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RATIONAL BASE NUMBER SYSTEMS FOR p-ADIC
NUMBERS

Christiane Frougny
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Abstract. This paper deals with rational base number systems for
p-adic numbers. We mainly focus on the system proposed by Akiyama
et al. in 2008, but we also show that this system is in some sense
isomorphic to some other rational base number systems by means of
finite transducers. We identify the numbers with finite and eventually
periodic representations and we also determine the number of repre-
sentations of a given p-adic number.
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1. Introduction

In this paper, we consider four distinct but similar rational base number sys-
tems. The starting point of the derivation of all these systems is the classical
division algorithm which computes the representation of positive integers in an
integer base b � 2: for nonzero s in N, put s0 = s and

si = bsi+1 + ai, ai ∈ {0, 1, . . . , b − 1}, (1.1)

for i = 0, 1, . . .. The resulting sequence of digits · · · a2a1a0 is always finite, meaning
that there is some n in N such that an �= 0 and ak = 0 for all k > n, and, moreover,
it holds that s =

∑n
i=0 aib

i. We say that an · · · a0 is the representation of s in
base b. The same representation can be obtained also using the well-known greedy
algorithm only with the difference that it is computed from left to right: the most
significant digit an first.
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If one wants to get a rational base representation by the greedy algorithm, it
suffices to replace the integer base b by a rational number p

q , p > q � 1. However,
even if the input is a positive integer, the returned representations may be infinite
to the right, i.e., the sequence of digits is not eventually zero. In fact, even if the
integer base b is replaced by a real β > 1, the greedy algorithm still works. The
resulting representations are called β-expansions. The notion of β-expansion was
firstly introduced by Rényi in [7] and has been studied since then by many authors
(see [3], Chap. 7, for a survey and references). The β-expansions are obtained by
the generalization of the greedy algorithm. For the most general setting of the
greedy algorithm we have: the input can be any nonnegative real number, any
real number greater than one can be taken as a base, and the β-expansions are,
in general, infinite to the right.

The goal of this paper is to study some generalizations of the division algorithm
in the case where the input is not a positive integer, and in the case where the
base is not a positive integer.

As for the possible inputs, looking at the key step of the division algorithm (1.1),
an irrational number can be hardly an input. As we will see below, the algorithm
can be modified so that the input can be rational numbers.

Regarding the possible bases, again an irrational base is not acceptable. In
order to get a rational base number system, we have to modify (1.1): let p > q � 1
be co-prime integers, if we replace (1.1) by

qsi = psi+1 + ai, or by qsi = psi+1 + qai, (1.2)

where ai ∈ {0, 1, . . . , p−1}, we get the rational base number systems we are going
to study. It is easy to check that for any positive integer s = s0 we get

s =
n1∑
i=0

ai

q

(
p

q

)i

or s =
n2∑
i=0

ai

(
p

q

)i

, for some n1, n2 ∈ N, (1.3)

respectively. If we further replace p by −p, we get two negative rational base
systems. Again, all the respective algorithms admit any rational number as an
input (see Algorithm 3.1).

We have said that even negative numbers can be an input of the division algo-
rithm: let b = 2 and s = −1 in (1.1), then the output is the left-infinite sequence
· · · a2a1a0 = · · · 111. In order for this sequence to be the representation of −1, we
would have to have −1 =

∑∞
i=0 2i. This is of course not true with respect to the

classical absolute value, therefore we have to move to another field. In some sense,
the only candidate is the field of 2-adic numbers Q2. The fields of r-adic numbers
Qr, for r a prime number, will be described in the sequel.

Now, we can specify what this paper deals with: we will study four rational
base number systems enabling to represent r-adic numbers in the form

∑
i�k0

ai

(
p

q

)i

,
∑
i�k0

ai

(
−p

q

)i

,
∑
i�k0

ai

q

(
p

q

)i

,
∑
i�k0

ai

q

(
−p

q

)i

, (1.4)
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where p > q � 1 are co-prime integers, ai belongs to {0, 1, . . . , p − 1} and k0 is
in Z. Our strategy is to study one of them and then to show that they all share
most of their properties. More precisely, we will study the third one, called the
AFS number system, since this system has already been considered by Akiyama
et al. in [1]. We first study the representations of the negative integers, and show
that they are representable by a tree, similar to the tree of the representations
of nonnegative integers of [1]. We characterize the case when there is a natural
isomorphism of the trees, Proposition 3.13.

In Proposition 3.17 we give a combinatorial description of the numbers having
a finite expansion.

Theorem 3.20 provides an answer to the question of uniqueness of a represen-
tation and also characterizes all representations of x in Qr, r a prime factor of p,
which converge to x with respect to | . |r.

Then we characterize the numbers with eventually periodic representations:
more precisely, we show that if x belongs to Qr, r a prime factor of p, then the
1
q

p
q -representation of x, given by algorithm GMD, is eventually periodic if, and

only if, x is in Q and the 1
q

p
q -representation is equals to the 1

q
p
q -expansion of x

given by Algorithm MD, Theorem 3.26.
Finally we show that, for q > 1, there exist finite sequential transducers con-

verting one representation from (1.4) to each other one, Theorem 4.1.

2. Preliminaries

2.1. p-adic numbers

Within this section, p is a prime number. Detailed introduction to the theory of
p-adic numbers can be found in many books, see, e.g., [5]. Here we shortly recall
the definition and some basic properties we are going to need later on. First,
define the p-adic valuation vp : Z \ {0} → R by n = pvp(n)n′ with p � n′. This is
extended to rationals by vp(a

b ) = vp(a) − vp(b) for any nonzero a, b ∈ Z. Having
the valuation, we define the p-adic absolute value of x in Q as |x|p = 0 if x = 0, and
|x|p = p−vp(x) otherwise. Due to the celebrated Ostrowski’s theorem from 1918,
the p-adic absolute values and the classical one are the only non-trivial absolute
values definable on Q since the theorem says any absolute value is equivalent to
one of these.

The crucial difference between the classical and the p-adic absolute value is that
the p-adic one is ultrametric, i.e., for all x, y ∈ Qp it holds |x+y|p � max{|x|p, |y|p}.
Moreover, even for non-rational p-adic numbers the absolute value (and valuation)
still takes only countably many values; more precisely, there exists i ∈ Z such that
|x|p = pvp(x) = pi for all x ∈ Qp.

In the same way as the set R is the completion of Q with respect to the classical
absolute value, the sets Qp of p-adic numbers are the completions of Q with respect
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to | |p. It is known that any x in Qp has a unique standard representation in base p:

x =
∑

k�−k0

akpk, with ak ∈ {0, 1, . . . , p − 1} and k0 = vp(x).

This standard representation is finite if, and only if, x is in N, eventually periodic
for x in Q and aperiodic otherwise. The existence and uniqueness of the standard
representation implies the following simple but essential lemma; Zp is the set of
p-adic integers, i.e., numbers x ∈ Qp with |x|p � 1.

Lemma 2.1. Let x ∈ Zp and n ∈ N. Then there exists a unique αn ∈ {0, 1, . . . ,
pn − 1} such that |x − αn|p � p−n.

2.2. Combinatorics on words

Any finite nonempty set A is called alphabet. In particular, we put Ak =
{0, 1, . . . , k − 1} for any k ∈ N. Any finite string w = a0a1 · · · an, ai ∈ A, is
a finite word over A of length |w| = n + 1. The set of all finite words over A
including the empty word ε is denoted by A∗. A right-infinite word over A is a
sequence a = a0a1 · · · with ai ∈ A; AN is the set of all such words over A. If
a = uwww · · · = uwω for some u and w in A∗, then a is said to be eventually
periodic. If u = ε, a is purely periodic. Left-infinite words and the set NA are
defined in the same manner. If a = · · ·wwwu = ωwu for some w, u ∈ A∗, then a
is eventually periodic to the left.

If w in A∗ is equal to zu for some z and u in A∗, then z is a prefix and u a
suffix of w. A language L over A is any subset of A∗. If any prefix of any w ∈ L
belongs also to L, L is a prefix-closed language.

3. AFS number system

In [1] the AFS system is proposed as a new method to represent the nonneg-
ative integers in the form of the third series from (1.4), where p > q � 1 are
co-prime integers and digits ai from the alphabet Ap. It is proved there that such
a finite representation is unique and that the language of all such representations
is prefix-closed. In fact, it holds that if w in A∗

p is a representation of an integer,
then there exists at least one a in Ap such that wa represents an integer as well.

So, if w = anan−1 · · ·a1a0, we can study
∑n

k=0
ak

q

(
p
q

)−k

and get a representation
of a rational number. As we have said, w can always be extended by at least
one letter and remains a representation of an integer. Doing this extension repet-
itively, n tends to infinity and we can get even irrational numbers. Such infinite
representations are then studied in [1] and they turn out to be very interesting
and to relate to old and difficult problems of number theory; namely, Mahler’s
problem [4] and the Josephus problem [6,8]. In this paper we will take a different
approach; we will study also infinite series but containing an infinite number of
positive powers of p

q .
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3.1. Modified division algorithm

In what follows, we assume that p > q � 1 are co-prime positive integers (we do
not assume that p is a prime number!). As explained above, the representations
in the AFS system can be obtained by the division algorithm if the key step (1.1)
is modified. The result is the following algorithm, called the modified division
(MD) algorithm. It is stated in the most general form so that its input can be any
rational number x = s

t with s and t being the lowest terms.

Algorithm 3.1 (MD algorithm). Let x = s
t , s being an integer and t a positive

integer.

(i) if s = 0, return the empty word a = ε;
(ii) if t is co-prime to p, put s0 = s and for all i ∈ N define si+1 and ai ∈ Ap

by
qsi

t
=

psi+1

t
+ ai. (3.1)

Return a = · · · a2a1a0;

(iii) if t is not mutually prime with p, multiply s
t by p

q until x
(

p
q

)�

is of the form
s′
t′ , where t′ is co-prime to p. Then apply the algorithm from (ii) returning
a′ = · · · a′

2a
′
1a

′
0. Return a = · · · a1a0 � a−1 · · · a−� = · · · a′

�+1a
′
� � a′

�−1 · · · a′
0.

Definition 3.2. Let x be in Q. The word a returned by the previous algorithm
for x is said to be the 1

q
p
q -expansion of x and denoted by 〈x〉 1

q
p
q
.

We often omit the radix point if its position is clear.

Lemma 3.3. Let x = s
t , where s �= 0 and t > 0 is co-prime to p. Then for the

sequence (si)i�1 from the MD algorithm we have:

(i) if s > 0 and t = 1, i.e., x ∈ N, (si)i�1 is eventually zero;
(ii) if s > 0 and t > 1, (si)i�1 is either eventually zero or eventually negative;
(iii) if s < 0, (si)i�1 is negative;
(iv) for all i ∈ N, if si < − p−1

p−q t, then si < si+1;
(v) for all i ∈ N, if − p−1

p−q t � si < 0, then − p−1
p−q t � si+1 < 0;

(vi) (si)i�1 is always bounded and eventually periodic;
(vii) (si)i�1 is eventually zero (resp. eventually periodic) if, and only if, a is

eventually zero (resp. eventually periodic).

Proof. Items (i), (ii) and (iii) follow from the trivial fact that if si is positive, then
si+1 < si, and that if si is negative, then si+1 is also negative.

If si < − p−1
p−q t, we must have si < qsi−(p−1)t

p . And since

qsi − (p − 1)t
p

� si+1 � q

p
si

for all i ∈ N, item (iv) follows.
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Similarly one can prove (v). Let − p−1
p−q t � si < 0, then by (iii) we get si+1 < 0

and

si+1 � qsi − (p − 1)t
p

�
q
(
−tp−1

p−q

)
− (p − 1)t

p
= −t

p − 1
p − q

·
Item (vi) is a direct consequence of (ii)–(iv) and of the fact that the value of
si+1 (and also of ai) is completely determined by the value of si. The same fact
implies (vii). �

It follows from the lemma that the interval [−tp−1
p−q , 0] is a sort of attractor for

the sequence (si)i�1 and this gives us the following bound for the length of the
period of 1

q
p
q -expansions.

Corollary 3.4. Let x = s
t be in Q. Then the period of 〈x〉 1

q
p
q

is less than
⌊

p−1
p−q

⌋
t.

Lemma 3.5. Let x = s
t be in Q such that its 1

q
p
q -expansion 〈x〉 1

q
p
q

= · · · a−�+1a−�,
� ∈ N, is not finite (i.e., it is not eventually zero). Then

∞∑
k=−�

ak

q

(
p

q

)k

converges to x with respect to the r-adic absolute value | |r if, and only if, r is a
prime factor of p. Moreover, if i is the multiplicity1 of r in p, then for all n � −�
we have ∣∣∣∣∣x −

n∑
k=−�

ak

q

(
p

q

)k
∣∣∣∣∣
r

� r−i(n+1). (3.2)

Proof. W.l.o.g., assume that t is co-prime to p. Then it follows from (3.1)

s

t
=

p

q

s1

t
+

a0

q
= · · · =

(
p

q

)n+1
sn+1

t
+

n∑
k=0

ak

q

(
p

q

)k

·

Since (si)i�1 is a sequence of integers, we have 0 < |si|r � 1 for all i. Hence,∣∣∣∣∣x −
n∑

k=−�

ak

q

(
p

q

)k
∣∣∣∣∣
r

=

∣∣∣∣∣
(

p

q

)n+1
∣∣∣∣∣
r

∣∣∣sn+1

t

∣∣∣
r

�
∣∣∣∣∣
(

p

q

)n+1
∣∣∣∣∣
r

∣∣∣∣1t
∣∣∣∣
r

·

Obviously, this sequence tends to zero if, and only if, r is a prime factor of p. In

such a case, we have
∣∣∣∣(p

q

)n+1
∣∣∣∣
r

∣∣1
t

∣∣
r

= r−i(n+1). �

Of course, Inequality (3.2) holds even without assuming that 〈x〉 1
q

p
q

is not even-

tually zero. Some examples of 1
q

p
q -expansions are stated in Table 1.

1This means that i is the greatest integer such that ri divides p.
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Table 1. Examples of 〈x〉 1
q

p
q
. The last column contains the ab-

solute values for which the 1
q

p
q -expansion from the second column

converges to x (in terms of Lem. 3.5).

x 〈x〉 1
q

p
q

(si)i�0 Abs. values
p = 3, q = 2

5 2101 5, 3, 2, 1, 0, 0, . . . all
–5 ω2012 –5, –3, –2, –2, –2, . . . | |3

11/4 201 11, 6, 4, 0, 0, . . . all
11/8 ω1222 11, 2, –4, –8, –8, –8, . . . | |3
11/5 ω(02)2112 11, 4, 1, –1, –4, –6, –4, –6, . . . | |3

p = 30, q = 11
5 1125 5, 1, 0, 0, . . . all
–5 ω19 8 5 –5, –2, –1, –1,. . . | |2, | |3, | |5

11/7 ω(12 21 5) 23 13 11, 1, –5, –3, –6, –5, . . . | |2, | |3, | |5

3.2. 1
q

p
q -expansions of the negative integers

The case of 1
q

p
q -expansions of the positive integers has already been studied

in [1]. In the present subsection, we will study the case of the negative integers.

Definition 3.6. Let · · ·a−�+1a−�, � ∈ N be an eventually periodic word over Ap.
The evaluation map π is defined by: π(· · · a−�+1a−�) = x if, and only if, 〈x〉 1

q
p
q

=
· · · a−�+1a−�.

Lemma 3.7. Let · · · a2a1a0 be eventually periodic.
(i) if π(· · · a2a1a0) is in Z, then π(· · · a3a2a1) belongs to Z;
(ii) if x = π(· · · a2a1a0) is a negative integer, then there exists a ∈ Ap such

that π(· · · a2a1a0a) is also a negative integer. Moreover,

min {π(· · · a2a1a0a) | π(· · · a2a1a0a) ∈ Z, a ∈ Ap} =

⌈
x

p

q

⌉
(3.3)

max {π(· · · a2a1a0a) | π(· · · a2a1a0a) ∈ Z, a ∈ Ap} =

⌊
1
q
(px + p − 1)

⌋
. (3.4)

Proof. Let us assume that an integer x has expansion 〈x〉 1
q

p
q

= · · ·a3a2a1a0 and
let s1 be the second element of the corresponding sequence (si)i�0 from the MD
algorithm. Then, clearly, 〈s1〉 1

q
p
q

= · · · a3a2a1.
It remains to prove (ii). In other words, we want to prove that there exists

an integer s such that s1 from the MD algorithm for s0 = s is equal to x, i.e.,
qs = px + a for some a ∈ Ap. It is equivalent to the condition

1
q
(px + a) ∈ Z. (3.5)
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Clearly, this condition is satisfied at least for one a, the rest of the statement (ii)
follows from the fact that 0 � a � p − 1. �

In words, the set of 1
q

p
q -expansions of all negative integers is prefix-closed and all

its elements are extendable to the right. Moreover, the 1
q

p
q -expansion of a negative

integer is eventually periodic with period 1:

Proposition 3.8. Let k be a positive integer. Denote B =
⌊

p−1
p−q

⌋
, then:

(i) if k � B, then 〈−k〉 1
q

p
q

= ωb with b = k(p − q);
(ii) otherwise, 〈−k〉 1

q
p
q

= ωbw with w ∈ A+
p and b = B(p − q).

Proof. Let k � B. Then, for s0 = −k, we have −qk = qs0 = s1p + a0; this
equation is satisfied (only) for s1 = −k and a = k(p − q) � p− 1 and the proof of
(i) follows.

If k > B then −k < − p−1
p−q . We know, due to Lemma 3.3 (iv), that (si)i�0 is

eventually greater than or equal to −B. Hence, 〈−k〉 1
q

p
q

= ωbw, where π(ωb) is a
negative integer −k1, k1 � B. We will prove that k1 must be equal to B and so,
due to (i), b = B(p − q).

We show that if k1 < B and b1 = k1(p − q), then the only a ∈ Ap such that
π(ωb1a) is an integer is again a = b1. Let k1 < B, then 〈−k1〉 1

q
p
q

= ωb1 with
b1 = k1(p − q). Assume that k0 = π(ωb1a) ∈ Z. We must have −k0q = −k1p + a.
This is satisfied for a = k1(p − q) and k0 = k1. Let us suppose that the same
equation is satisfied also for different a′ and k′

0. Clearly, a′ must be equal to
k1(p − q) + �q for some nonzero � and, at least for one of � = 1 or � = −1,
it must be true that k1(p − q) + �q ∈ Ap. Then k′

0 = k1 − 1 or k′
0 = k1 + 1,

respectively. It implies that, for some 0 � k′
0 � B, we have two different 1

q
p
q -

expansions: one is given by (i) (or is equal to ε for k′
0 = 0) and the second one is

ωb1a
′, a contradiction. �

3.2.1. Trees T 1
q

p
q

and T 1
q

p
q

The language of 1
q

p
q -expansions of all positive integers is studied in [1]. It is

proved there, among other properties of this language, that it is prefix-closed and
extendable to the right. Thus, it is quite natural to represent the language as
a tree with infinite branches. We first recall the results for the case of positive
integers and then propose their analogues for the negative case.

Lemma 3.9. Define the language L 1
q

p
q

= {w ∈ A∗
p | w is the 1

q
p
q -expansion of

somes ∈ N}. The language L 1
q

p
q

is prefix-closed, extendable to the right, and not
context-free (if q �= 1).

The proof is a direct consequence of the pumping lemma and can be found
in [1].
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Definition 3.10. The tree T 1
q

p
q

has the nonnegative integers as nodes and the
directed edges are labeled by letters from Ap. Furthermore:

(i) 0 is the root of the tree;
(ii) there is an edge from node n1 to node n2 with label a if n2 = (pn1 + a)/q.

Tree T 1
q

p
q

for p = 3, q = 2, is depicted in Figure 1.
It is reasonable to ask which nonnegative integer x is the least one with 〈x〉 1

q
p
q

of length n. Denote such an integer by Gn: surely G0 = 0 and G1 = 1. The
children in the tree T 1

q
p
q

of node n are given by Condition (3.5), obviously, the

least such integer is
⌈

p
q n
⌉

(cf. Lem. 3.7).

Lemma 3.11. The least nonnegative integer with 1
q

p
q -expansion of length n ∈ N

is Gn, where G0 = 0, G1 = 1, Gn+1 =
⌈

p
q Gn

⌉
.

We now propose equivalent objects for the negative integers. The language now
reads L 1

q
p
q

= {w ∈ A∗
p | ωbw = 〈s〉 1

q
p
q
, s � −B, first letter of w �= b}. Clearly, the

letter b is equal to B(p−q) with B from Proposition 3.8. Using the same techniques,
on can prove the same results as the ones of Lemma 3.9 for the language L 1

q
p
q
.

Since both languages have the same properties, L 1
q

p
q

can be also represented

by a tree T 1
q

p
q
. The nodes are the negative integers, the root is equal to −B, and

there is an edge from node n1 to node n2 with label a in Ap if n2 = (pn1 + a)/q.
Tree T 1

q
p
q

for p = 3, q = 2 is depicted in Figure 1, too.

Again, we can ask which integer � −B is the least one having the 1
q

p
q -expansion

ωbw with w ∈ L 1
q

p
q

of length n. Using the same reasoning as in the case of positive
integers, we get:

Lemma 3.12. The least negative integer with 1
q

p
q -expansion ωbw with b = B(p−q)

and w ∈ L 1
q

p
q

of length n ∈ N is Gn, where G0 = −B, Gn+1 =
⌈

p
q Gn

⌉
.

Looking at the trees for various values of p and q, one can notice that sometimes
they are isomorphic and sometimes not. For instance, T 1

q
p
q

and T 1
q

p
q

are isomorphic
for p = 3 and q = 2 but not for p = 8 and q = 5, see Figure 2.

Proposition 3.13. The mapping which maps node k of the tree T 1
q

p
q

to node

−B − k of T 1
q

p
q

is an isomorphism if, and only if, p−1
p−q is an integer.

Proof. Clearly, the mapping is an isomorphism if, and only if, the nodes k and
−B − k have the same number of children for all k ∈ N. Denote the number of
children of a node k by m(k), then (see (3.5)) we have for all k ∈ N

m(k) = #{a ∈ Ap | pk + a ≡ 0 (mod q)},
m(−B − k) = #{b ∈ Ap | −p(B + k) + b ≡ 0 (mod q)}

= #{b ∈ Ap | pk + (p − q)B − b ≡ 0 (mod q)}.
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Figure 1. The graph containing 1
q

p
q -expansions of all integers for

p = 3, q = 2: the trees T 1
q

p
q

and T 1
q

p
q
.

The case q = 1 is trivial, so assume that q > 1. Since p and q are co-prime,
the sequence (pk)k�0 “visits” all residue classes (mod q). Therefore, m(k) =
m(−B − k) for all k if, and only if, the set {(p − q)B − b | b ∈ Ap} has the same
number of elements in each residue class (mod q) as Ap. This is equivalent to
{(p − q)B − b | b ∈ Ap} = {�q, �q + 1, . . . , �q + p − 1} for some � ∈ Z. But since
p− q � (p− q)B � p− 1, the only admissible case is that � = 0 and, consequently,
B =

⌊
p−1
p−q

⌋
= p−1

p−q . �

3.3. Finite
1
q

p
q -expansions

If x has a finite 1
q

p
q -expansion of length m + 1, i.e., x =

∑m
k=0

ak

q

(
p
q

)k

, then it

is equal to s
qm+1 for some s � 1. But not all numbers of this form have a finite 1

q
p
q -

expansion, e.g., x = 11/8 = 11/23 has an eventually periodic representation ω1222
for p = 3 and q = 2, see Table 1. In order to better understand this, we introduce
an alternative algorithm computing the 1

q
p
q -expansion of numbers of this form.

Algorithm 3.14. Let x = s
qm with s and m positive integers. Put h0 = s. Define

hi+1 and bi in Ap as follows. For i = 0, 1, . . . , m − 1 let

hi

qm−(i+1)
= p

hi+1

qm−(i+1)
+ bi.
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Figure 2. The graph containing 1
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q -expansions of all integers for
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.

For i � m let qhi = phi+1 + bi.
Return b = · · · b2b1b0.

It turns out that b = 〈x〉 1
q

p
q
, as proved in the following result.

Lemma 3.15. Let x = s
qm with s and m positive integers. Let b = · · · b2b1b0 be

the word returned by algorithm 3.14 and (hi)i�1 the respective sequence; similarly,
let 〈x〉 1

q
p
q

= · · ·a2a1a0 and let (si)i�1 be the sequence from the MD algorithm.
Then 〈x〉 1

q
p
q

= b and

si =

{
hiq

i i = 0, 1, . . . , m − 1,

hiq
m i = m, m + 1, . . .

Proof. For i = 0, we have qs0 = ps1 +a0q
m and h0 = ph1 +b0q

m−1. It follows that
a0 = b0 and s1 = qh1. We carry on by induction on i = 1, 2, . . . , m− 1. Assuming
that si = hiq

i, the equations qsi = psi+1 + a0q
m and hi = phi+1 + biq

m−(i+1)

again imply that bi = ai and si+1 = hi+1; it suffices to multiply the latter one by
qi+1 to make it clear.

The proof continues in an analogous way even for i greater than m − 1. �
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It is easy to see that (as in the case of the MD algorithm) if · · · b2b1b0 is the
1
q

p
q -expansion returned by the alternative algorithm for h0

qm , then · · · b3b2b1 is the
1
q

p
q -expansion of h1

qm−1 . Consequently, · · · bm+2bm+1bm is the 1
q

p
q -expansion of the

integer hm. We already know that the 1
q

p
q -expansion of an integer is finite if, and

only if, the integer is nonnegative, so this implies:

Corollary 3.16. Let x = s
qm with s and m positive integers, and let (hi)i�1 be

the sequence constructed for x in Algorithm 3.14. Then 〈x〉 1
q

p
q

is finite if, and only
if, hm is a nonnegative integer.

Having this knowledge, we are now able to describe all numbers of the form of
s

qm whose 1
q

p
q -expansion is infinite.

Proposition 3.17. Let q > 1. Define for all positive integers m the set

INF(m) =

⎧⎨⎩i
∣∣∣ i > 0,

〈
i

qm

〉
1
q

p
q

is infinite

⎫⎬⎭ .

Then INF(1) = ∅ and INF(m) = A(m) ∪ B(m), m = 2, 3, . . . , where

A(m)=
{−kp+aqm−1 | k > 1, a ∈ Ap

} ∩ N, and

B(m)=
{
pk+aqm−1 | k ∈ INF(m − 1), a ∈ Ap

}
.

Proof. For m = 1 and s
q , s > 0, we get in Algorithm 3.14 s = h0 = ph1 + b0, it

implies h1 � 0 and so, indeed, INF(1) is empty.
Now, consider s

qm for m > 1. The proof follows from the fact that s ∈ INF(m)
if, and only if, either h1 < 0 or h1 ∈ INF(m − 1). Indeed, if s ∈ A(m − 1), i.e.,
s = −kp + aqm−1 for some k > 1 and a ∈ Ap, then we get in Algorithm 3.14
s = h0 = −kp + aqm−1 = ph1 + b0q

m−1. Since h1 and b0 are uniquely given,
h1 = −k < 0. Analogously, s = h0 = pk + aqm−1 for some k ∈ INF(m − 1) and
a ∈ Ap implies that h1 = k ∈ INF(m − 1). �

3.4. 1
q

p
q -representation of r-adic numbers

Within this subsection letters r, r1, r2, . . . stand for prime numbers and p is a
general integer greater than one.

Definition 3.18. A left-infinite word · · · a−�0+1a−�0 , �0 ∈ N, over Ap is a 1
q

p
q -

representation of x ∈ Qr if a−�0 > 0 or �0 = 0 and

x =
∞∑

k=−�0

ak

q

(
p

q

)k

with respect to | |r.
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So far, we have been concerned with 1
q

p
q -representation of rational numbers in

Qr. We have shown that there exists at least one 1
q

p
q -representation for all rational

numbers, namely the 1
q

p
q -expansion obtained by the MD algorithm, provided that

r is a prime factor of p. Is this representation the only one of this type? Does it
exist even for non-rational r-adic numbers? Before answering these questions, let
us consider again Lemma 2.1: the number αn is not the only integer satisfying the
inequality; it remains true even if αn is replaced by αn + �rn for any � ∈ Z. This
trivial observation turns out to be the reason why there exist even uncountably
many 1

q
p
q -representations if p is not a power of a single prime. However, there is

some common property for all such representations.

Lemma 3.19. Let r be a prime factor of p with multiplicity i and let x be in Qr.
Given · · ·a1a0a−1 · · · a−�0 , ai in Ap, such that

x =
∞∑

k=−�0

ak

q

(
p

q

)k

,

then, for all integers n � −�0,∣∣∣∣∣x −
n∑

k=−�0

ak

q

(
p

q

)k
∣∣∣∣∣
r

� r−(n+1)i. (3.6)

Proof. The proof is again a consequence of the fact that | |r is ultrametric. We
have∣∣∣∣∣x −

n∑
k=−�0

ak

q

(
p

q

)k
∣∣∣∣∣
r

=

∣∣∣∣∣
∞∑

k=n+1

ak

q

(
p

q

)k
∣∣∣∣∣
r

� max
k=n+1, n+2, ...

∣∣∣∣∣ak

q

(
p

q

)k
∣∣∣∣∣
r

� r−(n+1)i.

�
Having this necessary condition, we can characterize all 1

q
p
q -representations of

a given x; the assumption x belongs to Zr means no loss of generality.

Theorem 3.20. Let r be a prime factor of p with multiplicity i and let x be in
Zr.

(i) If p is not a power of r, then there exist uncountably many 1
q

p
q -represen-

tations · · ·a2a1a0 such that for all n ∈ N:∣∣∣∣∣x −
n∑

k=0

ak

q

(
p

q

)k
∣∣∣∣∣
r

� r−(n+1)i. (3.7)

Each of these words is determined by an infinite sequence (mj)j�0, mj ∈
{0, 1, . . . , r̃ − 1}; where p = rir̃;

(ii) if p is a power of r, there exists a unique 1
q

p
q -representation satisfying

(3.7).
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Proof. If |x|r � 1, then |qx|r � 1 as well. By Lemma 2.1, we know that there
exits a unique u0 ∈ {0, 1, . . . , ri − 1} such that |qx − u0|r � r−i. Since the r-adic
absolute value is ultrametric, we have for all m ∈ N

|qx − (u0 + mri)|r � max{|qx − u0|r, |mri)|r} � r−i.

Put a0 = u0 + m0r
i for some m0 ∈ {0, 1, . . . , r̃ − 1}, then

|qx − a0|r = |x − a0

q
| � r−i with a0 ∈ Ap.

The integers a0 of this form are the only integers of Ap satisfying this inequality.
Now, since |1/p|r = ri, multiplying the inequality by |1/p|r yields∣∣∣∣∣x − a0

q

p

∣∣∣∣∣
r

� 1

and so, as above, we have a unique u1 ∈ {0, 1, . . . , ri − 1}, arbitrary m1 ∈
{0, 1, . . . , r̃ − 1} and a1 = u1 + m1r

i such that∣∣∣∣∣q2
x − a0

q

p
− u1

∣∣∣∣∣
r

� r−i.

Multiplying by |p/q2|r = r−i yields∣∣∣∣x − a0

q
− a1

q

p

q

∣∣∣∣
r

� r−2i.

In this way, after n steps, we obtain∣∣∣∣∣x −
n∑

k=0

ak

q

(
p

q

)k
∣∣∣∣∣
r

� r−(n+1)i. �

Theorem 3.20 provides an answer to the question of uniqueness of a representation
and also characterizes all representations of x ∈ Qr which converge to x with
respect to | |r. We have seen that for a rational x, which is an element of Qr for
all r prime, the 1

q
p
q -expansion 〈x〉 1

q
p
q

converges with respect to all absolute values

| |r, r a prime factor of p. So, it seems reasonable to study 1
q

p
q -representations

which represent a rational x in Qr for all r from any nonempty subset of prime
factors of p.

Definition 3.21. Let p = r�1
1 · · · r�k

k be a prime factorization of p, rj are prime
numbers > 1 and �j > 0. Let y = (y1, · · · , yk) ∈ {0, �1}×· · ·×{0, �k}\(0, 0, . . . , 0).
We denote ry = ry1

1 · · · ryk

k , I(y) = {j | yj = �j}, and r̃y is defined by p = ryr̃y.
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Algorithm 3.22 (generalized modified division (GMD) algorithm). Let y as in
Definition 3.21 be fixed but arbitrary for a given p and x = s

t ∈ Q such that t > 0
is co-prime to rj for all j ∈ I(y). Put s0 = s, t0 = t. Moreover let

tj = tj−1r̃y = t0(r̃y)j and q
sj

tj
=

s′j+1

tj
ry + uj with uj ∈ {0, 1, . . . , ry − 1}.

Choose mj ∈ {0, 1, . . . , r̃y − 1} at random and put aj = uj + mjr
y and sj+1 =

s′j+1 − mjtj . Return · · · a2a1a0.
Denote the set of all possible outputs · · · a2a1a0 by GMD(x).

We now prove that the GMD algorithm returns all 1
q

p
q -representations of x in

Qrj , j ∈ I(y).

Lemma 3.23. Given p and y. Let x = s
t ∈ Q such that t > 0 is co-prime to rj

for all j ∈ I(y). There exist exactly r̃y numbers a ∈ Ap satisfying |x− a|rj � r−�j

for all j ∈ I(y).

Proof. The existence of r̃y such numbers follows from the construction of the
GMD algorithm: cm = u0 + mry, m = 0, 1, . . . , r̃y − 1 satisfy the inequality,
0 � u0 � ry−1 is the letter constructed in the first step of the GMD algorithm. If
there is another number in Ap different from all cm and satisfying the inequality,
there must exist r̃y such digits of the form of dm = d0 + mry, m = 0, 1, . . . , r̃y − 1
with 0 � d0 � ry − 1.

As we know, for all j ∈ I(y), there exists a unique 0 � b � r�j − 1 such that
|x − b|rj � r−�j and, furthermore, all other numbers for which this inequality is
true are of the form of b + nr�j , n ∈ Z. Thus, both c0 and d0 are of this form and
so c0 − d0 is a multiple of r�j for all j ∈ I(y). Since rj are distinct primes, c0 − d0

must be a multiple of ry and hence c0 = d0. �

Theorem 3.24. Let y as in Definition 3.21 be fixed but arbitrary for a given p
and x = s

t ∈ Q such that t > 0 is co-prime to rj for all j ∈ I(y). Further, let
a = · · · a2a1a0 be an infinite word over Ap.

Then

x =
∞∑

k=0

ak

q

(
p

q

)k

with respect to | |rj for all j ∈ I(y) if, and only if, a ∈ GMD(x).

Proof. First, let us suppose a ∈ GMD(x). We have

x =
s0

t0
=

s1

t0

ry

t0
+

a0

q
=

s1

t1

p

q
+

a0

q
=

p

q

(
s2

t2

p

q
+

a1

q

)
+

a0

q

=
(

p

q

)2(
s3

t3

p

q
+

a2

q

)
+

p

q

a1

q
+

a0

q
= · · · =

sn+1

tn+1

(
p

q

)n+1

+
n∑

k=0

ak

q

(
p

q

)k

·
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Hence, for all n ∈ N and for all j ∈ I(y)∣∣∣∣∣x −
n∑

k=0

ak

q

∣∣∣∣∣
rj

=

∣∣∣∣∣sn+1

tn+1

(
p

q

)n+1
∣∣∣∣∣
rj

=
∣∣∣∣ sn+1

t0(r̃y)n+1

∣∣∣∣
rj

∣∣∣∣∣
(

p

q

)n+1
∣∣∣∣∣
rj

·

Since t0(r̃y)n+1 is co-prime to rj and |sn+1|rj � 1, r
−(n+1)�j

j is an upper bound
and the sum converges to x.

Assume that

x =
∞∑

k=0

ak

q

(
p

q

)k

with respect to | |rj for all j ∈ I(y). Then |qx − a0|rj � rj
−�j , j ∈ I(y). The

previous lemma says that there are just r̃y possible values of a0, and so they must
coincide with the r̃y values of the first digit (possibly) obtained in the first step of
the GMD algorithm.

Since again ∣∣∣∣q2

p

(
x − a0

q

)
− a1

∣∣∣∣
rj

� rj
−�j , j ∈ I(y),

we can use the same argument for a1 and continue in the same manner for a2, a3, . . .
�

Obviously, if we take y = (�1, �2, . . . , �k), then the GMD and MD algorithms
coincide and the returned word is unique and equal to 〈x〉 1

q
p
q
.

Example 3.25. Let p = 30, q = 11, and y = (1, 1, 0). Here are two examples of
representations of the number 1:

· · · 27 24 24 29 26 29 27 25 25 24 28 24 28 27 29 ∈ GMD(1),
· · · 20 22 21 22 22 22 19 18 18 19 23 18 22 22 23 ∈ GMD(1),

and of the number 0:

· · · 7 2 3 7 4 7 8 7 7 5 5 6 6 5 6 ∈ GMD(0),
· · · 15 12 11 15 11 13 15 9 9 9 14 12 12 10 12 ∈ GMD(0).

3.5. Periodicity

It turns out that the 1
q

p
q -expansion 〈x〉 1

q
p
q

of a rational x plays an important
role between all representations from GMD(x) not only because it is the only one
which converges in all Qr, r a prime factor of p. It is also the only one which is
eventually periodic.

Theorem 3.26. Let x ∈ Qri , ri > 1 a prime factor of p = r�1
1 · · · r�k

k . Then
the 1

q
p
q -representation a of x is eventually periodic if, and only if, x ∈ Q and

a = 〈x〉 1
q

p
q
.
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Proof. The right to left implication is proved in Lemma 3.3.
Let us assume, w.l.o.g, that x ∈ Zr and that a = · · · a2a1a0 ∈ GMD(x) for some

y (see Def. 3.21) is eventually periodic, say, a = ωwv, w ∈ A+
p , v ∈ A∗

p, |v| = h0,
and |w| = h. The simple fact

∞∑
j=0

(
p

q

)j

=
1

1 − p
q

immediately implies that x must be rational.
Let (sj)j�1 and (tj)j�1 be the sequences constructed within the run of the GMD

algorithm. Then we must have for all n � h0 and j ∈ N

sn

tn
=

sn+jh

tn+jh
,

since tj = t0r̃y
j
, we get sn+jh = sn(r̃y)jh which implies |sn+jh|ri � r−jh

i for all
i ∈ {1, 2, . . . , k}\I(y). Define for all n � h0 and for all these i a nonnegative
integer m0 < h by n − h0 ≡ m0 (mod h), then∣∣∣∣∣∣x −

n−1∑
j=0

aj

q

(
p

q

)j
∣∣∣∣∣∣
ri

=
∣∣∣∣sn

tn

(
p

q

)n∣∣∣∣
ri

=

∣∣∣∣∣sh0+m0(r̃y)n−h0−m0

t0(r̃y)n

(
p

q

)n
∣∣∣∣∣
ri

=
∣∣∣∣sh0+m0

t0

∣∣∣∣
ri

r
−(n−h0−m0)
i .

Since the integer m0 is bounded by h for arbitrary n, the sum converges to x with
respect to all absolute values | |ri , i ∈ {1, 2, . . . , k}. But there is only one such
1
q

p
q -representation: namely, a must be equal to 〈x〉 1

q
p
q
. �

4. Converters between rational base number systems

4.1. p
q -representations

Let us now consider the system corresponding to the first series from (1.4). In
the same way as for the AFS system, we define the p

q -expansion of x in Q and
p
q -representation of x in Qr. As promised in the introduction, we show that there
exists a simple converter between them. A transducer is an automaton where
edges are labelled by couples of words. It is finite if the set of states and the set of
edges are finite. It is said to be sequential if the projection on the first component
is a deterministic automaton. It is letter-to-letter if edges are labelled by couples
of letters. For more definitions and results on transducers the reader is referred
to [9] for instance.
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Theorem 4.1. There exists a finite letter-to-letter right2 sequential transducer
C converting the p

q -representation of any x ∈ Zr , r prime factor of p, to its 1
q

p
q -

representation; the inverse of C is also a finite letter-to-letter right sequential trans-
ducer.

Proof. Let C = (Q ⊂ N,Ap ×Ap, E, {0}, ω) be the right letter-to-letter sequential

transducer whose set of edges E is defined by s
a|b−−→ s′ ⇔ q(a + s) = ps′ + b

with a, b ∈ Ap.

Clearly, if the input is · · · a1a0 such that x =
∑∞

i=0 ai

(
p
q

)i

in Qr, r a prime

factor of p, then there is in C a path 0
a0|b0−−−→ s1

a1|b1−−−→ s2 · · · such that, for each
k � 0,

k∑
i=0

ai

(
p

q

)i

=
k∑

i=0

bi

q

(
p

q

)i

+ sk+1

(
p

q

)k+1

·

The states si are nonnegative integers, and so

∞∑
i=0

ai

(
p

q

)i

=
∞∑

i=0

bi

q

(
p

q

)i

in Qr.

Let us show that C is finite. From a state s, it is possible to reach the state
s + k, k � 1, if there exist a and b in Ap such that q(s + a) = p(s + k) + b, that is,
if s = qa−kp−b

p−q . Since a � p − 1, b � 0, the largest accessible state is

smax � max
k�1

{
q(p − 1) − kp

p − q
+ k

}
� max

k�1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q(p − 1)
p − q

− k

(
p

p − q
− 1
)

︸ ︷︷ ︸
>0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
qp

p − q

and hence the transducer C is finite.
Now, suppose that s

a|b−−→ s′ and s
a′|b−−→ s′′, a �= a′. Then q(a + s) and q(a′ + s)

are congruent (modp), hence a and a′ are congruent (mod p), which is impossible.
Thus, the transducer C̃, where the edges Ẽ are defined by

s
a|b−−→̃
C

s′ ⇔ s
b|a−−→
C

s′,

is also right sequential, and C̃ realizes the conversion from 1
q

p
q -representations to

p
q -representations. �

This result says that there is a one-to-one mapping between the sets of all p
q - and

1
q

p
q -representations of a given x ∈ Zr . This mapping, moreover, preserves eventual

periodicity, meaning that the eventually periodic infinite words are mapped to

2Words are processed from right to left.
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1
q

p
q -expansions. This is not a surprising result as it is still true that only rational

numbers can have an eventually periodic p
q -representation.

Regarding the finiteness of the expansions, there is a difference. But finding
those rationals with finite p

q -representations can be done in the perfectly analogous
way we used for the 1

q
p
q case in Proposition 3.17.

Theorem 4.1 can be easily modified also for the two negative base systems
from (1.4). Since the composition of two finite sequential transducers is again a
finite sequential transducer, the theorem is valid for any pair of number systems
form (1.4). This conversion still preserves eventual periodicity. The question on
finiteness for the negative base cases is a bit more complex. The two systems with
negative rational base are canonical number systems (see [2] for more), i.e., each
x in Z has a unique finite representation, but there are also rational numbers with
finite representations.

4.2. Conversion from the integer base system

Another natural question is whether there exists a converter of representations
in integer base p to 1

q
p
q -representations. The answer is positive, but the converter

is not finite. This is an expected result since if there existed such a finite converter,
there would be a finite converter from the language A∗

p of standard positive integer
representations to the non-context-free language L 1

q
p
q
, which is not possible.

Algorithm 4.2. Denote by · · ·a1a0 ∈ NAp the input and by · · · b1b0 ∈ NAp the

output. The rewriting rule is defined by: z0 = 0, i = 0 and (zi, i)
ai|bi−−−→ (zi+1, i+1),

with ai, bi ∈ Ap such that

aiq
i + zi =

bi

q
+

p

q
zi+1.

Clearly, zi is always nonnegative and uniquely given.

Proposition 4.3. Let r be a prime factor of p and let · · · a1a0 ∈ NAp such that
x =
∑∞

i=0 aip
i ∈ Zr. Then for the output · · · b1b0 ∈ NAp of Algorithm 4.2 we have

x =
∑∞

i=0
bi

q

(
p
q

)i

∈ Zr.

Proof. The proof is simple, it follows from the fact that

z0 = 0 =
b0

q
+

p

q
z1 − a0 =

b0

q
+

b1

q

p

q
+
(

p

q

)2

z2 − pa1 − a0

= · · · =
k∑

i=0

bi

q

(
p

q

)i

+
(

p

q

)k+1

zk+1 −
k∑

i=0

aip
i
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for all k ∈ N and from that∣∣∣∣∣
(

p

q

)k+1

zk+1

∣∣∣∣∣
r

−→ 0 as i → ∞. �

This conversion preserves finiteness. Note that Algorithm 4.2 allows to define a
letter-to-letter right sequential transducer with a denumerable set of states realiz-
ing the conversion.

Lemma 4.4. If the input of Algorithm 4.2 is finite (i.e., eventually zero), then
the output is finite as well.

Proof. Let the input be equal to · · · a1a0 ∈ NAp where ai = 0 for all i > k ∈ N.
Then for all j ∈ N

zk+j+1 =
q

p

(
zk+j − bk+j

q

)
< zk+j if zk+j �= 0 or bk+j �= 0.

Thus, the sequences (zi)i�0 and (bi)i�0 must be eventually zero. �
The input is finite if it is a representation of a nonnegative integer in base p.

This implies that the lemma cannot be reversed since, as we know, there are finite
outputs obtained for infinite inputs (a trivial example is the representations of p

q ).
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[7] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad.

Sci. Hungar. 8 (1957) 477–493.
[8] W.J. Robinson, The Josephus problem. Math. Gaz. 44 (1960) 47–52.
[9] J. Sakarovitch, Elements of Automata Theory. Cambridge University Press, New York (2009).

Communicated by G. Richomme.
Received November 2, 2010. Accepted July 4, 2011.


	Introduction
	Preliminaries
	p-adic numbers
	Combinatorics on words

	AFS number system
	Modified division algorithm
	1qpq-expansions of the negative integers
	Finite 1qpq-expansions
	1qpq-representation of r-adic numbers
	Periodicity

	Converters between rational base number systems
	pq-representations
	Conversion from the integer base system

	References

