THE CRITICAL EXPONENT OF THE ARSHON WORDS

DALIA KRIEGER

Abstract. Generalizing the results of Thue (for \(n = 2 \)) [Norske Vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67] and of Klepinin and Sukhanov (for \(n = 3 \)) [Discrete Appl. Math. 114 (2001) 155–169], we prove that for all \(n \geq 2 \), the critical exponent of the Arshon word of order \(n \) is given by \((3n - 2)/(2n - 2) \), and this exponent is attained at position 1.

Mathematics Subject Classification. 68R15.

1. Introduction

In 1935, the Russian mathematician Solomon Efimovich Arshon\(^*\) [1,2] gave an algorithm to construct an infinite cube-free word over 2 letters, and an algorithm to construct an infinite square-free word over \(n \) letters for each \(n \geq 3 \). The binary word he constructed turns out to be exactly the celebrated Thue-Morse word, \(t = 01101001...[4,11] \); the square-free words are now known as the Arshon words. For \(n \geq 2 \), the Arshon word of order \(n \) is denoted by \(a_n = a_0a_1a_2... \)

A square or a 2-power is a word of the form \(xx \), where \(x \) is a nonempty word. Similarly, an \(n \)-power is a word of the form \(x^n = xx...x \) (\(n \) times). The notion of integral powers can be generalized to fractional powers. A non-empty finite word \(z \) over a finite alphabet \(\Sigma \) is a fractional power if it has the form \(z = x^n y \), where \(x \) is a non-empty word, \(n \) is a positive integer, and \(y \) is a prefix of \(x \), possibly empty. If \(|z| = p \) and \(|x| = q \), we say that \(z \) is a \((p/q)\)-power, or \(z = x^{p/q} \).

Keywords and phrases. Arshon words, critical exponent.

\(^*\)Vilenkin, in his 1991 article "Formulas on cardboard" [12], says that Arshon was arrested by the Soviet regime and died in prison, most likely in the late 1930’s or early 1940’s.
Let $\alpha > 1$ be a real number. A right-infinite word w over Σ is said to be α-power-free (resp. α^+-power-free), or to avoid α-powers (resp. α^+-powers), if no subword of it is an r-power for any rational $r \geq \alpha$ (resp. $r > \alpha$). Otherwise, w contains an α-power. The critical exponent of w, denoted by $E(w)$, is the supremum of the set of exponents $r \in \mathbb{Q}_{\geq 1}$, such that w contains an r-power; it may or may not be attained.

Arshon constructed the words a_n, $n \geq 3$, as square-free infinite words. But actually, these words avoid smaller powers. In 2001, Klepinin and Sukhanov [8] proved that $E(a_3) = 7/4$, and the bound is attained; that is, a_3 avoids $(7/4)^+$-powers. In this paper we generalize the result of Klepinin and Sukhanov, and prove the following theorem:

Theorem 1.1. Let $n \geq 2$, and let $a_n = a_0a_1a_2\ldots$ be the Arshon word of order n. Then the critical exponent of a_n is given by $E(a_n) = (3n - 2)/(2n - 2)$, and $E(a_n)$ is attained by a subword beginning at position 1.

2. Definitions and notation

Let $\Sigma_n = \{0, 1, \ldots, n-1\}$ be an alphabet of size n, $n \geq 3$. In what follows, we use the notation $a \pm 1$, where $a \in \Sigma_n$, to denote the next or previous letter in lexicographic order, and similarly we use the notation $a + b$, $a - b$, where $a, b \in \Sigma_n$; all sums of letters are taken modulo n.

Define two morphisms over Σ_n as follows:

\[
\varphi_{e,n}(a) = a(a + 1)\ldots(n - 1)01\ldots(a - 2)(a - 1), \quad a = 0, 1, \ldots, n - 1;
\]

\[
\varphi_{o,n}(a) = (a - 1)(a - 2)\ldots0(n - 1)\ldots(a + 1)a, \quad a = 0, 1, \ldots, n - 1.
\]

The letters ‘e’ and ‘o’ stand for “even” and “odd”, respectively. Both $\varphi_{e,n}$ and $\varphi_{o,n}$ are n-uniform (that is, $|\varphi_{e,n}(a)| = n$ for all $a \in \Sigma_n$, and similarly for $\varphi_{o,n}$) and marked (that is, $\varphi_{e,n}(a)$ and $\varphi_{e,n}(b)$ have no common prefix or suffix for all $a \neq b \in \Sigma_n$, and similarly for $\varphi_{o,n}$). The Arshon word of order n can be generated by alternately iterating $\varphi_{e,n}$ and $\varphi_{o,n}$: define an operator $\varphi_n : \Sigma_n^n \to \Sigma_n^n$ by

\[
\varphi_n(a_i) = \begin{cases}
\varphi_{e,n}(a_i), & \text{if } i \text{ is even;} \\
\varphi_{o,n}(a_i), & \text{if } i \text{ is odd.}
\end{cases}
\]

That is, if $u = a_0a_1\ldots a_n \in \Sigma_n^n$, then $\varphi_n(u) = \varphi_{e,n}(a_0)\varphi_{o,n}(a_1)\varphi_{e,n}(a_2)\varphi_{o,n}(a_3)\ldots$ The Arshon word of order n is given by

\[
a_n = \lim_{k \to \infty} \varphi_n^k(0).
\]

Note that $\varphi_n^k(0)$ is a prefix of $\varphi_n^{k+1}(0)$ for all $k \geq 0$, and the limit is well defined.
Example 2.1. For $n = 3$, the even and odd Arshon morphisms are given by

$$\varphi_{e,3} : \begin{cases}
0 &\rightarrow 012 \\
1 &\rightarrow 120, \\
2 &\rightarrow 201
\end{cases}$$

$$\varphi_{o,3} : \begin{cases}
0 &\rightarrow 210 \\
1 &\rightarrow 021, \\
2 &\rightarrow 102
\end{cases}$$

and the Arshon word of order 3 is given by

$$a_3 = \lim_{k \to \infty} \varphi_{3,k}(0) = \varphi_{e,3}(0) \varphi_{o,3}(1) \varphi_{e,3}(2) \varphi_{o,3}(0) \ldots$$

It is not difficult to see that when n is even, the i'th letter of a_n is even if and only if i is an even position (for a formal proof, see Séébold [9,10]). Therefore, when n is even, the map φ_n becomes a morphism, denoted by α_n:

$$\alpha_n(a) = \begin{cases}
\varphi_{e,n}(a), & \text{if } a \text{ is even;} \\
\varphi_{o,n}(a), & \text{if } a \text{ is odd.}
\end{cases} \quad (2.3)$$

When n is odd no such partition exists, and indeed, a_n cannot be generated by iterating a morphism. This fact was proved for a_3 by Berstel [3] and Kitaev [6,7], and for any odd n by Currie [5].

An occurrence of a subword within a_n is a triple (z,i,j), where z is a subword of a_n, $0 \leq i \leq j$, and $a_i \ldots a_j = z$. In other words, z occurs in a_n at positions i, \ldots, j. We usually refer to an occurrence (z,i,j) as $z = a_i \ldots a_j$. The set of all subwords of a_n is denoted by $\text{Sub}(a_n)$. The set of all occurrences of subwords within a_n is denoted by $\text{Occ}(a_n)$. An occurrence (z,i,j) contains an occurrence (z',i',j') if $i \leq i'$ and $j \geq j'$.

A subword v of a_n admits an interpretation by φ_n if there exists a subword $v' = v_0v_1 \ldots v_kv_{k+1}$ of a_n, $v_i \in \Sigma_n$, such that $v = y_0\varphi_n(v_1 \ldots v_k)x_{k+1}$, where y_0 is a suffix of $\varphi_n(v_0)$ and x_{k+1} is a prefix of $\varphi_n(v_{k+1})$. The word v' is called an ancestor of v.

For an occurrence $z \in \text{Occ}(a_n)$, we denote by $\text{inv}(z)$ the inverse image of z under φ_n. That is, $\text{inv}(z)$ is the shortest occurrence $z' \in \text{Occ}(a_n)$ such that $\varphi_n(z')$ contains z. Note that the word (rather than occurrence) $\text{inv}(z)$ is an ancestor of the word z, but not necessarily a unique one.

Following Currie [5], we refer to the decomposition of a_n into images under φ_n as the φ-decomposition, and to the images of the letters as φ-blocks. We denote the borderline between two consecutive φ-blocks by ‘|’; e.g., $i|j$ means that i is the last letter of a block and j is the first letter of the following block. If $z = a_i \ldots a_j \in \text{Occ}(a_n)$ begins at an even position we write $z = a_i a_{i+1}a_{i+2} \ldots$, and similarly for an occurrence that begins at an odd position.
3. General properties of the Arshon words

Lemma 3.1. For all \(n \geq 2 \), \(a_n \) contains a \((3n-2)/(2n-2)\)-power beginning at position 1.

Proof. For \(n = 2 \), \(a_2 = t = 0110\ldots \), which contains the 2-power 11 at position 1. For \(n \geq 3 \), \(a_n \) begins with

\[
\varphi_{e,n}(0)\varphi_{o,n}(1)\varphi_{e,n}(2) = 012\ldots(n-1)0(n-1)\ldots 21\ldots(n-1)01 = 0(12\ldots(n-1)0(n-1)\ldots 2)^{(3n-2)/(2n-2)}.
\]

□

Example 3.2.

\[
\begin{align*}
a_3 &= \varphi_{e,n}(0)\varphi_{e,n}(1)\varphi_{o,n}(2) = 012|021|021\ldots = 0(1202)^{7/4}1\ldots, \\
a_4 &= \varphi_{e,n}(0)\varphi_{e,n}(1)\varphi_{o,n}(2) = 0123|0321|2301\ldots = 0(123032)^{10/6}1\ldots, \\
a_5 &= \varphi_{e,n}(0)\varphi_{e,n}(1)\varphi_{o,n}(2) = 01234|04321|23401\ldots = 0(1234032)^{13/8}1\ldots.
\end{align*}
\]

Corollary 3.3. The critical exponent of \(a_n \) satisfies \((3n-2)/(2n-2) \leq E(a_n) \leq 2\) for all \(n \geq 2 \).

Proof. For \(n = 2 \), it is well known that \(E(a_n) = E(t) = 2 \) [4,11]. For \(n \geq 3 \), we know by Arshon [1,2] that \(a_n \) is square-free, and so \(E(a_n) \leq 2 \). The lower bound follows from Lemma 3.1. □

Lemma 3.4. Let \(n \geq 3 \), and let \(i, j \in \Sigma_n \).

1. If \(ij \in \text{Occ}(a_n) \), then \(j = i \pm 1 \).
2. The borderline between two consecutive \(\varphi \)-blocks has the form \(i|ji \) or \(ij|i \).

Moreover, a word of the form \(iji \) can occur only at a borderline.

Proof. If \(ij \) occurs within a \(\varphi \)-block, then \(j = i \pm 1 \) by definition of \(\varphi_n \). Suppose \(i \) is the last letter of a \(\varphi \)-block and \(j \) is the first letter of the next \(\varphi \)-block, and let \(kl = \text{inv}(ij) \). Assume \(j \neq i \pm 1 \), and suppose further that \(ij \) is the first pair that satisfies this inequality. Then \(l = k \pm 1 \), and so there are four cases:

\[
\begin{align*}
\varphi_n(kl) &= \varphi_{e,n}(k)\varphi_{o,n}(k+1), \quad \varphi_n(kl) = \varphi_{o,n}(k)\varphi_{e,n}(k+1), \\
\varphi_n(kl) &= \varphi_{e,n}(k)\varphi_{o,n}(k-1), \quad \varphi_n(kl) = \varphi_{o,n}(k)\varphi_{e,n}(k-1).
\end{align*}
\]

But it is easy to check that for all the cases above, \(j = i \pm 1 \), a contradiction.

For the second assertion, observe that by definition of \(\varphi_n \), a \(\varphi \)-block is either strictly increasing or strictly decreasing, and two consecutive blocks have alternating directions. By the above, a change of direction can have only the form \(iji \) or \(ij|i \). □

Definition 3.5 (Currie [5]). A mordent is a word of the form \(iji \), where \(i, j \in \Sigma_n \) and \(j = i \pm 1 \). Two consecutive mordents occurring in \(a_n \) are either near mordents,
far mordents, or neutral mordents, according to the position of the borderlines:

\[
\begin{align*}
\text{i|ji u kl|k} & \quad \text{near mordents, } |u| = n - 4; \\
\text{ij|ji u kl|k} & \quad \text{far mordents, } |u| = n - 2; \\
\text{ij|ji u kl|k} & \quad \text{neutral mordents, } |u| = n - 3; \\
\text{ij|ji u kl|k} & \quad \text{neutral mordents, } |u| = n - 3.
\end{align*}
\]

Note that for \(n = 3 \), near mordents are overlapping: \(a_3 = 012|021|021| \ldots \)

Since \(a_n \) is square-free, a \(p/q \)-power occurring in \(a_n \) has the form \(x y z \), where \(q = |xy|, p = |x y z|, \) and both \(x, y \) are nonempty.

Definition 3.6. Let \(z = a_i \ldots a_j \in \text{Occ}(a_n) \) be a \(p/q \)-power. We say that \(z \) is left-stretchable (resp. right-stretchable) if the \(q \)-period of \(z \) can be stretched left (resp. right), i.e., if \(a_{i-1} = a_{i+q-1} \) (resp. \(a_{j+1} = a_{j-q+1} \)). If the \(q \)-period of \(z \) can be stretched neither left nor right, we say that \(z \) is an unstretchable \(p/q \)-power.

Since the critical exponent is a supremum, it is enough to consider unstretchable powers when computing it.

Lemma 3.7. Let \(n \geq 3 \). Let \(z = x y z = (x y)^{p/q} \in \text{Occ}(a_n) \) be an unstretchable power such that \(|x| \leq n \) and \(x \) contains no mordents. Then \(p/q \leq (3n-2)/(2n-2) \).

Proof. Since \(|x| \leq n \), it is enough to consider \(y \) such that \(|y| \leq n - 2 \), for otherwise we would get that \(p/q < (3n - 2)/(2n - 2) \). Therefore, \(|xy| = q \leq 2n - 2 \) and \(|z| \leq 3n - 2 \). We get that \(x y \) is contained in at most \(3 \) consecutive \(\varphi \)-blocks and \(z \) is contained in at most \(4 \) consecutive \(\varphi \)-blocks. Suppose \(z \) is not contained in \(3 \) consecutive \(\varphi \)-blocks. Let \(B_0 B_1 B_2 B_3 \) be the blocks containing \(z \), and assume that \(B_0 \) is even (the other case is similar). Since \(|x| \leq n \), necessarily \(x y \) begins in \(B_0 \) and ends in \(B_2 \). Since \(x \) contains no mordents, \(x \) has to start at the last letter of \(B_0 \); otherwise, we would get that \(x \) cannot extend beyond the first letter of \(B_1 \), and since \(|y| \leq n - 2 \), we would get that \(z \) is contained in \(3 \) \(\varphi \)-blocks. Therefore, the letters of \(x \) are decreasing. Now, since \(|xy| \leq 2n - 2 \), the second occurrence of \(x \) begins at least \(3 \) letters from the end of \(B_2 \). Since \(B_2 \) is an even block, we get a contradiction if \(|x| > 1 \). But if \(|x| = 1 \) then \(z \) is contained in \(B_0 B_1 B_2 \). We can assume therefore that \(z \) is contained in \(3 \) consecutive \(\varphi \)-blocks, \(B_0 B_1 B_2 \). We assume that \(B_0 \) is even (the other case is symmetric).

If \(x y \) is contained in one block then, because \(B_0, B_2 \) are even and \(B_1 \) is odd, necessarily \(|x| = 1 \), and so \(p/q \leq 3/2 < (3n - 2)/(2n - 2) \). If \(x y \) begins in \(B_0 \) and ends in \(B_2 \), then, since \(|y| \leq n - 2 \), the first \(x \) occurrence has to end at the third letter of \(B_1 \) or later. Since \(x \) contains no mordents, this implies that \(x y \) begins at the last letter of \(B_0 \) and the letters of \(x \) are decreasing. Since \(B_2 \) is even, again \(|x| = 1 \).

Assume \(x y \) begins in \(B_0 \) and ends in \(B_1 \). Again, because \(B_0 \) is even and \(B_1 \) is odd, in order for \(x \) to contain more than one letter the second \(x \) occurrence has to start either at the last letter of \(B_1 \), or at the first letter of \(B_2 \).
Let $B_0 = \varphi_{e,n}(i)$. Then there are four cases for B_1, B_2:

1. $B_1 = \varphi_{o,n}(i+1)$, $B_2 = \varphi_{e,n}(i)$;
2. $B_1 = \varphi_{o,n}(i-1)$, $B_2 = \varphi_{e,n}(i)$;
3. $B_1 = \varphi_{o,n}(i+1)$, $B_2 = \varphi_{e,n}(i+2)$;
4. $B_1 = \varphi_{o,n}(i-1)$, $B_2 = \varphi_{e,n}(i-2)$.

We now check what the maximal possible exponent is in each of these cases. Without loss of generality, we can assume $i = 0$. We use the notation $z = xyx'$, where x' is the second occurrence of x in z.

Case 1: $B_0B_1B_2 = [01\ldots(n-1)][0(n-1)\ldots1][01\ldots(n-1)]$.

If x' starts at the last letter of B_1 then $|x| = 1$, since 10 does not occur anywhere before. If x' starts at the first letter of B_2, the only possible power is the $3n/2n$-power $B_0B_1B_0$, which contradicts the hypothesis $|y| \leq n - 2$.

Case 2: $B_0B_1B_2 = [01\ldots(n-1)](n-2)(n-3)\ldots0(n-1)[01\ldots(n-1)]$.

By the same argument, either $|x| = 1$ or z is a $3n/2n$-power.

Case 3: $B_0B_1B_2 = [01\ldots(n-1)][0(n-1)\ldots1][23\ldots(n-1)][01]$.

If x' starts at the last letter of B_1, we get the $(3n-2)/(2n-2)$-power described in Lemma 3.1. If x' starts at the first letter of B_2, then x has to start at the 2 in B_0. But then the power is left-stretchable, to the $(3n-2)/(2n-2)$-power described above.

Case 4: $B_0B_1B_2 = [01\ldots(n-1)](n-2)(n-3)\ldots0(n-1)(n-2)(n-1)0\ldots(n-3)]$.

If x' starts at the last letter of B_1, then x has to start at the last letter of B_0. But then $|x| = 2$, since $(n-1) \neq (n-3)$. We get that z is an $(n+2)/n$-power, and $(n+2)/n < (3n-2)/(2n-2)$ for all $n \geq 3$. If x' starts at the first letter of B_2, then x has to start at the second last letter of B_0. Again, $|x| = 2$, and z is an $(n+2)/(n+2)$-power, where $(n+2)/(n+2) < (3n-2)/(2n-2)$ for all $n \geq 2$. □

In what follows, we will show that in order to compute $E(a_n)$, it is enough to consider powers xyx such that $|x| \leq n$ and x contains no mordents.

Definition 3.8. Let z be a subword of a_n. We say that (z_1, z_2) is a **synchronization point** of z under φ_n if $z = z_1z_2$, and whenever $\varphi_n(u) = v_1zv_2$ for some $u, v_1, v_2 \in \text{Sub}(a_n)$, we have $u = u_1u_2$, $\varphi_n(u_1) = v_1z_1$, and $\varphi_n(u_2) = z_2v_2$. That is, z_1z_2 is always a borderline in the φ-decomposition of z, regardless of the position in a_n where z occurs. We say that a subword $z \in \text{Sub}(a_n)$ is **synchronized** if it can be decomposed unambiguously under φ_n, in which case it has a unique ancestor.

Lemma 3.9. If $z \in \text{Sub}(a_n)$ has a synchronization point then z is synchronized.

Proof. Suppose z has a synchronization point, $z = u|v$. If $|u| = |v| = 1$ then z cannot have a synchronization point at $u|v$, since uv occurs either in $\varphi_{e,n}(u)$ or in $\varphi_{o,n}(u + 1)$. Therefore, at least one of u, v has length > 1. Suppose $|u| > 1$. If the last two characters of u are increasing, we know that an even φ-block ends at u and an odd φ-block starts at v, and vice versa if the last two characters of u are
Lemma 4.1. Let \(n \geq 4 \), and let \(x = xyx = (xy)^{p/q} \in \text{Occ}(a_n) \) be an unstretchable \(p/q \)-power, such that \(x \) has a synchronization point. Then there exists an \(r/s \)-power \(z' \in \text{Occ}(a_n) \), such that \(p = nr, q = ns, \) and \(z = \varphi_n(z') \).

Proof. Since \(x \) has a synchronization point, it has a unique decomposition under \(\varphi_n \). Suppose \(x \) does not begin at a borderline of \(\varphi \)-blocks. Then \(x = t|w, \) where \(t \) is a nonempty suffix of a \(\varphi \)-block, and \(z = t|wyt|w \). But since the interpretation is unique, both occurrences of \(t \) must be preceded by a word \(s \), such that \(st \) is a \(\varphi \)-block. Thus \(z \) can be stretched by \(s \) to the left, a contradiction. Therefore, \(x \) begins at a borderline, and so \(y \) ends at a borderline. For the same reason, \(x \) must end at a borderline, and so \(y \) must begin at a borderline. We get that both \(x \) and \(y \) have an exact decomposition into \(\varphi \)-blocks, and this decomposition is unique. In particular, both occurrences of \(\varphi \) have the same inverse image under \(\varphi_n \). Let \(k, l \) be the number of \(\varphi \)-blocks composing \(x, y \), respectively. Then \(p = n(2k + l), q = n(k + l), \) and \(\varphi_n^{-1}(z) = \varphi_n^{-1}(x)\varphi_n^{-1}(y)\varphi_n^{-1}(x) \) is a \((2k + l)/(k + l)\)-power. \(\square \)

Corollary 3.11. To compute \(E(a_n) \), it is enough to consider powers \(z = xyx \) such that \(x \) has no synchronization points.

4. Arshon Words of Even Order

To illustrate the power structure in Arshon words of even order, consider \(a_4 \):

\[
\begin{array}{ccc}
\varphi_{e,4} & \varphi_{o,4} & \alpha_4 \\
0 \to & 0123 & 3210 & 0123 \\
1 \to & 1230 & 0321 & 0321 \\
2 \to & 2301 & 1032 & 2301 \\
3 \to & 3012 & 2103 & 2103 \\
\end{array}
\]

\(a_4 = 0123|0321|2301|2103|0123|2103|2301|0321|2301|2103|0123|0321|2301|0321|\ldots \)

Lemma 4.1. Let \(n \geq 4 \) be even, and let \(x \in \text{Sub}(a_n) \) be a subword that has no synchronization point. Then \(|x| \leq n \) and \(x \) contains no mordents.

Proof. In general, a mordent \(iji \) can admit two possible borderlines: \(ij|i \) or \(iji \). However, if \(n \) is even, all images under \(\alpha_n \) begin with an even letter and end with an odd letter; images of odd letters under \(\varphi_{e,n} \) and images of even letters under \(\varphi_{o,n} \) are never manifested. Therefore, every mordent admits exactly one interpretation: if \(i \) is even and \(j \) is odd the interpretation has to be \(iji \), and vice versa for odd \(i \). Thus, if \(x \) has no synchronization point it contains no mordents.

Suppose \(x \) contains no mordents. Then \(|x| \leq n + 2 \), and the letters of \(x \) are either increasing or decreasing. Assume they are increasing. If \(|x| = n + 2 \) then \(x \) has exactly one interpretation, \(x = i|(i+1)\ldots(i-1)i|(i+1) \), or else we would get decreasing. Since both \(\varphi_{e,n} \) and \(\varphi_{o,n} \) are uniform marked morphisms, and since we know \(\varphi \)-blocks alternate between even and odd, we can infer \(\text{inv}(z) \) unambiguously from \(u|v \).
that \(a_n \) contains two consecutive even blocks. If \(|x| = n + 1 \) then \emph{a priori} \(x \) has two possible interpretations: \(x = i(i+1) \ldots (i-1)i \) or \(x = i(i+1) \ldots (i-1)i \).

However, the first case is possible if and only if \(i \) is odd, since for an even \(n \) no \(\varphi \)-block ends with an even letter. Similarly, the second case is possible if and only if \(i \) is even.

Lemma 4.1, together with Corollary 3.11 and Lemma 3.7, completes the proof of Theorem 1.1 for all even \(n \geq 4 \).

5. Arshon words of odd order

To illustrate the power structure in Arshon words of odd order, consider \(a_5 \):

\[
\varphi_{e,5} \quad \varphi_{o,5}
\begin{array}{ccc}
0 & \rightarrow & 01234
\end{array}
\begin{array}{ccc}
43210
\end{array}
\begin{array}{ccc}
1 & \rightarrow & 12340
\end{array}
\begin{array}{ccc}
04321
\end{array}
\begin{array}{ccc}
2 & \rightarrow & 23401
\end{array}
\begin{array}{ccc}
10432
\end{array}
\begin{array}{ccc}
3 & \rightarrow & 34012
\end{array}
\begin{array}{ccc}
21043
\end{array}
\begin{array}{ccc}
4 & \rightarrow & 40123
\end{array}
\begin{array}{ccc}
32104
\end{array}
\]

\[
a_5 =
01234|04321|23401|21043|40123|43210|40123|23401|04321|23401|21043|\ldots
\]

\textbf{Lemma 5.1.} Let \(n \geq 3 \) be odd. Then every subword \(z \in \text{Sub}(a_n) \) with \(|z| \geq 3n \) has a unique interpretation under \(\varphi_n \).

\textbf{Proof.} Consider a subword that contains a pair of consecutive mordents, \(z = iji u klk \). If \(|u| = n - 4 \) (that is, these are near mordents), then \(z \) contains two synchronization points, \(z = i[ji u kl|k] \); otherwise, we get a \(\varphi \)-block that contains a repeated letter, a contradiction. Similarly, if \(|u| = n - 2 \) (a pair of far mordents), \(z \) contains the synchronization points \(z = i[ji u k|lk] \). To illustrate, consider \(a_5 \): let \(z = a_4 \ldots a_{10} = 404 3 212 \). A borderline 40\(i4 \) implies that 43212 is a \(\varphi \)-block, a contradiction; a borderline 2|12 implies that 40432 is a \(\varphi \)-block, again a contradiction. Now let \(z = a_8 \ldots a_{16} = 212 340 121 \). A borderline 2|12 implies that 121 is a prefix of a \(\varphi \)-block, while a borderline 12|1 implies that 212 is a suffix of a \(\varphi \)-block. Again, we get a contradiction.

If \(|u| = n - 3 \) (neutral mordents), then \(z \) has two possible interpretations, either \(z = i[ji u k|lk] \) or \(z = i[ji u k|lk] \). However, by Currie [5], \(a_n \) does not contain two consecutive pairs of neutral mordents: out of three consecutive mordents, at least one of the pairs is either near or far. (It is also easy to see that this is the case by a simple inverse image analysis: an occurrence of the form \(ij|i u k|lk v r|sr \) or \(i|ji u k|lk v r|sr \) implies that \(a_n \) contains a square of the form \(abab, a, b \in \Sigma_n \), a contradiction: by Arshon, \(a_n \) is square-free.)
Let \(z \in \text{Occ}(a_n) \) satisfy \(|z| = 3n \). If \(z \) contains a pair of near or far mordents, then \(z \) has a unique ancestor. Otherwise, \(z \) contains a pair of neutral mordents, \(iji u k|k \), where \(|u| = n - 3 \), and there are two possible interpretations: \(iji u k|k \) or \(iji u k|k \). Let \(i'j'i' \) be the mordent on the left of \(iji \), and let \(k'l'k' \) be the mordent on the right of \(k|k \). Since no two consecutive neutral mordents occur, \(i'j'i' \) and \(k'l'k' \) must form near or far mordents with \(iji \) and \(k|k \).

If the interpretation is \(iji u k|k \), then \(k'l'k' \) forms a near pair with \(k|k \), while \(i'j'i' \) forms a far pair with \(iji \). By assumption, \(z \) does not contain a near pair or a far pair, therefore \(z \) can contain at most \(n - 2 \) letters to the right of \(k|k \), and at most \(n \) letters to the left of \(iji \). Since \(|z| = 3n \), this means that either \(z = j'|i' \ x \ iji u k|k \ v \ k' \) or \(z = |i' \ x \ iji u k|k \ v \ k' \) where \(|x| = n - 2 \) and \(|v| = n - 4 \). Similarly if the interpretation is \(ijji u k|k \), then either \(z = j'|i' \ v \ ijji u kl|k \ x \ k' \) or \(z = i' \ v \ ijji u k|k \ x \ k' \) where \(|x| = n - 2 \) and \(|v| = n - 4 \). In any case, \(z \) contains enough letters to determine if the far mordent is on the left or on the right, and the interpretation is unique.

Example 5.2. For \(n = 5 \), the occurrence \(z = a_{21} \ldots a_{34} = 01234321040123 \), of length \(3n - 1 = 14 \), has two possible interpretations under \(\varphi_5 \), as illustrated in Figure 1. However, if either of the left or right question marks is known, the ambiguity is solved: the top interpretation is valid if and only if the left question mark equals 4 (so as to complete the \(\varphi \)-block) and the right question mark equals 2 (so as to complete the near mordent). The bottom interpretation is valid if and only if the left question mark equals 1 (so as to complete the near mordent) and the right question mark equals 4 (so as to complete the \(\varphi \)-block).

Note. Lemma 5.1 is an improvement of a similar lemma of Currie [5], who proved that every occurrence of length \(3n + 3 \) or more has a unique interpretation.

Corollary 5.3. The critical exponent of an odd Arshon word is the largest exponent of powers of the form \(z = xyx \), such that \(|x| < 3n \).

To compute \(E(a_n) \) we need to consider subwords of the form \(xyx \), with \(x \) unsynchronized. Moreover, the two occurrences of \(x \) should have different interpretations, or else we could take an inverse image under \(\varphi_n \). For a fixed \(n \), it would suffice to run a computer check on a finite number of subwords of \(a_n \); this is exactly the technique Klepinin and Sukhanov employed in [8]. For a general \(n \), we need a more careful analysis.
Lemma 5.4. Let \(n \geq 3 \), \(n \) odd. For all mordents \(\imath \) in \(a_n \),

1. \(\imath(\imath + 1) \) or \(\imath(\imath + 1)^{(c)} \)
2. \(\imath(\imath - 1) \) or \(\imath(\imath - 1)^{(c)} \)

Proof. A mordent \(\imath \) can admit two possible borderlines: \(\imath \iota \) or \(\imath \iota \). Consider the mordent \(\imath(\imath + 1) \). If the borderline is \(\imath(\imath + 1) \), then \(\imath(\imath + 1) \) is a suffix of an increasing \(\varphi \)-block, and so the block must be an image under \(\varphi_{n,n} \). By definition of \(\varphi_{n,n} \), \(\imath(\imath + 1) \) is the suffix of \(\varphi_{n,n}(\imath + 2) \). Since even and odd blocks alternate, the next block must be an image under \(\varphi_{n,n} \), and by definition, \(\imath \) is the prefix of \(\varphi_{n,n}(\imath + 1) \).

If the borderline is \(\imath(\imath + 1) \), then \(\imath(\imath + 1) \) is the prefix of a decreasing \(\varphi \)-block, and by similar considerations this block is \(\varphi_{n,n}(\imath + 2) \), while the previous block is \(\varphi_{n,n}(\imath + 1) \). The assertion for \(\imath(\imath - 1) \) is proved similarly.

Lemma 5.5. Let \(n \geq 3 \), \(n \) odd, and let \(z \in \text{Occ}(a_n) \).

1. \(\imath(\imath + 1) \) or \(\imath(\imath + 1)^{(c)} \) for some \(\imath \in \Sigma_n \), then \(|u| \geq n - 1 \);
2. \(\imath(\imath + 1) \) or \(\imath(\imath + 1)^{(c)} \) for some \(\imath \in \Sigma_n \), then \(|u| \geq n - 2 \).

Proof. Let \(z = \imath(\imath + 1) \), and suppose \(\imath(\imath) \) does not occur in \(u \) (otherwise, if \(u = \imath(\imath + 1)u' \), then \(z = \imath(\imath + 1)u'' \)). If \(|u| < n - 1 \) then \(z \) must contain a mordent in order for \(z \) to be repeated. But then the two occurrences of \(\imath \) have the same parity, a contradiction. The rest of the cases are proved similarly.

Lemma 5.6. Let \(n \geq 3 \) be odd, and let \(x = (xy)p/q \in \text{Occ}(a_n) \) be an unstretchable power, such that \(x \) is unsynchronized and contains a mordent. Then \(p/q < E(a_n) \).

Proof. Suppose \(x \) contains the mordent \(\imath(\imath + 1) \) (the case of \(\imath(\imath - 1) \) is symmetric). Then the two occurrences of the mordent have different interpretations, else we could take an inverse image under \(\varphi_n \) and get a power with the same exponent. By Lemma 5.4, there are two different cases, according to which interpretation comes first:

By Lemma 5.5, in both cases there must be at least \(n - 1 \) additional \(\varphi \)-blocks between the blocks containing the two \(\imath(\imath + 1) \) occurrences. Thus, in both cases \(q \geq n^2 + n - 1 \) (note that \(q \) is the length of the period, and can be measured from the beginning of \(\imath(\imath + 1) \) in the first \(x \) to just before \(\imath(\imath + 1) \) in the second \(x \)). Now, \(x \) is unsynchronized, and so by Lemma 5.1 \(|x| < 3n \). Thus, \(|x|/q < (3n - 1)/(n^2 + n - 1) < n/(2n - 2) \) for all \(n \geq 3 \), and so \(p/q = (|x| + q)/q < (3n - 2)/(2n - 2) \leq E(a_n) \). □
By Lemma 5.6, in order to compute $E(a_n)$ it is enough to consider powers xyx such that x is unsynchronized and contains no mordents. The longest subword that contains no mordents is of length $n + 2$, but such subword implies a far pair, and has a unique ancestor. Therefore, we can assume $|x| \leq n + 1$.

Lemma 5.7. Let $n \geq 3$ be odd, and let $z = xyx = (xy)^{p/q} \in \text{Occ}(a_n)$ be an unstretchable power, such that x is unsynchronized, x contains no mordents, and $|x| = n + 1$. Then $p/q < E(a_n)$.

Proof. Since $|x| = n + 1$ and x contains no mordents, necessarily $x = ivi$, where $i \in \Sigma_n$ and either

$$v = (i + 1) \ldots (n - 1)01 \ldots (i - 2)(i - 1),$$

or

$$v = (i - 1) \ldots 10(n - 1) \ldots (i + 2)(i + 1).$$

Suppose the letters of v are increasing, and assume without loss of generality that $i = 0$. Then x admits two possible interpretations: $x = 01 \ldots (n - 1)0$ or $x = 01 \ldots (n - 1)0$. The ancestors of the first and second case are $\text{inv}(x) = 0^{(e)1^{(e)}}$ and $\text{inv}(x) = 0^{(e)1^{(e)}}$, respectively. Any other interpretation is impossible, since it implies a_n contains two consecutive even φ-blocks.

As in the previous lemma, we can assume that the two x occurrences of z have different inverse images. There are two possible cases:

1. $\varphi_{\varphi(x)}(0) \varphi_{\varphi(x)}(1) \varphi_{\varphi(x)}(0) \ldots (n - 1)0 \ldots | 0 \ldots | \ldots | 0 \ldots | 1 \ldots (n - 1)0$.
2. $\varphi_{\varphi(x)}(0) \varphi_{\varphi(x)}(1) \varphi_{\varphi(x)}(0) \ldots (n - 1)0 \ldots | 0 \ldots | \ldots | 0 \ldots | 1 \ldots (n - 1)0.$

By Lemma 5.5, in both cases y contains at least $n - 2$ additional φ-blocks. Therefore, $q \geq n^2 - n + 1$, and so $|x|/q \leq (n + 1)/(n^2 - n + 1) < n/(2n - 2)$ for all $n \geq 3$. Again, $p/q < (3n - 2)/(2n - 2) \leq E(a_n)$. \hfill \Box

By Lemma 5.7, to compute $E(a_n)$ for an odd $n \geq 3$ it is enough to consider powers of the form $z = xyx$ such that $|x| \leq n$ and x contains no mordent. By Lemma 3.7, such powers have exponent at most $(3n - 2)/(2n - 2)$. This completes the proof of Theorem 1.1.

Acknowledgements. I would like to thank Yuri Pritykin, for providing many interesting details about Arshon’s life.
References

