FROM BI-IDEALS TO PERIODICITY

JĀNIS BULS¹ AND AIVARS LORENCS²

Abstract. The necessary and sufficient conditions are extracted for periodicity of bi-ideals. They cover infinitely and finitely generated bi-ideals.

Mathematics Subject Classification. 68R15, 94A55, 68Q15.

1. INTRODUCTION

The periodicities are fundamental objects, due to their primary importance in word combinatorics [8,9] as well as in various applications. The study of periodicities is motivated by the needs of molecular biology [6] and computer science. Particularly, we mention here such fields as string matching algorithms [4], text compression [13] and cryptography [11].

In different areas of mathematics, people consider a lot of hierarchies which are typically used to classify some objects according to their complexity. Here we deal with the hierarchy

\[\mathcal{B} \supseteq \mathcal{P}, \]

where

\(\mathcal{B} \) is the class of bi-ideals,
\(\mathcal{P} \) is the class of periodic words.

This hierarchy comes from combinatorics on words, where these classes are being investigated intensively (cf. [2,8–10]). Bi-ideal sequences have been considered, with different names, by several authors in algebra and combinatorics [1,3,7,12,14].

Every bi-ideal \(x \) is the limit of some bi-ideal sequence \((v_i) \). This bi-ideal sequence can be represented uniquely by the sequence \((u_i) \), where \(v_0 = u_0 \) and

Keywords and phrases. Periodic words, bi-ideals, the sequence generates the bi-ideal, finitely generated bi-ideals.

¹ Department of Mathematics, University of Latvia, Raiņa bulvāris 19, Rīga, 1586, Latvia; buls@fmf.lu.lv; web site: http://home.lanet.lv/~buls
² Institute of Electronics and Computer Science, Daugavpils street 14, Rīga, 1006, Latvia; lorencs@edi.lv

Article published by EDP Sciences © EDP Sciences 2008
∀i ≥ 0 v_{i+1} = v_i u_{i+1} v_i. We characterize the periodic words through this representation. At first we give an exhaustive description (Th. 3.7) of periodicity for all classes of bi-ideals. Then for periodic bi-ideals we demonstrate if every \(u_i \) appears infinitely often then every \(u_i \) is a power of the certain word. This leads to the effective method for finitely generated bi-ideals to check whether the bi-ideals are periodic.

2. Preliminaries

In this section we present most of the notations and terminology used in this paper. Our terminology is more or less standard (cf. [10]) so that a specialist reader may wish to consult this section only if need arise.

Let \(A \) be a finite non-empty set and \(A^* \) the free monoid generated by \(A \). The set \(A \) is also called an alphabet, its elements letters and those of \(A^* \) finite words.

The role of the identity element is performed by the empty word which is denoted by \(\lambda \). We set \(A^+ = A^* \{ \lambda \} \).

A word \(w \in A^+ \) can be written uniquely as a sequence of letters as \(w = w_1 w_2 \ldots w_l \), with \(w_i \in A, 1 ≤ i ≤ l, l > 0 \). The integer \(l \) is called the length of \(w \) and denoted \(|w| \). The length of \(\lambda \) is 0. We set \(w_0 = \lambda \) and \(\forall i w_{i+1} = w_i w \); \(w^+ = \bigcup_{i=1}^{\infty} \{ w^i \} \), \(w^* = w^+ \cup \{ \lambda \} \).

A positive integer \(p \) is called a period of \(w = w_1 w_2 \ldots w_l \) if the following condition is satisfied:

\[
1 ≤ i ≤ l - p \Rightarrow w_i = w_{i+p}.
\]

We recall the important periodicity theorem due to Fine and Wilf [5]:

Theorem 2.1. Let \(w \) be a word having periods \(p \) and \(q \) and denote by \(\gcd(p, q) \) the greatest common divisor of \(p \) and \(q \). If \(|w| ≥ p + q - \gcd(p, q) \), then \(w \) has also the period \(\gcd(p, q) \).

The word \(w' \in A^* \) is called a factor (or subword) of \(w \in A^* \) if there exist \(u, v \in A^* \) such that \(w = uwv \). The word \(u \) (respectively \(v \)) is called a prefix (respectively a suffix) of \(w \). The ordered triple \((u, w', v)\) is called an occurrence of \(w' \) in \(w \). The factor \(w' \) is called a proper factor if \(w \neq w' \). We denote respectively by \(F(w) \), \(\text{Pref}(w) \) and \(\text{Suff}(w) \) the sets of \(w \) factors, prefixes and suffixes.

An (indexed) infinite word \(x \) on the alphabet \(A \) is any total map \(x : \mathbb{N} \rightarrow A \). We set for any \(i ≥ 0, x_i = x(i) \) and write

\[
x = (x_i) = x_0 x_1 \ldots x_n \ldots
\]

The set of all the infinite words over \(A \) is denoted by \(A^\omega \).

The word \(w' \in A^* \) is a factor of \(x \in A^\omega \) if there exist \(u \in A^*, y \in A^\omega \) such that \(x = uw'y \). The word \(u \) (respectively \(y \)) is called a prefix (respectively a suffix).
of x. We denote respectively by $F(x)$, $\text{Pref}(x)$ and $\text{Suff}(x)$ the sets of x factors, prefixes and suffixes. For any $0 \leq m \leq n$, both $x[m, n]$ and $x[m, n + 1]$ denote a factor $x_m x_{m+1} \cdots x_n$. The indexed word $x[m, n]$ is called an occurrence of w' in x if $w' = x[m, n]$. The suffix $x_n x_{n+1} \cdots x_{n+i} \cdots$ is denoted by $x[n, \infty)$.

If $v \in A^+$ we denote by v^ω the infinite word $v v \cdots v \cdots$. This word v^ω is called a periodic word. The concatenation of $u = u_1 u_2 \cdots u_k \in A^*$ and $x \in A^\omega$ is the infinite word $ux = u_1 u_2 \cdots u_k x_0 x_1 \cdots x_n \cdots$.

A word x is called ultimately periodic if there exist words $u \in A^*$, $v \in A^+$ such that $x = uv^\omega$. In this case, $|u|$ and $|v|$ are called, respectively, an anti-period and a period of x.

A sequence of words of A^*

$v_0, v_1, \ldots, v_n, \ldots$

is called a bi-ideal sequence if $\forall i \geq 0 \ (v_{i+1} \in v_i A^* v_i)$. The term “a bi-ideal sequence” is due to the fact that $\forall i \geq 0 \ (v_i A^* v_i) $ is a bi-ideal of A^*.

Corollary 2.2. Let (v_n) be a bi-ideal sequence. Then

$v_m \in \text{Pref}(v_n) \cap \text{Suff}(v_n)$

for all $m \leq n$.

A bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$ is called proper if $v_0 \neq \lambda$. In the following the term bi-ideal sequence will be referred only to proper bi-ideal sequences.

If $v_0, v_1, \ldots, v_n, \ldots$ is a bi-ideal sequence, then there exists a unique sequence of words

$u_0, u_1, \ldots, u_n, \ldots$

such that

$v_0 = u_0, \ \forall i \geq 0 \ (v_{i+1} = v_i u_{i+1} v_i)$. Let us consider $u, v \in A^\infty = A^* \cup A^\omega$. Then $d(u, v) = 0$ if $u = v$, otherwise

$d(u, v) = 2^{-n}$,

where

$n = \max \{ |w| \mid w \in \text{Pref}(u) \cap \text{Pref}(v) \}$.

It is called a prefix metric.

Let $v_0, v_1, \ldots, v_n \ldots$ be an infinite bi-ideal sequence, where $v_0 = u_0$ and $\forall i \geq 0 \ (v_{i+1} = v_i u_{i+1} v_i)$. Since for all $i \geq 0$ the word v_i is a prefix of the next word v_{i+1} the sequence (v_i) converges, with respect to the prefix metric, to the infinite word $x \in A^\omega$

$x = v_0 (u_1 v_0) (u_2 v_1) \cdots (u_n v_{n-1}) \cdots$

This word x is called a bi-ideal. We say the sequence (u_i) generates the bi-ideal x.
470 J. BULS AND A. LORENCS

Convention. Let \(x \) be a bi-ideal generated by \((u_i)\), then \(x = \lim_{i \to \infty} v_i \), where \(v_0 = u_0 \) and \(v_{i+1} = v_i u_{i+1} v_i \). We adopt this notational convention henceforth.

Let \(x \) be an infinite word. A factor \(u \) of \(x \) is called recurrent if it occurs infinitely often in \(x \). The word \(x \) is called recurrent when any of its factors is recurrent.

Proposition 2.3. (see, e.g., [10]) A word \(x \) is recurrent if and only if it is a bi-ideal.

Lemma 2.4. (see, e.g., [10]) Let \(x \in A^\omega \) be an ultimately periodic word. If \(x \) is recurrent, then \(x \) is periodic.

Due to this lemma we can restrict ourselves. Therefore we investigate only the periodicity of bi-ideals and say nothing about ultimate periodicity.

3. The periodicity of bi-ideals

The following three lemmas are very easy, but they turn out to be extremely useful:

Lemma 3.1. If \(x = w^\omega \) and \(T \) is the minimal period of the word \(x \), then \(T \mid |w| \), i.e. \(T \) divides \(|w| \).

Proof. Let \(n = T |w| \), then both \(T \) and \(|w| \) are periods of the word \(x(0, n) \). Hence (Th. 2.1) \(t = \gcd(T, |w|) \) is a period of \(x(0, n) \). Now we have

\[
\forall i \ x(i, n) = x[i+1, n+i]
\]

Therefore \(t \) is a period of \(x \). Since \(T \) is the minimal period of the word \(x \), then \(t \geq T \geq \gcd(T, |w|) = t \). Hence \(T = \gcd(T, |w|) \), thereby \(T \mid |w| \). \(\square \)

Lemma 3.2. If \(x = u^\omega v \) and \(|w| = |v| \), then \(vy = y = v^\omega \).

Proof. Let \(|w| = t \) and \(|u| = k + 1 \), then \(v = x_{k+1} x_{k+2} \ldots x_{k+t} \), since \(|v| = |w| \). We have \(\forall i \ x_{i+t} = x_i \), therefore

\[
\forall j \in \mathbb{N} \forall s \ x_{k+j} = x_{k+j+s}. \quad \square
\]

Lemma 3.3. If \(\exists u \in A^+ \) \(ux = x \in A^\omega \), then a word \(x \) is periodic with the minimal period \(T \mid |u| \).

Proof. Let \(u = a_1 a_2 \ldots a_{t-1} \), where \(\forall j \ a_j \in A \), and \(y = ux \), then \(\forall i \ x_i = y_{i+t} \). Let \(y = ux = x \).

Hence

\[
\forall i \ y_i = x_i = y_{i+t}.
\]

This means that \(y \) is periodic with a period \(t \). Since \(y = x \), then \(x \) is periodic with a period \(t \) too. Let \(T \) be the minimal period of \(x \), then by Lemma 3.1 \(T \mid |u| \), i.e. \(T \mid |u| \). \(\square \)
Corollary 3.4. Let $|v|$ be the minimal period of $x = v^ω$.

If $v = x[k, k + |v|]$ then $|v| | k$.

Proof. If, for any k, $v = x[k, k + |v|]$, then (see Lem. 3.2)

$$x = x[0, k) v^ω = x[0, k)x.$$

Hence by Lemma 3.3 $|v| | x[0, k]$.

□

Lemma 3.5. If exists n such that $v_n u \in v^*$ and $\forall i \in \mathbb{Z}^+$ ($u_{n+i} \in uv^*$), then $\forall i \in \mathbb{Z}^+$ ($v_{n+i} \in v^*v_n$).

Proof. If $i = 0$ then $v_{n+i} = v_n = \lambda v_n \in v^*v_n$.

Further, we shall prove the lemma by induction on i, i.e., suppose that $v_{n+i} \in v^*v_n$, namely,

$$\exists k \in \mathbb{N} (v_{n+i} = v^k v_n).$$

By assumption, $v_n u \in v^*$ and $u_{n+i+1} \in uv^*$, i.e.

$$\exists l \in \mathbb{N} (v_n u = v^l) \land \exists m \in \mathbb{N} (u_{n+i+1} = uv^m).$$

Hence

$$v_{n+i+1} = v_{n+i+1} v_{n+i+1} v_{n+i+1} = (v^k v_n) (uv^m) (v^k v_n) = v^k (v_n u) v^m + v^k v_n = v^k v^m + v^k v_n \in v^*v_n.$$

We have completed the inductive step.

□

Lemma 3.6. If t is the period of the bi-ideal x and $|v_n| \geq t$, then

$$\forall i \in \mathbb{Z}^+ u_{n+i} = u_{n+i} x.$$

Proof. We have $v_{n+i} = v_{n+i-1} u_{n+i} v_{n+i-1}$. Hence, if $i \in \mathbb{Z}^+$ then (Cor. 2.2)

$$\forall i \in \mathbb{Z}^+ \exists v_i v_{n+i} = v_n v_i v_n.$$

Now, by definition of x

$$x = v_n u_{n+1} v_n \ldots$$

$$x = v_{n+i} u_{n+i+1} v_{n+i} \ldots = v_n v_i^t v_n u_{n+i+1} v_n \ldots$$

By assumption, x is periodic, therefore

$$x = v^ω,$$ where $|v| = t.$
Since $v \in \text{Pref}(v_n)$ then by Lemma 3.2
\[
x = v_n u_{n+1} x,
\]
\[
x = v_n u_{n+i+1} x.
\]
Hence $\forall i \in \mathbb{Z}_+ \ x = v_n u_{n+i} x$. Thus $\forall i \in \mathbb{Z}_+ \ u_{n+i} x = u_{n+i} x$.

Theorem 3.7. A bi-ideal x is periodic if and only if
\[
\exists n \in \mathbb{N} \ \exists u \exists v \ (v_n u \in v^* \land \forall i \in \mathbb{Z}_+ \ u_{n+i} \in uv^*).
\]

Proof. \Rightarrow Let T be the minimal period of the word x, then $\exists n \in \mathbb{N} \ |v_n| \geq T$. Thus by Lemma 3.6
\[
\forall i \in \mathbb{Z}_+ \ u_{n+i} x = u_{n+i} x.
\]
Let u be the longest word of the set $\bigcap_{i=1}^{\infty} \text{Pref}(u_{n+i})$ then
\[
\forall i \in \mathbb{Z}_+ \exists u'_i (u_{n+i} = uu'_i).
\]
Particularly, $\exists k u_{n+k} = u$. This means that
\[
\forall i \in \mathbb{Z}_+ \ uu'_i x = u_{n+i} x = u_{n+k} x = ux.
\]
Thus
\[
\forall i \in \mathbb{Z}_+ \ u'_i x = x.
\]
Hence by Lemma 3.3
\[
\forall i \in \mathbb{Z}_+ \ T \backslash |u'_i|.
\]
Thereby
\[
\forall i \in \mathbb{Z}_+ \ u'_i \in v^*,
\]
where $v = x[0,T)$. Thus
\[
\forall i \in \mathbb{Z}_+ \ u_{n+i} = uu'_i \in uv^*.
\]
Note
\[
x = v_n u_{n+1} v_1 \ldots = v_n uu'_1 v_n \ldots
\]
Since $u'_1 \in v^*$ and $v \in \text{Pref}(v_n)$, then [Lemma 3.2] $x = v_n ux$. Hence [Lem. 3.3]
$v_n u \in v^*$.

\Leftarrow By Lemma 3.5
\[
\forall i \in \mathbb{N} \exists k_i \in \mathbb{N} \ v_{n+i} = v^{k_i} v_n.
\]
Since $\lim_{k \to \infty} |v_k| = \infty$ then $\lim_{i \to \infty} k_i = \infty$. Thus
\[
x = \lim_{k \to \infty} v_k = \lim_{i \to \infty} v_{n+i} = \lim_{i \to \infty} v^{k_i} v_n = v^\omega.
\]
4. Powers

Observation. If all $u_i \in w^*$ for some word $w \neq \lambda$, then the bi-ideal generated by (u_i) is periodic.

The following example demonstrates the converse is not true in general.

Example 4.1. Let x be the bi-ideal generated by (u_i), where

\[
\begin{align*}
u_0 & = 0, \\
u_1 & = 1, \\
\forall i > 1 & \quad u_i = 00100.
\end{align*}
\]

Then

\[
\begin{align*}
v_0 & = 0, \\
v_1 & = 010, \\
v_2 & = 0100010010, \\
v_3 & = 01000100010010010.
\end{align*}
\]

and $x = \lim_{i \to \infty} v_i = (0100)^\omega$. Thus x is periodic.

Nevertheless, if every u_j appears infinitely often in (u_i), then the converse is valid.

Theorem 4.2. Let (u_i) be a sequence of words, which contains every u_j infinitely often. The bi-ideal x generated by (u_i) is periodic if and only if

\[\exists w \forall u_i u_i \in w^*.\]

Proof. \Rightarrow Let x be a periodic bi-ideal, then by Theorem 3.7

\[\exists n \in \mathbb{N} \exists u \exists v (v_n u \in v^* \land \forall i \in \mathbb{Z}_+ \ u_{n+i} \in uv^*).\]

Hence by Lemma 3.5 $|v|$ is the period of x. Therefore we can assume that $|v|$ is the minimal period of x and $|u| < |v|$. Since the sequence (u_i) contains every u_j infinitely often then by Theorem 3.7 $\forall i \in \mathbb{N} (u_i \in uv^*)$.

Now suppose that $u_i = u$ for all $i < m$ but $u_m = uv^k$, where $k > 0$. Then there exist $\alpha \in \mathbb{Z}_+$ and y such that

\[x = u^\alpha v^k y.\]

(i) If $u = \lambda$ then $\forall i u_i \in v^*$.

(ii) Otherwise $u \neq \lambda$. Then (Corollary 3.4) $|v| \backslash |u|$. Hence, there exists $\beta \in \mathbb{Z}_+$ such that $\alpha |u| = \beta |v|$. Thus $x = v^\beta u^\alpha$. Contradiction, since $|u| < |v|$ and $|v|$ is the minimal period of x.

\Leftarrow See Observation. \(\square\)
Now we turn our attention to the problem of effectiveness.

Definition 4.3. Assume that \((u_i)\) generates a bi-ideal \(x\). The bi-ideal \(x\) is called **finitely generated** if

\[\exists m \forall i \forall j \,(i \equiv j \pmod{m} \Rightarrow u_i = u_j). \]

In this situation, we say that the \(m\)-tuple \((u_0, u_1, \ldots, u_{m-1})\) generates the bi-ideal \(x\).

Theorem 4.4. A bi-ideal \(x\) generated by \((u_0, u_1, \ldots, u_{m-1})\) is periodic if and only if

\[\exists w \forall i \in \overline{0, m-1} \; u_i \in w^*. \]

Proof. As a corollary from Definition 4.3 and Theorem 4.2. \(\square\)

This theorem gives a method to generate nonperiodic bi-ideals. Let

\((u_0, u_1, \ldots, u_{m-1})\)

be any \(m\)-tuple chosen at random. Let \(v\) be any shortest word from the set

\[\{u_0, u_1, \ldots, u_{m-1}\} \]

and \(w\) be the shortest prefix of \(v\) such that \(v \in w^+\). If there exists \(u_i\) such that \(u_i \notin w^*\) then the bi-ideal generated by \((u_0, u_1, \ldots, u_{m-1})\) is not periodic. This can be easily checked by a deterministic algorithm.

Acknowledgements. The useful suggestions of two referees are gratefully acknowledged.

References

