

Then, if some judgement Γ, xν : Nat � sα : A is derivable, Supp (ν) is uniform.

Proof. We prove the result by induction on s, the only interesting case being that
of an application:

• if s = I x then A is of the form (B → B) → B, we check that Γ, xν : Nat �
I x(φ,β) : (B → B) → B implies (ν, φ, α) ∈ I, and we conclude by Lemma 5.4;

• otherwise, s = u v and x does not occur in v, hence Γ, xν : Nat � sα : A implies
some judgment Γ0, x

ν : Nat � u([γ1,...,γk],α) : C → A can be derived, and we
conclude by induction hypothesis applied to u, which necessarily satisfies (i)
and (ii). �

Corollary 5.7. No term of the form λx s, with s as in the previous lemma is a
valid implemention of recursion.

Notice that this already rules out the usual näıve attempt to implement recur-
sion using only iteration and products (recall the term rec from Sect. 3.4). We
can moreover drop the hypothesis (ii) in Lemma 5.6 by considering the following
oriented version of coherence on |Nl|: we say μ is less defined than ν and write
μ ≺ ν if there are m < n ∈ N such that μ = m> and either ν = n> or ν = n. The
coherence relation ¨ is the reflexive and symmetric closure of this partial order.
We then obtain the following property for I:

Lemma 5.8. For all (ν, ϕ, α, α) ∈ I, Supp (ν) is downwards closed for ≺, i.e.
μ ≺ ν ∈ Supp (ν) implies μ ∈ Supp (ν).

Proof. By Lemma 5.2, it is sufficient to prove this result for I(k), for all k ∈ N.
First notice that any union of downwards closed subsets of |Nl| is downwards
closed, and that if n ⊆ |Nl| is downwards closed then so is {0>} ∪ {ν+; ν ∈ n}.
We then conclude by a straightforward induction on k. �

Again, such a property fails for any implementation of recursion, by Lemma 5.5.
Moreover:

Lemma 5.9. With the same hypotheses as in Lemma 5.6, consider a term t such
that all occurrences of x in t are of the form I x. Then, if some judgement Γ, xν :
Nat � tα : A is derivable, Supp (ν) is downwards closed for ≺.
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Proof. Again, the proof is by induction on t, with the only interesting case being
that of an application:

• if t = I x, we conclude directly by the previous lemma;
• otherwise, t = u v and Γ, xν : Nat � tα : A implies that we can de-

rive judgements of the form Γ0, x
ν0 : Nat � u([β1,...,βk],α) : B → A and

Γj , x
νj : Nat � vβj : B for j ∈ {1, . . . , k} where ν =

∑k
j=0 νj ; we conclude

by induction hypothesis applied to u and v, together with the fact that unions
of downwards closed subsets are downwards closed. �

Corollary 5.10. No term of the form λx t, with t as in the previous lemma is a
valid implemention of recursion.

This concluding result is not fully satisfactory, because there remains the condition
that x occurs only as the first argument of I. It is still unclear to us whether our
semantic argument can be refined in order to avoid this hypothesis. Notice for in-
stance that �I x ∅ x�x:|Nl| = {([0, ν] , ν); ν ∈ |Nl|} where [0, ν] need not be uniform
nor downwards closed for ≺, hence those simple properties are not sufficient to
discriminate between iterator-based terms and recursion operators.

On the other hand, the fact that no term in the iterator variant of system T
defines a recursion operator follows straightforwardly from Parigot’s work on the
encodings of system T in higher order intuitionistic logic [25]: Parigot’s results
entail that no predecessor can be derived from the iterator. A predecessor is a
term p such that p O � O and p (S t) � t for all t of type Nat. Such a predeces-
sor is trivially obtained from the recursor: consider p = λx (R x (λy y) O). Hence
Parigot’s results subsume both Corollaries 5.7 and 5.10.

Anyway, the results of this section showed how the relational interpretation of
system T reflected this well known computational distinction between iteration
and recursion: Lemmas 5.4 and 5.9 on the one hand, and Lemma 5.5 on the other
hand, provide a semantic insight into the nature of this gap, if not a new proof
of it.

Related and future work

Our success in defining a semantics of system T in Fin immediately poses the
question of its generalization to other datatypes. The cpo-enriched structure of Rel
allowed for an abstract description of datatypes [2,3] as particular functors which
are monotonic for relation inclusion. In particular, this provided the basis of a
categorical account of container types [20]. In such a setting, it is natural to define
recursive datatypes, such as lists or trees, as the least fixpoints of particular Scott-
continuous functors. The question is then how to transport these constructions to
the finitary setting.

In recent work with Tasson [29], we study two orders on finiteness spaces de-
rived from set inclusion: the most restrictive one, finiteness extension, was used
by Ehrhard to provide an interpretation of second order linear logic in an unpub-
lished preliminary version of [11]; the largest one, finiteness inclusion, is a cpo on
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finiteness spaces. We study various notions of continuity for functors in finiteness
spaces, and relate them with the existence of fixpoints for these functors. A strik-
ing feature of this development is that we are led to consider the properties of
functors w.r.t. both orders simultaneously: continuity for finiteness inclusion, and
monotonicity for finiteness extension. We prove in particular that every functor
obtained by applying a very generic construction on finiteness spaces satisfies these
properties, and admits a least fixpoint for finiteness inclusion.

We then apply this result to describe a relational semantics of functional pro-
gramming with recursive datatypes, which generalizes the results of the present
paper: the fixpoints of algebraic datatype functors define recursive datatypes with
finitary constructors, destructors and iterators. This paves the way towards a quan-
titative semantics of typed recursion, according to the following roadmap: first find
a correct quantitative semantics for constructors vs destructors (zero and succes-
sor vs pattern matching in the case of system T ); then check that the coefficients
involved in the computation of the fixpoint defining iterators remain finite. We
may first apply this strategy to system T . If it proves fruitful, we would then try
to generalize it to recursive algebraic datatypes.

Notice that another standard approach to the semantics of datatypes is to con-
sider the impredicative encoding of inductive types, e.g. in system F . Such a se-
mantics in finiteness spaces can be derived from that of second order linear logic.
This is based on a class of functors which, in particular, are monotonic for the
finiteness extension order. Notice however that this does not provide a denota-
tional semantics stricto sensu: in general, the interpretation decreases under cut
elimination. Moreover, the possibility of defining a quantitative semantics in this
setting is not clear.
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Interact. Models Comput. Program Behaviour Panor. 27 (2009) 1–196.
[24] M. Pagani and C. Tasson, The inverse Taylor expansion problem in linear logic, in Proc.

24th Ann. IEEE Symp. on Logic in Computer Science, LICS ’09, Los Angeles, CA, Aug.
2009. IEEE CS Press (2009) 222–231.

[25] M. Parigot, On the representation of data in lambda-calculus, in Proc. of 3rd Workshop on
Computer Science Logic, CSL ’89, Kaiserslautern, Oct. 1989, edited by E. Börger, H. Kleine
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