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ON THE STRUCTURE OF (—p3)-INTEGERS

WOLFGANG STEINER!

Abstract. The (—f3)-integers are natural generalisations of the
[B-integers, and thus of the integers, for negative real bases. When (3 is
the analogue of a Parry number, we describe the structure of the set of
(—pB)-integers by a fixed point of an anti-morphism.

Mathematics Subject Classification. 11A63, 68R15.

1. INTRODUCTION

The aim of this paper is to study the structure of the set of real numbers having
a digital expansion of the form

n—1
Z ag (_ﬁ)kv
k=0

where (—() is a negative real base with 8 > 1, the digits ax € Z satisfy certain
conditions specified below, and n > 0. These numbers are called (—/)-integers,
and have been recently studied by Ambroz et al. [1].

Before dealing with these numbers, we recall some facts about 3-integers, which
are the real numbers of the form

n—1 m—1
ﬁ:Zakﬂk such that 0 < Zakﬂk<ﬂm forall 1 <m <n,
k=0 k=0
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i.e., ZZ;& ai B is a greedy [B-expansion. Equivalently, we can define the set of
[B-integers as

Zp =175 U (-Z}) with Z5 =] B"T;7(0),
n>0

where T3 is the 3-transformation, defined by
Ts:100,1) = [0,1), x+ Bz—|Bz].

This map and the corresponding -expansions were first studied by Rényi [20].

The notion of S-integers was introduced in the domain of quasicrystallography,
see for instance [6], and the structure of the (-integers is very well understood
now. We have 8Zg C Zg, the set of distances between consecutive elements of Zg
is

As = {T5(17) | n > 0},

where T (2~ ) = limy—,,— T5(y), and the sequence of distances between consecu-
tive elements of Zzg is coded by the fixed point of a substition, see [9] for the case
when Ag is a finite set, that is when [ is a Parry number. We give short proofs
of these facts in Section 2. More detailed properties of this sequence can be found
e.g. in [2-4,11,16].

Closely related to Z; are the sets

Sp(z) = J B"T;"(x)  (z€[0,1)),

n>0

which were used by Thurston [21] to define (fractal) tilings of R?~! when 3 is a
Pisot number of degree d, i.e., a root > 1 of a polynomial ¢ + pyz?~1 + .- 4 p, €
Z[z] such that all other roots have modulus < 1, and an algebraic unit, i.e.,
pq = =£1. These tilings allow e.g. to determine the kth digit ar of a number
without knowing the other digits, see [15].

It is widely agreed that the greedy [-expansions are the natural representa-
tions of real numbers in a real base 5 > 1. For the case of negative bases, the
situation is not so clear. Ito and Sadahiro [14] proposed recently to use the (—f)-
transformation defined by

-8 B
maﬁ>, z— —fx — \‘m—ﬁxJ,

see also [10]. This transformation has the important property that T_g(—z/8) = =

for all x € (/g—ﬁ, ﬁ) Some instances are depicted in Figures 1, 3, 4 and 5.

The set of (—()-integers is therefore defined by

Zp=J(=B)"T}(0).

n>0
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FIGURE 1. The (—f)-transformation for 8 = 2 (left), 5 = 1+2‘/5 A

1.618 (middle), and 8 = § + g7 ~ 1.325 (right).

These are the numbers

m—1
- 1
Z a (—ﬁ)k such that ﬂ——fl < ; ak (—ﬁ)k_m < m foralll <m <n.

Note that, in the case of S-integers, we have to add —Zg to ZE in order to obtain
a set resembling Z. In the case of (—f3)-integers, this is not necessary because the
(—B)-transformation allows to represent positive and negative numbers.

It is not difficult to see that Z_3 = Z = Zg when @ € Z, 3 > 2. Some other
properties of Z_ 5 can be found in [1], mainly for the case when T 4( 3 +1) < 0and

T 1(5f1) > 1 for all n > 1. (Note that 77, (54) € (54 — &1 =AU

(%, O) implies T"'H( > 0).
The set

541)

A AT

plays a similar role for (—3)-expansions as the set {T7(17) | n > 0} for §-
expansions. If Vg is a finite set, then we call 5 > 1 an Yrrap number. Note that
these numbers are called [to—Sadahiro numbers in [18], in reference to [14]. How-
ever, as the generalised f-transformations in [13] with F = (1,...,1) are, up to
conjugation by the map x — ﬁ — 1z, the same as our (—/f)-transformations, these
numbers were already considered by Goéra and perhaps by other authors. There-
fore, the neutral but intricate name (—/f)-numbers was chosen in [17], referring to
the original name S-numbers for Parry numbers [19]. The name Yrrap number,
used in the present paper, refers to the connection with Parry numbers and to the
fact that T_g is (locally) orientation-reversing.

For any Yrrap number 3 > (14++/5)/2, we describe the sequence of (—f3)-integers
in terms of a two-sided infinite word on a finite alphabet which is a fixed point of
an anti-morphism (Thm. 3.2). Note that the orientation-reversing property of the
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map = — —fz imposes the use of an anti-morphism instead of a morphism, and

that anti-morphisms were considered in a similar context by Enomoto [8].
For1< < 1_5_2\/5’ we have Z_z = {0}, as already proved in [1]. However, our

study still makes sense for these bases (—3) because we can also describe the sets

-8 1

B+1"6+1))

where the limit set consists of the numbers lying in all but finitely many sets
(=) T4 (x), n > 0. Taking the limit instead of the union over all n > 0

S_p(z) = lim (=p)"T_5(z) (m €

n—oo

B
implies that every y € R lies in exactly one set S_g(z), z € [ﬁ_—fl, ﬁ), see
Lemma 3.1. Note that TEB(_BB-;) # ,6_—-51 when § ¢ Z. Other properties of the

(—0)-transformation for 1 < 8 < # are exhibited in [17].

2. B-INTEGERS

In this section, we consider the structure of f-integers. The results are not new,
but it is useful to state and prove them in order to understand the differences with
(—pB)-integers.

Recall that Ag = {T5(17) | n > 0}, and let A% be the free monoid generated
by Ag. Elements of A}g will be considered as words on the alphabet Ag, and
the operation is the concatenation of words. The (-substitution is the morphism
g Ay — Aj, defined by

pale) = 111 Tyla™) (v € Ag).
[Bx]—1times

Here, 1 is an element of Ag and not the identity element of Aj (which is the
empty word). Recall that, as ¢g is a morphism, we have pg(uv) = @g(u)pg(v)
for all u,v € Aj. Since wgﬂ(l) = ¢j(pp(1)) and pg(1) starts with 1, pj(1) is a
prefix of <pg+1(1) for every n > 0.

Theorem 2.1. For any (3 > 1, the set of non-negative B-integers takes the form

k
Zg ={zx | k >0} with z,= Zuj,

j=1

where uyug - - - 1s the infinite word with letters in Ag which has @Z(l) as prefiz for
allmn > 0.
The set of differences between consecutive [3-integers is Ag.

The main observation for the proof of the theorem is the following. We use the

notation |v| = k and L(v) = 25:1 v; for any v = vy v, € AR k> 0.
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Lemma 2.1. For anyn >0, 1 <k <|[pj(1)|, we have

TE( ZZ;17%>> = [O’uk)v

and z),n 1)) = L(pp(1)) = 6.

Proof. For n =0, we have |p%(1)| =1, 20 = 0, 21 = 1, uy = 1, thus the statements
are true. Suppose that they hold for n, and consider

ULUD * Uyt gy = ¢ (1) = a(B(1) = wp(ur) pp(uz) - @a(upay)-
Let 1 <k < |cp”+1(1)\, and write uy - - up = @g(ur - uj—1)vr---v; with 1 < j <
lep(D], 1 < <|[pp(u;)l, i.e., v1---v; is a non-empty prefix of pg(u;).

For any z € (0,1], we have Tg(x~) = Sz — [fz] + 1, hence L(pg(z)) = Sz for
x € Ag. This yields that

zp = L(ug - - uyg) :ﬁL(’ul-'-’U,j,l)+L(’Ul-~-’l)i) :,3ij1 +i—14wv;

and zp—1 = Bzj—1 +1 — 1, hence
1 —1 1 —14v;
Zj—1+ —,%j-1+ 7,@ !

Zk—lz_k _
BB 6

() {555 e

Moreover, we have L(gpg“(l)) = B L(pj(1)) = ™, thus the statements hold
for n 4 1. |

> C [zj-1,2j-1 tuy) = [zj-1,2;),

Proof of Theorem 2.1. By Lemma 2.1, we have Zpn(1)| = g™ for all n > 0, thus
[0,1) is split into the intervals [zx—1/8",2k/8"), 1 < k < [p}(1)[. Therefore,
Lemma 2.1 yields that

T5"(0) = {zi—1/B8" [ 1 < k < @51},
hence

U 8" T57(0) = {2« | k > 0}.

n>0

Since uy € Ag for all k > 1 and ujyn(1) = Tﬂ"(l_) for all n > 0, we have
{Zk—Zk_1|k‘21}={uk|k21}2A5. O

For the sets S(z), Lemma 2.1 gives the following corollary.
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Corollary 2.1. For any x € [0,1), we have
Sg(z) ={zr+x| k>0, ups1 >z} Ca+ S3(0).

In particular, we have Sg(z) —z = Sg(y) — y for all z,y € [0,1) with (z,y] N
Ap = (. From the definition of Sg(z) and since x € ﬁTﬂ_l(x), we also get that

Spe)=|J BSsly)  (z€0,1)).

yeT; ()

This shows that Sg(x) is the solution of a graph-directed iterated function system
(GIFS) when f is a Parry number, cf. [15], Section 3.2.

3. (—0)-INTEGERS

We now turn to the discussion of (—3)-integers and sets S_g(z), © € [ﬂ;ﬁ’ ﬁ)

Lemma 3.1. Forany > 1, x € [5_—_&, ﬁ), we have

S-pe) = J (=9)" (T_gm\{ﬁ‘—fl}): U 855w

n=0 yeT "5 (x)

‘H

For any y € R, there exists a unique x € [ﬂ—ﬂ
IfT_p(z) =z, then S_g(x) = U, 5o(=8)" T_5(

<) such that y € S_g(z).
in particular S_3(0) = Z_g.

&E

H
),

Proof. If y € S_g(z), then we have # € T~ j(z) for all sufficiently large n,

thus y € (—=08)" (T:g(x) \ {g—ﬁ}) for some n > 0. On the other hand, y €

(—B)" (T:g(x)\{ﬂ;ﬁ}) for some n > 0 implies that Tf‘ﬂ(ﬁ) = Tf,@(#) =

x for all m > n, thus y € S_g(z). This shows the first equation. Since = €

(/g—ﬁ, ﬁ) implies that x € (—f) (1;_1@) \ {ﬂ_—ﬂ}), we obtain that S_g(z) =
1

UyeT_l(I)(—ﬁ) S_p(y) for all x € [BH’ ﬁ+1)

For any y € R, we have y € S_g(T" (( ﬁ)")) for all n > 0 such that 4y €
(ﬁ_—fl, m), thus y € S_g(z) for some = € [ ) To show that this z is
unique, let y € S_g(x) and y € S_g(z') for some x,x € [ﬁffl, ﬁ+1) Then we
have y € (—3)" (T:ﬂr‘(m)\{ﬂ;ﬁ}) and y € (=0)™ (T (2 \{6+1}) for some

n m —
m,n > 0, thus x :T_ﬂ((fé)n) T (( Gy ) =z

-8
n — n—+2 n+1/ —
If T2 (ﬁ+1) =t :T— s(x), then T"F (BﬁJrl) =T (Tﬁl) =T p(z) ==
yields that (—8)" 5% € S_g(x), which bhom that S_p(x) = Upso(—B)" T4 (x
when T_g(z) = . 0

The first two statements of the following proposition can also be found in [1].
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Proposition 3.1. For any 8> 1, we have (—5)Z_5 C Z_g.
If B < (1++5)/2, then Z_5 = {0}.
If B> (1+V5)/2, then

250 (=8 [=6,1] = {(=B)", (-B)"H} U (g2 <T—g—2<o> . (% ﬂi»

for all m >0, in particular

{_ﬁa_/@+1>~~~7_ﬁ+ L/BJ - 17071} zfﬁQ < L/BJ(/B+1)
Proof. The inclusion (—(3)Z_3 C Z_g is a consequence of Lemma 3.1 and 0 €
T-5(0).

If § < 155 then & < 5;4?1’ hence T~ ;(0) = {0} and Z_3 = {0}, sce Figure 1
(right).

If B > Y5 then 5t € T75(0) implies 1 € Z_g, thus ()" € Z_g for all
n > 0. Clearly,

ZpgNn[-p,1] = {

o 11 B
(=p)"+2 (Tﬁ 2(0)n (7, @)) CZpn(=P)"(=5,1).
To show the other inclusion, let z € (—=8)™ T~ 5*(0)N(—8)" (-, 1) for some m > 0.

Itz # (=8)" i1, then =y € (557, 747) and =5mws € (T 32) < (77 750)
imply that Tf+2( z ) =T, —

o) = T\ =y :
n+2 z _ gmnm+2 (_ )m—n—l _ pm+2 _5_1
T*ﬁ ((_ﬁ)n+2>_Tﬂ ( B+41 >_Tﬁ (/3+1
=1 (%) =T-5(0) =0,

where we have used that —g5m € (—61, L) implies m < n. Therefore, we have
n

B+ T
z € (=B)"2T_57%(0) for all z € Z_5 N (=)
Consider now n = 0, then

Z-gN[=6,1] = {-B,1}U{z € (=8,1) | T24(z/5%) = 0}.
Since =L > =2 if and only if % > [3](8 + 1), we obtain that
{0,1,....[8]} i 52> [B](B+1),
{0717”-7 Lﬁj - 1} lfﬁQ < Lﬁj(ﬁ"‘l)

If T2 4(2/B3%) = 0, then z = —a1 8 +ag with ag € (—3) T:g(O), a; €40,1,...,18]},
and Z_g N [—0, 1] consists of those numbers —a1 8 + ag lying in [—03, 1]. O

(—B)T=5(0) = {
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Proposition 3.1 shows that the maximal difference between consecutive (—/3)-
integers exceeds 1 whenever 5% < |3](3+1), i.e., T_ (,6+1) < 0. For an example,
this was also proved in [1]. In Examples 3.3 and 3.4, we see that the distance be-
tween two consecutive (—/)-integers can be even greater than 2, and the structure
of Z_z can be quite complicated. Therefore, we adapt a slightly different strategy
as for Zg.

In the following, we always assume that the set

Vi =V;U{0} = {Tf5<ﬁ_—fl>

is finite, i.e., 3 is an Yrrap number, and let 3 be fixed. For z € V, let

1

Then {J, | a € Ag} forms a partition of |

nZO}U{O}

y>aj}7 T = x—|—7‘x’ Jy ={z} and Jz = (x, 7).

,8+1’,6’+1) where
A =VjUV} with V= {%|ze Vj}

We have T_5(J.) = Jr_, (o) for every x € Vj, and the following lemma shows that
the image of every Jz, = € Vé, is a union of intervals J,, a € Ag.

Lemma 3.2. Let x € Vé and write
JzNT~ (VB)—{yl’“'vym}’ with T=yYo <Y1 < < Yn < Ym4+1 = Tg-

For any 0 <i < m, we have

Y—Yi+1— 2
and B(yi+1 — yi) = MJs,), where X denotes the Lebesgue measure.

Proof. Since T_3 maps no point in (y;, yi4+1) to 6+1
on this interval and MT—_g((vi,yi+1))) = B(Yi+1 — yi). We have z; € Vg since

€ Vﬁ, the map is continuous

i = T_g(yi+1) in case y41 < B}H’ and x; = B__Jrﬁl in case y;41 = 6+1 Since

y; = max{y € T_ (VB) | ¥y < yit1}, we obtain that ry, = lim,_.,,+ T_g(y), thus
T 5((Yi, yit1)) = (l.27/r$1) O

In view of Lemma 3.2, we define an anti-morphism ¢g : A3 — Aj by

Yp(r) =T_p(z) and Ps(@) =0m T-p(ym) - T1 T-p(y1)To (v € Vp),
with m, x; and y; as in Lemma 3.2. Here, anti—morphisAm means that ¥g(uv) =
Yp(v)Yhs(u) for all u,v € Aj. Now, the last letter of 95(0) is t, with t = max{z €
Vs | @ < 0}, and the first letter of ¢5(f) is 0. Therefore, wQ”(A) is a prefix of
1/127”2( 0) = w (Y3 (0)) and 1/127”1( 0) is a suffix of 1/127”3( 0) for every n > 0.
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Theorem 3.1. For any Yrrap number > (1 ++/5)/2, we have

S A uay)) if R >0,
k .

S N yia) if K <0,

where - - u_juguy - - - 1s the two-sided infinite word on the finite alphabet Ag such
that uy = 0, 1/1%”(6) is a prefix of ujug--- and 1/12"+1( ) is a suffiz of -+ u_ou_1
for allm > 0.

Z_ﬁz{zk‘kezv U2k:O} with Zk:{

Note that ---u_jugu, - - - is a fixed point of ¥g, with ug being mapped to ug.
The following lemma is the analogue of Lemma 2.1. We use the notation

k
L(U):Z)\(JU]) ifU:Ul"'UkEAg.

j=1
Note that uoy € Vé and uggq1 € 175’ for all k € Z, thus A(J,,,) =0 for all k € Z.

Lemma 3.3. For anyn>0,0<k< \wg(6)|/2, we have

Z(—1)n Z(—1)n Z(—_1)n
() = {5 S22 ) =
and 2(_yyn (g @)141)/2 = (=1)" L(¥3(0)) = MJ) (=B)" =10 (—B)".

Proof. The statements are true for n = 0 since Wg(ﬁ)\ =1,20=0,2 = \J) =
To-
Suppose that they hold for even n, and consider

U_|yrti@)) " U=2U-1 —WLH( ) = wa(%( )) :TPB(UW};@)\)'"¢B(U2)¢B(U1)-

Let 0 <k < |¢”+1( )|/2, and write

U—_2k—1"" " U—1] =V_2—1"" V-1 ¢6(U1 ce U2j)

with 0 < j < [¥5(0)]/2, 0 < i < [1hg(uzjs1)l/2, ice., u—i1- -u_1 is a suffix

of Y (ugjt1).
By Lemma 3.2, we have L(¢3(Z)) = BA(Jz) for any = € Vj. This yields that

—z_p—1 =B L(u1---ugj) + L(v_gi—1---v_1) =z + L(v_gi—1---v_1)
and —z_ = Bz + L(v_g; - --v_1). By the induction hypothesis, we obtain that

nit 2k \ _gmpr % L(voai--va)
s ((—ﬂ)"“) s ((—mn oyt )

T_p(uzj) =vp(uz;j) =u_2x

if i =0,

T,g(:v—i—L(v,gi- )/ﬁ) _a(yi)=v_2i=u_ox
ifi>1,
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where the y;’s are the numbers from Lemma 3.2 for ¥ = ug;11, and

ngl (((_;3:+1’ (i_ﬁlgg}u >> = T—ﬂ((yivyi-‘rl)) =Jo g = Ju_gy -

Moreover, we have L(q/)g“(ﬁ)) = B L(yj (0)) = ro8™*?, thus the statements hold
for n + 1.
The proof for odd n runs along the same lines and is therefore omitted. |

Proof of Theorem 5.1. By Lemma 3.3, we have 2 yn(lgp @) +1)/2 = T0 (=B3)" for
all n > 0, thus [0, ) splits into the intervals (z(_l)nk(—ﬁ)*”, Z(_l)n(k_}rl)(—/@)in)
and points z(_1ynp(—08)"", 0 <k < \1/15(6”/2, hence

T=7(0) N [0,70) = {2 1ynr(—=B) " [0 < &k < [5(0)]/2, w(—1ynar = 0}

2 1 -8 1
%et 2m+12 12 be)such that g“mrq > R Then we have (m,m) -
_ﬁ m TOaﬂ mro aa‘nd

T:S(O)\{_—ﬁ} C(=B)*™ (T=5~™(0)N[0,70))U(=B)*™ (T =5 ~*"~1(0)N[0, 70)),

B+1
thus
n -n _ﬂ n —n
U=s) (Tﬁ (@\{m =UJ =9 (T50)0(0,70)) = {2 | k € Z, uzp = 0},
n>0 n>0
Together with Lemma 3.1, this proves the theorem. ]

As in the case of positive bases, the word - - - u_juguy - - - also describes the sets
S_g(z). Theorem 3.1 and Lemma 3.3 give the following corollary.

Corollary 3.1. For any x € Vé, y € Jz, we have
S_p(x)={2 |k €Z, uor =2} and S_ply)={zx+y—z|k€Z upsi1 =7}

Lemma 3.1 and Corollary 3.1 imply that S_g(z) is the solution of a GIFS for
any Yrrap number 3 > (1 ++/5)/2, z € [ﬁ_—fl, ﬁ), cf. the end of Section 2.

Recall that our main goal is to understand the structure of Z_g (in case 5 >
(1 ++/5)/2), i.e., to describe the occurrences of 0 in the word ---u_jugu; - - -

defined in Theorem 3.1 and the words between two successive occurrences. Let

Rp = {uaruani1 -+ Ugs(ry—1 | k € Z, ugy, = 0}
with  s(k) =min{j € Z | ug; =0, j > k}

be the set of return words of 0 in ---u_juguy - -.



ON THE STRUCTURE OF (—f3)-INTEGERS 191

Note that s(k) is defined for all k € Z since (—3)" € Z_g for all n > 0 by
Proposition 3.1.

For any w € Rg, the word ¢g(w0) is a factor of - --u_jugu; - - starting and
ending with 0, thus we can write ¥3(w0) = wy - - - w0 with w; € Rg, 1 < j <m,
and set

(W) = wr -+ W

This defines an anti-morphism ¢_g : Rj — Rj, which plays the role of the
[-substitution.

Since - --u_juguq - - - is generated by u; = 6, as described in Theorem 3.1, we
consider wg = ugu1 -+ - Ugs0y—1- We have
1 1 1 e
0,1 =10, —— U |=—51|, Tp{ (B 7—1||=|5—0],
0.1] ﬂ+1> B+1 ‘3<( N o ) B+1
thus L(wg) = 1 and
wg = 00217 - Ton Ton T Ty R T
where the z; are defined by Vi = {z_¢,...,2-1,0,21,...,op}, 20 <+ <71 <
O<a1 < < Ty
Theorem 3.2. For any Yrrap number > (1 ++/5)/2, we have
k )
CL(uh) ifk >0,
Z_g=A{z, | ke€Z} with z,= { ZJ‘;‘I J/ ‘
- Zj:l L(u’_;) if k <0,
where - u'_qu’ ujul - is the two-sided infinite word on the finite alphabet Rg

such that g02_"5(w@) is a prefiz of ujub -+ and <p2fﬁ+1(w,g) is a suffix of - u'_qu’ 4

for allm > 0.
The set of distances between consecutive (—[3)-integers is
A_g={2py1— 2, | k€ Z} = {L(w) | w € Rg}.

Note that the index 0 is omitted in - - - v/ yu’ jujuf - - - for reasons of symmetry.

Proof. The definitions of ---u_jupu; --- in Theorem 3.1 and of ¢_g imply that
ceulqu’y uhub -+ is the derived word of - - - u_juguq - - - with respect to Rg, that
is

u;c = Ul | Wl |15 u',k = U_fy! e | U |1 (k>1)

with

{lur - up o[ e 2 13 U{=[uly - -uly[ [k =1} ={k € Z | ux = O}.
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Here, for any v € Rj;, [v| denotes the length of v as a word in A%, not in 1. Since

[y ug =1 Jwf | k [ulj-uly]

k
go= Lu))= > AJu)= > AMJu,), ZL ) Z Ao )
Jj=1 j=0 j=1

for all £k > 0, Theorem 3.1 yields that {z, | k € Z} =Z_.

It follows from the definition of Rg that A_g = {L(w) | w € Ra}.

It remains to show that Rg is a finite set. We first show that the restriction of
Y3 to 17[; is primitive, which means that there exists some m > 1 such that, for
every x € Vé, Y5 (Z) contains all elements of I//:é The proof is taken from [13],
Proposition 8. If § > 2, then the largest connected pieces of images of J; under
T_ s grow until they cover two consecutive discontinuity points 7T +1 5 EA B

of T_g, and the next image covers all intervals Jg, y € Vﬂ. If H'T‘f < [ <2, then
3? > 2 implies that the largest connected pieces of images of J; under T2 5 8row
until they cover two consecutive discontinuity points of T2 - Since

B B 1\ _ (=48 1
B+1B+1 B)) B+1  B+1)
72 SR - e B T A et et
A\\p+1 B B+1 g+1" p+1 )’
T2 _na—1 /672 _ _/8 1
PN\ B+ B+ B+16+1)
T2, s 1 (=B B-B-1
B+1 8+1 B+1" pB+1 ’

the next image covers the fixed point 0, and further images grow until after a finite
number of steps they cover all intervals Jg, y € Vé. The case § = 1+2‘/5 is treated
in Example 3.1.

It T (ﬁ_+1) # 0 for all n > 0, then T"; is continuous at all points = €

(ﬂ_fw ,6+1) with T ( ) = 0, thus ugx = 0 is equivalent to uggy1 = 0 (see also

Prop. 3.2 below). Hence we can consider the return words of 0in -- SU_1UQUL - - -
instead of the return words of 0. Since 9! (To x1 T2) has at least two occurrences

of 0 for all To,T1,T2 € Vﬁ’, there are only finitely many such return words. If

™ (ﬁ) = 0, then wg(xo Z1 x2) starts and ends with 0 for all zg, 21,22 € Vé,

hence Rpg is finite as well. O

For details on derived words of primitive substitutive words, we refer to [7].

We remark that, for practical reasons, the set Rz can be obtained from the set
R = {wg} by adding to R iteratively all return words of 0 which appear in ¢3(w0)
for some w € R until R stabilises. The final set R is equal to Rg.

Now, we apply the theorems in the case of two quadratic examples.
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A A B A B A A B A A B A B

-3 —p3+p2—p -8 —B+10 1 B2-p+1 pr=p*+p2—p pt—p3+p3? B
—B3+62-8+1 g B -p+p2-p+1 p-p+1

FIGURE 2. The (—f)-integers in [—33, 3%], B = (1 +v/5)/2.

Example 3.1. Let 8 = 1+2‘/5, e, 32 =p+1,and t = [;—fl = _71, then V5 =
Vi = {t,0}. Since

-1 -1 -1 1

see Figure 1 (middle), the anti-morphism t3 on A7 is defined by

where (0 marks the central letter ug. The return word of 0 starting at ug is wg =
00t7. The image ¢3(wz0) = 0 0¢% 0 £ 0 contains the return words wg and 0%.
Since 15(010) = 0 0¢% 0, there are no other return words of 0, i.e., Rg ={A, B}
with A = 00tZ, B = 0%. Therefore, ---u/ yu' jujub--- is a two-sided fixed point
of the anti-morphism

p_g: A— AB, B~ A,

with

/ / / r_
u_13...u_1 ul...u21 f—

AABAABABAABAB AABAABABAABAABABAABAB.

We have \(Jg) = %, ANJp) = %, thus L(A) = 1, L(B) = % = # — 1, and some
(—0)-integers are shown in Figure 2. Note that (—(3)™ can also be represented as

(=B)" 2 + (=B)" .

Example 3.2. Let 3 = 325 je. 32 = 38 — 1, then the (—f)-transformation

2
is depicted in Figure 3, where ty = t1 = T_p(ty) = ﬂﬂ—; -2 = _5’6—_:,

=6
EESE
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-

B+1

0

t1

¢

Oto tl O ﬁ

A
A B B A B A B B A B B A B A B B A B
-3 —F+52-8 —F+52+1 —F+282-B+1  —f+1 0 1 §2-26+1 iz
—F+p2-28+1 -+ —4257-p - ‘-

—B341 =B 4B2-0+1 —B34232-264+1 —26+1 B2—p+1

FIGURE 3. The (—03)-transformation and Z_g N [-33,5%], B =

(3+/5)/2.

T 5(t1) = ﬁ — 1 =tg. Therefore, V3 = {to,t1,0} and the anti-morphism )g:
Af — Aj is defined by

Vs torty, fototiti 00tgty, ti—to, f1 0, 00, 0 totity,

which has the two-sided fixed point

o~

. 0 to totiti00toty t1 totits O 0 t11,00toty -+,
0 OA 0o totily oto t1 totity : otil1 o to
$5(0) g (1) ha(tr) P (to) Vs (to) pe(0) ¥5(0)vs(t1) vs(ta) Ya(to)

—
o~

(=)
~+

where 0 marks the central letter ug. We have wg = Oato fot1t; and

g : 00tototitr 0 00ty fotyt100toip t1 Loty 1y 0,
00tototitotith 0 00t fot1t100t0to to tot1 11 00toty ty fotiy 0,
00tototototith 0 00 to loti 1 00toio ty totyt100todo t1 fot1 iy 0.

Note that 00t o t1 tot1 1 and 00 fo to fo t1 1y differ only by a letter in Vﬁ’, and
correspond therefore to intervals of the same length. Since the letters ¢y and t;

are never mapped to 0, we identify these two return words. This means that
R@ = {A,B} with A = Ooto to tq t1, B = Ooto to {to,t1}t0 tq tl, and

v’ guy viuy---=--- ABBABABBABBAB ABBABABBABBAB ---
is a two-sided fixed point of the anti-morphism

p_p: A— AB, B— ABB.
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41
to
0
t3
ty
to
to tq t3 0t2 B+1
e Jr o Jn
ACABA D ABACABA E D ABACABA D AB
763 ,ﬂ3+ﬂ2 0 1 62+1 ‘ ﬂ4 53 ,64 ﬂ3+62 54
—PHPfEL OHL Pop B2l foPl g g
—3+p2-43 —p #—p+1 gi-p3-p p1-p+p2-p -3
41 =B+ s B1=B°=p+1 B1= B2+ 3= p+1 p'—f+1

FIGURE 4. The (—f)-transformation and Z_g5 N [—33, 34] from
Example 3.3.

We have L(A) = 1, L(B) = f —1 > 1, and some (—f)-integers are shown in
Figure 3.

We remark that it is sufficient to consider the elements of @ when one is only
interested in Z_g. This is made precise in the following proposition.

Proposition 3.2. Let 3 and ---u_juguy --- be as in Theorem 3.1, t= max{x €
Vg |z <0}. For any k € Z, ug, =0 is equwalent to usp_1 =t or Ugkt1 = 0.

If 0 & Vg or the size of Vg is even, then ug, = 0 is equivalent to usp—1 = =1.

If 0 & Vg or the size of Vi is odd, then ug, = 0 is equivalent to usp+1 = 0.

Proof. Let k € Z and m > 0 such that z,/3°" € ([;fl, ﬁ+1) Then we have
e uy; = 0 if and only if T?7%(2,/3%™) = 0,
e ug,_ 1 =t if and only if lim, ., T? y/BPm) =
® UQk+1 — 0 if and Only if hmyHZ’C+ T i’ (y/ﬁQm) _
Thus ua, = 0, uzp—1 = ¢ and usyr1 = 0 are equivalent when T?7% is continuous

at z;/3?™. Assume from now on that z;/3*™ is a discontinuity point of TE%’ Then
Tfﬁ(zk/ﬁ%”) = Bfl for some 1 < ¢ < 2m and, if ¢ is minimal with this property,
p

lim TRy gy — 4 lim 777 omy _ =B
i /) = 5y and i T2 =
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B+1
ty
0
t1
ts
t3
to
to
to 12 13 ts 7‘1 0f4 7*1
J Jt2 Jg J JtIJ Jg
\A\A\B\A\A\C\A\B\A\A\B\A\A\B\
- —B+2 0 1 2 p2-38+1 p2—-28 F-28+2  B*-p+1 32
—f+1 B-36+2  7-20+1 =B B-p+2

FIGURE 5. The (—f)-transformation and Z_g N [—(3, %] from
Example 3.4.

Hence, if 0 ¢ V3, we cannot have ugy, = 0, ugp—1 = tor Uggt1 = 0ata discontinuity
point, which proves the proposition in this case. If 0 € Vg, then T#W’ 1( 0,

thus

/3+1)

o T7 j(2/B*™) =0 if and only if j > £+ #Vj — 1,
o limy .., 77 4(y/B*™) = 0 if and only if j > 2[£/2] + #V,
o limy .. 77 4(y/B*™) = 0 if and only if j > 2[£/2] + #Vj — 1.

Since 2|¢/2] > ¢ — 1 and 2[¢/2] > {, we obtain us, = 0 whenever ug,_, = =1
or Ugk+1 = 0. If #Vg is even, then ug, = 0 implies that ugp—1 = = % since 2m >
0+ #V3 — 1 implies that 2m > 2|£/2| + #Vp. If #Vj3 is odd, then ug; = 0 implies
that uggy1 = 0 since 2m > £+ #Vj — 1 implies that 2m > 2[¢/2] + #Vjs — 1. This
proves the proposition. O

By Proposition 3.2, it suffices to consider the anti-morphism wg Vﬁ’* — Vﬁ’*
defined by

Dp(@) = @71 T0 when (@) = dn T_p(ym) - T Top(y1) T (x € V).

Then A_g is given by the set ]3% which consists of the return words of 0 when
0 & Vs or the size of Vj is odd. When 0 € Vg and the size of Vj is even, as in
Example 3.1, then R,g consists of the words w such that fw is a return word of #.
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Example 3.3. Let 5 > 1 with 8% = 282 + 1, d.e.,, f ~ 2.206, and let ¢, =
™ (ﬂi‘rl) for n > 0. Then we have

—f 3 gl -2 261 p2
to:—’ tl: —2:77 t2: —1: 5
g+1 g+1 B+1 g+1 B+1
_5—1 1
ty = L ty=— — to,
A O 0

see Figure 4. The anti-morphism w Aﬁ’ ‘7ﬁ’* is therefore defined by

w,gl to'—>t2t0, t1'—>t0t1t30, t3|—>0t2, 0'—>t3, t2'—>t0t1.
Since 0 ¢ V3, we consider return words of 0 in the g-images of Wz = 0¢a to t1 ta:

N e e R N PN e e o T N T N N P

Hence Rg = {A,B,C,D,E} with A = Ofyfoiiis, B = Obatoiotris, C =

Otatotatolotits, D =0tatgtatototitatototsts, £ = 0lalolalolollolsls, and
Z_g is described by the anti-morphism @_g : Rj; — Rj; given by

p-p: A—AB, B~ AC, Cw— AD, Dw— AED, Ew~ ABD.

The (—f3)-integers in [—32, 3%] are represented in Figure 4, and we have

L(A)=1, LB)=p-1, LIO)=p-F-1,
L(D)=3? - 3~2659, L(E)=}.
Note that L(D) > § > 2. Moreover, the cardinality of A_g is larger than that

of Vg, which in turn is larger than the algebraic degree d of 3 (#A_g =5, #V3 = 4,
d=3).

Example 3.4. Let 8 > 1 with 3% =335 +2p84+28%+ 3% -28—1, i.e., 3 ~ 3.695,
then the (—()-transformation is depicted in Figure 5, where ¢,, = T" ( 3 +1) We
have t5 = ﬁ__+11 = tg. The anti-morphism 125 : ‘7ﬁ’* — @* is therefore given by

~ o~ o~ o~ ~

Yg: o t3ts, 2

>

2 to

s,
tato,

“)
<:>> =

ts oty
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In order to deal with shorter words, we group the letters forming the words

e=totas, =11, 9=lolats, h =151,

which correspond to the intervals J, = (0, ﬂ+1) Jy = (t0,0), Jo. = (to,t1), Jg =
(t2,0), Jo = (to,t3), Jr = (t4, ﬁ), Jg = (to,t5), Jn = (t5,0), occurring in iterated

images of J,. The anti-morphism Jﬁ acts on these words by

125 : aw—b, b — ababac, c — dabac, d — ababae ,

e— fe, f—y, g — habac, h — ag.

Since 0 only occurs at the beginning of a, the return words of 0 with their 125—
images are

ab+— ab ab ach, aed — ab ab aefcb,
acb — ab ab acd ab ach, aefchb— ab ab acd ab acgfch,
acd +— ab ab aed ab ach , acgfecb— ab ab acd ab acgh ab acd ab ach.
——
=ach

Therefore, Z_ g is described by the anti-morphism @_g : ]/3:2‘3 — ﬁ; which is defined
by

p_p: A AAB, L(A) =1,
B+ AACAB, L(B)=8—-2~1.695,
C — AADAB, L(C) =% —-33—1~1.569,
D AAE, L(D)=p*-3p%>-28—-1~1.104,
E— AACAF, L(E)=p*-33%-28> - 3—-2~2081,
F — AACABACAB, L(F)=p"—-33"-28°-26>4+3—-2~3.12.

4. CONCLUSIONS

With every Yrrap number 3 > (1+1+/5)/2, we have associated an anti-morphism
p_p on a finite alphabet. The distances between consecutive (—/()-integers are
described by a fixed point of ¢_g. In [1], the anti-morphism is described explicitely

for each 8 > 1 such that T" (ﬂi‘r ) <0 and T2" 1(5f1) > # for all n > 1.
Examples 3.3 and 3.4 show that the situation can be quite complicated when this
condition is not fulfilled. Although ¢_z can be obtained by a simple algorithm, it
seems to be difficult to find a priori bounds for the number of different distances
between consecutive (—f)-integers or for their maximal value. Only the case of
quadratic Pisot numbers § is completely solved; here, we know from [1,14] that

AV =H#A 5 =2.
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Recall that the maximal distance between consecutive -integers is 1, and the
number of different distances is equal to the cardinality of the set {7 (17) | n > 0}.
Example 3.3 shows that the (—3)-integers do not satisfy similar properties. By
generalising Example 3.4 to 8 > 1 with 8 = (m+1)3°+mpB*+mpB3+p2—mB—1,
m > 2, one sees that the maximal distance can be arbitrarily close to 4 for algebraic
integers of degree 6 and #Vj3 = 6.

In a forthcoming paper, we associate anti-morphisms ¢_g on infinite alphabets
with non-Yrrap numbers 3, by considering the intervals occurring in the iter-

ated T_g-images of (0, #), c¢f. Example 3.4, and we show that the distances

between consecutive (—(3)-integers can be unbounded, e.g. for § > 1 satisfying
B%—ﬁl = ZZOZI ap(—B)7% where ajas--- = 3123212312322 --- is a fixed point of
the morphism 3 — 31232, 2 — 2, 1 — 1. For Yrrap numbers [, this implies
that there is no bound for the distance between consecutive (—f)-integers which
is independent of 3. However, large distances occur probably only far away from 0
and when #Vj is large, and it would be interesting to quantify these relations.

Another topic that is worth investigating is the structure of the sets S_g(z) for
x # 0, and of the corresponding tilings when [ is a Pisot unit. A related question
is whether Z_3 can be given by a cut and project scheme, cf. [5,12].
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