CORRIGENDUM: COMPLEXITY OF INFINITE WORDS ASSOCIATED WITH BETA-EXPANSIONS

Christiane Frougny1,2, Zuzana Masáková3 and Edita Pelantová3

Abstract. We add a sufficient condition for validity of Proposition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.

Mathematics Subject Classification. 11A63, 11A67, 37B10, 68R15

1. Introduction

The aim of this note is to correct the mistake contained in our paper [2]. We shall use the notation of the paper and refer to the statements included in it.

We were pointed out [1] a counterexample to assertion (1) of Theorem 6.2 in the paper. The assertion says that the complexity of the fixed point u_β of the canonical substitution φ_β associated with a simple Parry number β with the Rényi expansion $d_\beta(1) = t_1 t_2 \cdots t_{m-1} 1$ is affine, namely $C(n) = (m-1)n+1$. This statement is however true only under the condition used for assertion (2) of the theorem, namely that the Rényi expansion $d_\beta(1) = t_1 t_2 \cdots t_m$ satisfies

\[
t_1 = t_2 = \cdots = t_{m-1} \quad \text{or} \quad t_1 > \max\{t_2, \ldots, t_{m-1}\}. \quad (*)
\]

The mistake occurred due to a slip in the proof of Proposition 4.10. We show in this note that under the additional condition $(*)$ the proposition is valid.

1 LIAFA, CNRS UMR 7089, 2 place Jussieu, 75251 Paris Cedex 05, France; e-mail: christiane.frougny@liafa.jussieu.fr
2 Université Paris 8.
3 Department of Mathematics, FNSPE, Czech Technical University, Trojanova 13, 120 00 Praha 2, Czech Republic; e-mail: masakova@km1.fjfi.cvut.cz & pelantova@km1.fjfi.cvut.cz © EDP Sciences 2004
The corrected version of Proposition 4.10 of [2] is stated here as Proposition 2.2. At the end of this note we explain which statements of the paper [2] need to be equipped with condition (*), as well.

Let us mention that the condition (*) in Proposition 2.2 may be weakened. Nevertheless, we have chosen the condition in the form (*), since anyway most of the statements in the paper [2] use it.

2. PROOF OF PROPOSITION 4.10 OF [2]

In order to prove Proposition 2.2 we need the following lemma.

Lemma 2.1. Let $t_1 > \max\{t_2, \ldots, t_{m-1}\}$. Let w be a right special factor of u_3 with at least 3 distinct right extensions X, Y, Z, such that w contains a non-zero letter, wX is a left special factor and $X \neq 0$. Then there exists a word \tilde{w} which is a right special factor of u_3 with at least 3 distinct right extensions $\tilde{X}, \tilde{Y}, \tilde{Z}$ such that $\tilde{w}\tilde{X}$ is a left special factor, $\tilde{X} \neq 0$, and $wX = \varphi(\tilde{w}\tilde{X})$.

Proof. The word w can be written as $w = w^pU^q$, where $U \neq 0$ and $p \geq 0$. Thus U^qX, U^qY, U^qZ are factors of u_3. Since at least one of X, Y, Z is ≥ 2, we can derive from Lemma 4.5 of [2] and condition $t_1 > \max\{t_2, \ldots, t_{m-1}\}$ that $p < t_1$. Since w^pU is a left special factor, according to (ii) of Lemma 3.7 there exists a left special factor \tilde{w} such that $w^pU = \varphi(\tilde{w})$. Now

$$
wX = \varphi(\tilde{w})0^pX$$
$$wY = \varphi(\tilde{w})0^pY$$
$$wZ = \varphi(\tilde{w})0^pZ$$

are distinct factors of u_3. Hence there must exist distinct letters $\tilde{X}, \tilde{Y}, \tilde{Z}$ such that $\tilde{w}\tilde{X}, \tilde{w}\tilde{Y}, \tilde{w}\tilde{Z}$ are also factors of u_3. Moreover, since $X \neq 0$ and $p < t_1$, we have $\varphi(\tilde{X}) = 0^pX$, where $\tilde{X} \neq 0$. As $\varphi(\tilde{w}\tilde{X}) = wX$ is a left special factor, (ii) of Lemma 3.7 implies that $\tilde{w}\tilde{X}$ is a left special factor, which completes the proof. \(\square \)

The following statement is the same as in Proposition 4.10 of [2], except the additional condition (*).

Proposition 2.2. Let $d_3(1)$ satisfies the condition (*). Then for every maximal left special factor $v = v_0v_1 \cdots v_l$ containing a letter $v_i \neq 0$ there exists a maximal left special factor w and an $s \in \{t_1, t_2, \ldots, t_{m-1}\}$ such that $v = \varphi(w)^s$.

Proof. Let $j = \max\{ i \mid v_i \neq 0 \}$. According to Lemma 3.7 there exists a left special factor $w = w_0w_1 \cdots w_l$ such that $v_0v_1 \cdots v_j = \varphi(w_0)\varphi(w_1) \cdots \varphi(w_l)$ and thus

$$v = v_0v_1 \cdots v_j0^s = \varphi(w_0)\varphi(w_1) \cdots \varphi(w_l)0^s,$$

where $s = k - j$.

Since v is maximal, we can use Observation 4.2 and Corollary 4.6 to derive that $s \in \{t_1, t_2, \ldots, t_{m-1}\}$.

It remains to show that w is a maximal left special factor of $u_β$. Assume that w is not maximal. We distinguish two cases according to which part of condition (*) is satisfied.

- Let $t_1 = t_2 = \cdots = t_{m-1} =: t$. Since w is not maximal, then according to Lemma 4.9 there exists a left special factor wX, where $X \neq m - 1$ or a left special factor $w(m-1)0$. However, then (ii) of Lemma 3.7 implies that $\varphi(wX) = \varphi(w)0^t(X + 1)$, resp. $\varphi(w(m-1)0) = \varphi(w)0^{t-1}1$, is also a left special factor. Since $s = t$, the factor v is a proper prefix of both of them, which is a contradiction with the maximality of v.

- Let $t_1 > \max\{t_2, \ldots, t_{m-1}\}$. Since $v = \varphi(w)0^s$ is a maximal left special factor of $u_β$ and w is not maximal, there exists a letter X such that wX is again a left special factor. Lemma 3.7 implies that $\varphi(wX)$ is also a left special factor. Since $v = \varphi(w)0^s$ may not be a proper prefix of $\varphi(wX)$, the condition $t_1 > \max\{t_2, \ldots, t_{m-1}\}$ implies $X \neq 0$.

The maximality of the left special factor $v = \varphi(w)0^s$ implies also existence of distinct letters Y^*, Z^* such that $\varphi(w)0^sY^*, \varphi(w)0^sZ^*$ are factors of $u_β$ and but they are not left special. There must exist distinct letters Y, Z such that wY, wZ are factors of $u_β$ but not left special.

We have thus shown that w is a right special factor with at least 3 distinct right extensions $X \neq 0, Y, Z$, where wX is a left special factor. Repeated use of Lemma 2.1 leads to a right special factor $w^{(0)} = 0^q$, for $q \geq 1$, which has at least 3 distinct right extensions $X^{(0)} \neq 0, Y^{(0)}, Z^{(0)}$, such that $w^{(0)}X^{(0)}$ is a left special factor of $u_β$. Lemma 4.5 implies that $X^{(0)} = 1$ and $q = t_1$. At least one letter among $Y^{(0)}, Z^{(0)}$ is non-zero, say $Y^{(0)}$. Then $Y^{(0)} \geq 2$, but then $w^{(0)}Y^{(0)} = 0^{t_1}Y^{(0)}$ is due to Lemma 4.5 not a factor of $u_β$, which is a contradiction.

\[\square\]

3. Conclusions

Proposition 4.10 was used in [2] for proving Corollary 4.11, second implication of Theorem 4.12, assertion (1) of Theorem 6.2 and Corollary 6.3. Therefore condition (*) should be added in the mentioned statements as well.

Acknowledgements. We are grateful to V. Berthé and J. Bernat for pointing out a counterexample to assertion (1) of Theorem 6.2 in our paper.

References