RAIRO-Theor. Inf. Appl. 46 (2012) 329-342 Available online at:
DOI: 10.1051/ita/2011132 www.rairo-ita.org

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS

MEIKE AKVELD' AND RAPHAEL BERNHARD?

Abstract. In this paper, we consider a class of scheduling problems
that are among the fundamental optimization problems in operations
research. More specifically, we deal with a particular version called job
shop scheduling with unit length tasks. Using the results of Hromkovié,
Momke, Steinhofel, and Widmayer presented in their work Job Shop
Scheduling with Unit Length Tasks: Bounds and Algorithms, we ana-
lyze the problem setting for 2 jobs with an unequal number of tasks.
We contribute a deterministic algorithm which achieves a vanishing de-
lay in certain cases and a randomized algorithm with a competitive
ratio tending to 1. Furthermore, we investigate the problem with 3 jobs
and we construct a randomized online algorithm which also has a com-
petitive ratio tending to 1.

Mathematics Subject Classification. 68Q25.

1. INTRODUCTION

Many real-world applications ask for algorithms that cannot read the whole
input before they may calculate the corresponding output. In these scenarios,
called online scenarios, parts of the input arrive successively in certain time steps
and after every such step, a so called online algorithm has to produce a piece of
the output which cannot be altered afterwards. In the following, we give a more
formal definition.

Definition 1.1. Let x = (x1,...,x,) be an input sequence. An online algorithm
A computes A(x) = (y1,...,Yyn) where y; = A(z1,...,2;) fori € {1,...,n} which
means that, for every j > i, y; does not depend on z;.

Keywords and phrases. Online algorithms, competitive analysis, job shop scheduling.

I Department of Mathematics, ETH Ziirich, Ziirich, Switzerland. akveld@math.ethz.ch

2 Department of Information Technology and Electrical Engineering, ETH Ziirich,
Switzerland. beraphae@student.ethz.ch

Article published by EDP Sciences © EDP Sciences 2011

http://dx.doi.org/10.1051/ita/2011132
http://www.rairo-ita.org
http://www.edpsciences.org

330 M. AKVELD AND R. BERNHARD

In such setups, randomization is often used as a powerful tool which means that
every chunk y; of the output is calculated depending on z1,...,z; and some ran-
dom string r. For a more detailed introduction of the concepts of online problems,
we refer to the standard literature [5-7].

Let cost denote a cost function which maps every computed solution of an online
algorithm to a real number. In this paper, we consider minimization problems, i.e.,
we are interested in online algorithms A for which cost(A(x)) is as small as possible
for all . We analyze online algorithms using the concept of the competitive ratio
which is the ratio between the cost of the computed solution and an optimal
solution.

Definition 1.2. Let ¢ > 1. An online algorithm A is called (strictly) c-competitive,
if, for every input instance z, it holds that cost(A(x)) < ¢ - cost(Opt(z)) where
Opt is an optimal solution for the instance x.

We look at a special class of randomized algorithms that randomly choose one
algorithm from a finite set of deterministic algorithms (strategies). To measure the
performance of such a randomized algorithm R, we are interested in the expected
competitive ratio, i.e., the sum of all possible competitive ratios achieved by the
deterministic strategies multiplied by the probability that they are chosen by R.

Definition 1.3. Again, let ¢ > 1 and & and Opt as above. A randomized online
algorithm R is called strictly E[c]-competitive, if E[cost(A(x))] < ¢ - cost(Opt(z))
for every .

This competitive analysis was introduced by Sleator and Tarjan [9] and was,
since then, used to analyze many different online problems [5]. To model worst
case input instances, we use the idea of an adversary who knows all the algorithm’s
deterministic decisions and creates the input in a way to harm the algorithm as
much as possible. However, the adversary is not able to predict any decisions made
based on randomness (in the literature, such an adversary is often called oblivious).

Throughout this paper, we consider the following online makespan scheduling
problem. Given a factory with m different machines, we are asked to perform a
given number of d jobs. Here, a job is a sequence of tasks. Each task asks for one
specific machine and for exactly one time unit. In our particular version, every
job consists of exactly m tasks, while each task is asking for a different machine.
Obviously, in this case, a job can be seen as a permutation of the machines. The
jobs must be performed in the given order, the goal is to minimize the comple-
tion time, called makespan, i.e., the time needed to complete all jobs. As already
mentioned, we consider an online setting of the problem, which means that only
the current tasks (and all tasks already processed) of the jobs are known to the
algorithm which processes the input instance. For an introduction to scheduling
problems, see, e.g., [3].

The makespan of a schedule is the sum of the necessary m steps (it is straight-
forward to see that any solution has to take at least m steps for any instance)
and the additional delay del. Since the competitive ratio ¢ is defined as the ratio

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS 331

between the computed solution and the best solution, for the particular problem
and for any online algorithm which causes almost a delay of del, we conclude that
this algorithm has a competitive ratio of

<m—|—del_

_q4

Recently, the problem considered in this work has also been investigated in
another framework to establish an alternative measurement for the output quality
of online algorithms than the competitive ratio [1,8].

In this paper, we deal with many discrete monotonically increasing functions.
We approximate the sums of such a function f(z) by definite integrals. Given that
f(x) is strictly increasing, we find, using Riemann’s sums that

b b+1

> fl@) < flz) da.

r=a a

For the ease of presentation, we write c-competitive, instead of F[c]-competitive,
if it is clear from context that we are talking about a randomized online algorithm.
We do not formally talk about expected values of the competitive ratio, but only
calculate the average delay over all possible deterministic strategies a randomized
algorithm chooses. This equals the competitive ratio, since the constructed ran-
domized algorithms choose all strategies with the same probability. Moreover, we
simply identify the function cost with the number of delays that are made.

2. TWO JOBS WITH AN EQUAL TASK NUMBER — A GRAPHICAL
REPRESENTATION

First, we consider the problem with d = 2 jobs both with m tasks. Hromkovi¢
et al. [4] found an efficient randomized algorithm for processing these input in-
stances with a delay of at most /m. We deal with a modified problem situation
and contribute a deterministic algorithm which computes schedules with vanishing
delays for certain input instances and we will present a randomized algorithm with
a competitive ratio tending to 1 as m increases.

Throughout this paper, we use a graphical representation of the problem as
used by Brucker [2]. We use a grid with m X m cells, thereby creating m columns
and m rows. To the axes, we assign a job each, whereby we assign to every column
or row a task. The tasks are assigned in the order they are given.

Within a cell, we can graphically represent how tasks are processed. If we process
a task, we follow the edge assigned to it. Therefore, processing two tasks simulta-
neously results in a diagonal edge. If we cannot process two tasks simultaneously,
i.e., the tasks require the same machine, we call the diagonal edge forbidden and
interpret the cell with the conflict as an obstacle.

Schedules are represented by a connection between the start corner of the grid
and the goal corner. Figure 1 shows the graphical representation of the jobs J; =
(1,2,3,4) and Jy = (1,3,2,4) including obstacles and a possible schedule.

332 M. AKVELD AND R. BERNHARD

Start 1 2 3 4

1

Goal

FIGURE 1. Graphical representation of the jobs J; = (1,2,3,4)
and Jo = (1,3,2,4) including obstacles and a possible schedule.

k
Start /—H
C A Y A Y
k{ * A N N ~ N N
A Y \\ \\
Va \\ \‘
OGoal * Osoal
(a) Graphical representation of the jobs (b) Grid with shortest and longer sched-
Ji = (1,2,3,4) and J; = (1,3,2) with ules, i.e., main and sub-diagonals.

i =4 and j = 3 including obstacles and
a possible schedule.

FIGURE 2. Graphical representations of two jobs with unequal
task numbers.

3. TWO JOBS WITH AN UNEQUAL TASK NUMBER

Instead of 2 jobs both with m tasks each, we now consider 2 jobs with ¢ and
J tasks. We call the job with ¢ tasks J; and the job with j tasks J;. The size of
such an input instance is defined as (4, j). In the following, we assume that i > j
and that all tasks contained in J; are also in J;. We use the same online setting
as before.

We construct a similar graphical representation which consists of a grid with
Jj xi cells. In Figure 2a, an example, with the jobs J; = (1,2, 3,4) and J; = (1,3, 2)
with ¢ = 4 and j = 3 is shown, including obstacles and a possible schedule.

3.1. A DETERMINISTIC ALGORITHM

We now present a straightforward deterministic algorithm which achieves no
delay for any input instance with ¢ > 2j. The algorithm performs a task of J; in

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS 333

every step and, if possible, also a task of J; is processed. Since there can only be
one obstacle per row, the schedule can be delayed in at most every second step.
Job J; is finished after i steps, whereby the schedule has completed at least % tasks
of J;. This means that if j < § = 4 > 2j, the schedule finishes with no delay
at all.

3.2. A RANDOMIZED ALGORITHM

Next, we give a randomized algorithm that achieves a delay of at most v/2j — i+
% for all input instances with j < i < 2j. Since we already know that we do not
have any delay if ¢ > 2j by using a simple deterministic strategy, we merely look at
j <1 < 2j. Note that, if we neglect the obstacles, there exist multiple shortest ways
through the grid. We call diagonals that are part of shortest ways main diagonals
and diagonals that are part of longer ways sub-diagonals. This fact is illustrated
in Figure 2b, from where it becomes obvious that a sub-diagonal causes a delay to
the schedule equal to its deviation from its closest main diagonal. The algorithm
now chooses randomly from the ¢ — 7 + 1 main diagonals and additionally from
2./2j — i sub-diagonals, half of them below and the other half above the main
diagonals®. If the algorithm hits an obstacle, it bypasses it by a horizontal and a
vertical step.

Theorem 3.1. The algorithm described above for the 2-dimensional case achieves
an expected competitive ratio which tends to 1.

Proof. Note that the total delay over all possible diagonals caused by obstacles is
at most j. Additionally, sub-diagonals have a delay a which is equal to its deviation
from the nearest main diagonal. The sum of all delays is therefore

V2i—i

Jj+2 Z a:j+\/21—i(\/2j—i+1):\/2j—i+3j—i.
a=1

We can now calculate an upper bound on the expected delay v that the algorithm
achieves for an input instance of size (i, j) by

N R
i+ 142271

(=) +2v2 - i+ 1]+ (4 —2i - V2Zj—i—1)
N i—j+1+2y2—1
22j —i)— 2] —i—1

<1
=i T+14+2v25—1
_1+ 2§ —i
2 2 —i+1

1
<3 2j —1i.

3The fact that 24/27 — i is a good choice within this scope can be verified by an easy calcu-
lation.

334 M. AKVELD AND R. BERNHARD

F1GURE 3. 3-dimensional graphical representation of the jobs
J1=1(2,1,3), J2=(3,1,2), J3 = (1,3,2).

Therefore, the expected competitive ratio is at most

R

2

c<1+

which tends to 1 for 4, j tending to infinity and j < i. |

4. THREE JOBS WITH AN EQUAL TASK NUMBER

In this section, we consider three jobs with m tasks each. For reasons of clarity,
we use a 3-dimensional grid as a graphical representation, where we assign a job
to every axis. We obtain a cube with m x m x m cells, where, as above, following
an edge within such a cell corresponds to processing the associated task of this
edge. Again, processing multiple jobs in the same time unit results in a diagonal
edge.

Every pair of jobs, which ask for the same machine, leads to collisions of requests.
We define an obstacle as such a collision of requests between two jobs. This fact
is illustrated in Figure 3. Since there are 3 pairs of jobs, there are 3m obstacles.
Obstacles are shown as areas, where all diagonal edges contained within such
an area are called forbidden. As for the case with two machines, schedules are
represented by a connection between the start and the goal corner, where the
number of edges contained in a particular schedule corresponds to the makespan
of this schedule. In one time unit, it is possible to process at most 3 tasks, given
that they are all distinct. Processing only 2 or less tasks in one time unit causes a
delay to the schedule.

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS 335

Again, we look at the grid without obstacles. As above, we call the (in this case
unique) shortest way through the grid the main diagonal and longer ways parallel
to this main diagonal are called sub-diagonals. These sub-diagonals start in one of
the side planes of the cube and end in another side plane. The point in the side
plane, where a sub-diagonal starts, is called the displacement of this sub-diagonal.
Moving to the starting point (i,7) of a sub-diagonal leads to a 2-dimensional
subproblem. By (4, j) we denote the size of this subproblem.

4.1. RANDOMIZED ALGORITHM

Based on the algorithm found in Sections 3.1 and 3.2, and the algorithm pre-
sented in [4], we create an algorithm for processing problem instances with 3 jobs.
We apply the makespans of the following classes of problem instances.

(1) Hromkovic¢ et al. [4] found an algorithm for processing instances with 2 jobs
of size (m, m) and showed an upper bound for the delay of \/m;

(2) in Section 3.1, we found an algorithm with a delay of 0 for problem instances
of size (i,7), where i > 27;

(3) in Section 3.2, we found an algorithm for 2 jobs of size (i,j). We showed an
upper bound of /2j — i + 3 for the delay of this algorithm.

We now create a set of deterministic strategies A and choose one of them ran-
domly. This set contains sub-diagonals (close to the main diagonal) and the main
diagonal. Our algorithm first moves to the starting point of the randomly chosen
diagonal, then approximates this diagonal and eventually finishes the jobs when
the side plane of the cube is reached, i.e., one of the three jobs is finished. We
define the algorithm as follows:

Step 1. Choose a point randomly. The point is of the form (s1, s2,s3) , where one
coordinate is 0 and the other two have any value between and including 0 and r
where r € N, r < m.

Step 2. Move to the chosen point by using the algorithm we have presented in
Section 3.

Step 3. Follow the diagonal, parallel to the main diagonal, starting from the
chosen point. Bypass any obstacle by processing the tasks in conflict one after the
other and let the task not involved in the conflict (if there is any) process while
the others are processing.

Step 4. As soon as one job is finished, complete the last two jobs by using the
algorithm presented in Section 3.

Theorem 4.1. The algorithm developed for the 3-dimensional case has an ex-
pected competitive ratio that tends to 1 as m tends to infinity for r = O(\/zm))
and features a delay that tends to approzimately 2.309/m.

Proof. For the sake of readability, we divide the analysis into different parts.

336 M. AKVELD AND R. BERNHARD

Deterministic strategies and their geometric properties.

In order to minimize the delay, we choose sub-diagonals which are as close as
possible to the main diagonal. In order to reach the starting point of a sub-diagonal,
we face a first 2-dimensional subproblem of size (i, 7). Without loss of generality,
we assume that ¢ > j and we define J; as the job on which we process i tasks and
Jj as the job on which we process j tasks. The job on which no tasks are processed
in this subproblem is called Jj.

After dealing with this subproblem, we approximate the diagonal. We call this
subproblem the 3-dimensional subproblem. With every step along the diagonal, we
process exactly one task on all jobs. The diagonal has a length of exactly m — i,
since then J; is finished, meaning that a side plane of the cube next to the goal
corner is reached.

Again, we face a 2-dimensional subproblem. So far, we have processed m — i
tasks on Jy and m — i 4 j tasks on J;. This leads to the second 2-dimensional
subproblem of size (i,i — j).

If we do not consider the obstacles that were met, we find an makespan of
i+m —1+1=m+ i, meaning that a delay of i is caused to the whole schedule.

We now sum up the delays over all strategies. We divide the set of the starting
points into 3 side planes P;_3 and 3 edges E7_3. All 3 edges have the same length
and all the planes have the same size. Therefore, the summed delay caused by the
diagonals starting in them is also the same.

Recall that the coordinates of the starting points are of the form (s1, s2,s3),
where one coordinate is 0 and the other two are i,j5 € {0,...,r}. As already
mentioned, and without losing generality, we assume that i > j.

Number of strategies.

The number of strategies is given by the number of starting points. These points
lie within three edges with length r and three areas of size (r,r) and the start
corner. Each area leads to 72 starting points and each edge to r starting points.
The number of diagonal strategies is therefore given by

3r% +3r + 1.

Delay caused by the deviation from main-diagonal.

First, we sum up the delay over all possible starting points which lie on one

distinct edge yielding
o or(r+1
D=3 i= %
i=1

Next, we sum up the delay over all the starting points which are on the plane P.
Note that, for every i, we have 2i — 1 possible starting points on P each of which
causes a delay of i. Therefore, we have

T 2

DP:Z — _QZZ 21—2;34_%_%.

i=1

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS 337

Since there are 3 planes and 3 edges, we count a delay of
Dev = 3Dp +3Dg = 2r° + 31 + 1.

Delay caused by obstacles in the first 2-dimensional subproblem.
The delay caused by obstacles is obviously 0 for starting points on any of the
edges. As for the planes, we divide a plane P into 3 regions.

Region 1 (where ¢ = j). We use the algorithm presented by Hromkovic et al. [4]
which achieves a delay of at most Vi = /7.

Region 2 (where i > 2j). We use the deterministic algorithm presented in
Section 3.1 which achieves a delay of 0.

Region 3 (where 7 < ¢ < 27). We use the randomized algorithm found in
Section 3.2 which leads to an expected delay of at most /2j — i + %

In what follows, we look at the delays of any region in detail.

Delay in Region 1. We easily approximate the sum as
T r+1
Soviz [via
i=1 1

((r +1)

(r—i—l)%.

(S

_1)

Wl Wl N

<

Since there are 3 such regions, we need to multiply this number by 3.

Delay in Region 2. The delay in this region is obviously 0 as all the schedules can
reach their starting points without any delay.

Delay in Region 3. Again, we sum up the delays for i = 1 to r, where in every step
% < j < 1. Since we are using natural numbers, this even simplifies to % <j<i—1.
As we have shown in Section 3.2, the delay for a specific pair 4,j is v/2j — 1 + %
and so we get

T i—1 T i
1 v 1
g E (2j—i—|—§> < (/ \/2j—i+§dj>
=1 j=| £41) i=1 \’2
r 1 s] 7 r 1 5 i
= E <|:§(2]—Z)2+§]i> = E <522+Z>
=1 2 =1
1ZT s 1L 1t r(r+1)
:gi:1”+1r:lz gg/l na 8
2 5 1
<=)2 + -1+ —r.
S gty

338 M. AKVELD AND R. BERNHARD

We need to multiply this result by 3 for every plane and by 2 for every region,
yielding a delay of at most

T.

=] w

1 ;3
S DE 4 T 2r + 1)E 4

Delay caused by obstacles in the second 2-dimensional subproblem.

Here, we deal with the same type of problem as in Section 4.1. Instead of a
problem of size (i, j), we meet an input instance of size (i,4 — 7). There is only a
delay, if 2(1 — j) > i = i>2j — % > j. This is exactly the complementary
of the case we investigated above which leads to the same outcome.

Delay caused by obstacles in the 3-dimensional subproblem.

We now prove the following lemma.

Lemma 4.1. A single obstacle affects at most 2r + 1 diagonals in A.

Proof. As a first step, we parameterize the diagonals with a,b € {0,...,r}, as the
components of the starting point. All diagonals are parallel to the main diagonal,
and are thereby parallel to (1,1,1)7. Moreover, the variable ¢ denotes the position
within the diagonal. The different classes of starting points yield three classes of
diagonals which are the following.

- 1 a 1 a 1 0
r=1]t+|0b]. T=[1]t+]0]. T=|1|t+|a
1 0 1 b 1 b
Diagonals with start- Diagonals with start- Diagonals with start-
ing points of the form ing points of the form ing points of the form
(a,b,0). (a,0,b). (0,a,b).

In order to count the intersections of these diagonals with an obstacle, we also
parameterize the obstacles. Essentially, there are three types of obstacles, namely
one for every pair of jobs. However, since all classes of obstacles are symmetric,
it is sufficient to consider obstacles of the type b = (k, !, z), with k,[denoting the
position of the obstacle in the grid and z being arbitrary between 0 and m. We
need to find k,[, such that the number of intersections with diagonals of all three
classes are maximal.

For all three cases, we find the intersections with the diagonals by equating
the parameterized equations of the obstacles with the diagonals. Eliminating ¢
yields equalities for a,b in dependence of k,[. By definition, it holds for a,b that

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS 339

0 < a,b < r. For k,l holds 0 < k,I < m, since an obstacle can be positioned
anywhere in the grid.

1 a k 1 a k 1 0 k
11t+1b]) =11 11t+10)| =11 1lt+a] =11
1 0 z 1 b z 1 b z
which gives us which gives us which gives us
at+t==Fk a+t=k t=k
b+t=1 t=1 a+t=1
t==z b+t==z b+t==z
— k—a=1-0, = a+I0l=k, and = a+ k=1
This leads to the following three equalities.
a—b=k-1 (4.1)
a=k—1 (4.2)
a=1—k. (4.3)

We continue to analyze these equalities, which describe the number of intersections

possible. We count the number of diagonals that intersect an obstacle. The position
of the diagonal is determined by a,b, whereby the position of the obstacle only
depends on k,[. In order to simplify the analysis, we distinguish between the case
where k — [> 0 and the case where k — [< 0. Both cases are mutually exclusive
and the maximal number of intersections of both cases determines the result.

Case 1. With equation (4.1), we obtain at most r + 1 intersections, since there
exist exactly r+1 choices of a, b with a —b = k—1[. The maximal number of choices
is fulfilled if £ — [= 0, since in these cases a = b, which leaves r + 1 choices for a
and b open. If k — 1 = ¢ for c € {0, ...,r}, we find a = ¢+ b, which leaves r+1—¢
choices for a, b open, i.e., 7 + 1 is the maximum.

Equation (4.2) states that a = k — [, i.e., a has a fixed value, since k — [is
constant. However, the number of intersection does not depend on b, which means
that it can take any value that is allowed for it. This leaves exactly r + 1 choices
open.

Equation (4.3) cannot contribute any intersection, since we consider k —1 > 0
and a > 0. This leaves us so far 2r 4 2 intersections. However, we have counted the
starting point (0,0, 0) twice, since by considering equation (4.1) we count a = b =
0. Equation (4.2) was independent of b, which means that b is once 0. If k — [= 0,
which is the case for obtaining the maximal possible number of intersections with
equation (4.1), we count (0,0, 0) again. The number of intersections for this case
is thus 2r + 1.

Case 2. We reformulate equation (4.1) to b—a = [—k. We obtain a symmetric case
in comparison to the first one which means that not more than 2r+ 1 intersections
are possible.

This proves our Lemma 4.1. O

340 M. AKVELD AND R. BERNHARD

Note that, since there are exactly 3m obstacles, there are at most 3m(2r + 1)
delays possible.
Average delay.

We are now ready to calculate the average delay over all strategies that might
be chosen by our algorithm. To sum up, we found the following terms.

The delay in any of the first and second 2-dimensional subproblem caused by
obstacles is at most

=] w

1 ;3
S DE 4 T 2(r + 1)E 4

r;

the delay in the 3-dimensional subproblem caused by obstacles is at most

3m(2r +1);

the delay caused by the deviation of the strategies from the main diagonal is

23 + 32 +]

the number of diagonal strategies is
3r? + 3r + 1.
This enables us to find the expected delay over all strategies. We get

_ 23 4 8(r+ 1)% + 22 4 4(r +1)% + (6m + 3)r + 3m

v(r) 3r2 +3r+1

which leads to a competitive ratio of

2r% 4+ 8(r+1)5 4+ 3r2 +4(r + 1) + (6m + 3)r+3m_
m(3r2 4+ 3r+1)

c<1+

It is thus immediately clear that, if we choose r = O(y/m), the competitive ratio
tends to 1 as m tends to infinity. We determine the delay numerically by increasing
the number of tasks m and we calculate the minimum of the average delay, which
tends to approximately 2.309y/m. This is illustrated in Figure 4. O

5. CONCLUSION

We optimized a randomized algorithm presented by Hromkovic et al. [4] and
we gave an in-depth analysis of the base case of the problem. Furthermore, we
created a randomized algorithm for 2 jobs with a different number of tasks. This
algorithm has also been applied to processing problem instances with 3 jobs.

All the considered randomized algorithms have the property that they have a
competitive ratio tending to 1 as the number of tasks increases. This is, however,

JOB SHOP SCHEDULING WITH UNIT LENGTH TASKS 341

v(r)

m
30 ¢
29 ¢
28 |
27 |
26 |

2.5 ¢

24

L. . . ! . . . ! . . L . . . ! . . . = m
0 200 400 600 800 1000

FIGURE 4. Asymptotic behavior of the minimum of %2 as m
Jm

tends to infinity.

nothing new so far, as the algorithms presented in [4] already have this property.
However, in practical applications not only the competitive ratio is relevant, but
also the overall completion time. We significantly reduced the overall completion
time of processing problem instances with 3 jobs to approximately m + 2.309+/m,
which improves the result found by [4] of m+6+/m using an algorithm for a general
number of jobs d.

All in all, we showed several improvements for algorithms for processing specific
types of instances of the problem and we created algorithms for a specific version
of the problem which has not been considered before.

A next step could be an analysis of the problem in general, with an arbitrary
number of jobs, each with an arbitrary number of tasks. It remains yet unclear
whether the techniques used to find and improve the algorithms can be generalized
in this form.

Acknowledgements. The authors would like to thank Juraj Hromkovi¢, Karin Freiermuth,
and Dennis Komm for their support with ideas, proof-reading, and corrections.

REFERENCES

[1] H.-J. Bockenhauer, D. Komm, R. Krélovi¢, R. Krélovi¢ and T. Moémke, On the advice
complexity of online problems, in Proc. of the 20th International Symposium on Algorithms
and Computation (ISAAC 2009). Lect. Notes Comput. Sci. 5878 (2009) 331-340.

[2] P. Brucker, An efficient algorithm for the job-shop problem with two jobs. Computing 40
(1988) 353-359.

[3] P. Brucker, Scheduling Algorithms, 4th edition. Springer-Verlag (2004).

342 M. AKVELD AND R. BERNHARD

[4] J. Hromkovi¢, T. Moémke, K. Steinhofel and P. Widmayer, Job shop scheduling with unit
length tasks: bounds and algorithms. Algorithmic Oper. Res. 2 (2007) 1-14.

[5] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis. Cambridge
University Press (1998).

[6] J. Hromkovi¢, Design and Analysis of Randomized Algorithms. Springer-Verlag (2006).

[7] S.Irani and A.R. Karlin, On online computation, in Approzimation Algorithms for NP-hard
Problems, Chapter 13, edited by Hochbaum. PWS Publishing Company (1997) 521-564.

[8] D. Komm and R. Kélovi¢, Advice complexity and barely random algorithms. Theoret.
Inform. Appl. 45 (2011) 249-267.

[9] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging rules. Commun.
ACM 28 (1985) 202-208.

Communicated by J. Hromkovic.
Received September 1st, 2010. Accepted November 3rd, 2011.

	Introduction
	Two jobs with an equal task number -- a graphical representation
	Two jobs with an unequal task number
	A deterministic algorithm
	A randomized algorithm

	Three jobs with an equal task number
	Randomized algorithm
	Deterministic strategies and their geometric properties.
	Number of strategies.
	Delay caused by the deviation from main-diagonal.
	Delay caused by obstacles in the first 2-dimensional subproblem.
	Delay in Region 1.
	Delay in Region 2.
	Delay in Region 3.
	Delay caused by obstacles in the second 2-dimensional subproblem.
	Delay caused by obstacles in the 3-dimensional subproblem.
	Average delay.

	Conclusion
	References

