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ON THE EQUIVALENCE OF LINEAR CONJUNCTIVE
GRAMMARS AND TRELLIS AUTOMATA ∗
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Abstract. This paper establishes computational equivalence of two
seemingly unrelated concepts: linear conjunctive grammars and trellis
automata. Trellis automata, also studied under the name of one-way
real-time cellular automata, have been known since early 1980s as a
purely abstract model of parallel computers, while linear conjunctive
grammars, introduced a few years ago, are linear context-free gram-
mars extended with an explicit intersection operation. Their equiva-
lence implies the equivalence of several other formal systems, including
a certain restricted class of Turing machines and a certain type of lan-
guage equations, thus giving further evidence for the importance of the
language family they all generate.
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1. Introduction

The family of languages studied in this paper has been known for a couple
of decades. It is located strictly between linear context-free and deterministic
context-sensitive languages. It is closed under all set-theoretic operations, but not
under concatenation. It is incomparable with the context-free languages. All its
languages are square-time, but among them there are some important non-context-
free ones, such as {anbncn |n � 0}, {ambncmdn |m,n � 0}, {wcw |w ∈ {a, b}∗}, the
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language of accepting computations of any Turing machine and some P-complete
languages.

The first mention of this family in the literature was in the paper [6], which,
following [14,15], studied restricted types of one-dimensional cellular automata as
language acceptors, among them one-way real-time cellular automata.

At approximately the same time, but with different motivation behind, a very
similar concept was born. These were systolic trellis automata, introduced in [4]
as a model of a massively parallel computer with simple identical processors con-
nected in a uniform pattern. They are used as acceptors of strings loaded into a
designated row of processors, and the output of some other designated processor
determines the acceptance. Their formal properties were further studied in [5].
Their simplest type, homogeneous trellis automata (nicknamed triangular [8] for
the structure of the trellis) were proved to be equivalent to one-way real-time
cellular automata in [2].

Both trellis automata and cellular automata of all kinds are essentially parallel
computing devices. Their sequential characterization was given in [7], where Tur-
ing machines with a certain heavy restriction imposed on them were considered,
and this restriction made them computationally equivalent to trellis automata.
This was followed by a further study of the properties of the family they gener-
ate [7]; among the problems left open was its closure under concatenation, which
was eventually solved negatively [16].

Conjunctive grammars, the second subject of this paper, were introduced in [9]
as an extension of context-free grammars with an explicit intersection operation,
motivated by the need of a more expressive, but still computationally efficient for-
malism for specifying languages. These goals were generally achieved, as conjunc-
tive grammars inherit all the descriptive means offered by context-free grammars
and add a new operation that has intuitively understandable semantics, while, on
the other hand, they possess almost the same recognition and parsing algorithms
as the context-free grammars do [12]. Linear conjunctive grammars [9] are a sub-
class of conjunctive grammars obtained by restricting the use of concatenation in
the same way as used in the definition of linear context-free grammars; alterna-
tively, they can be viewed as an extension of linear context-free grammars with
an intersection operation. A study of their theoretical properties was undertaken
in [11].

Just like context-free grammars are known to have an algebraic characterization
by language equations with union and concatenation, so are the conjunctive gram-
mars. It has been proved in [10] that if the operation of intersection is allowed in
the classical language equations of [1,3] (which contain the semiring operations of
union and concatenation), then the languages defined by components of their least
solutions will be exactly the class of languages generated by conjunctive grammars.
If at the same time the use of concatenation in the systems is restricted to left-
and right-concatenation of terminal symbols – i.e., if one considers systems of lan-
guage equations with union, intersection and linear concatenation – then the class
of linear conjunctive grammars is similarly characterized.
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In this paper it will be proved that linear conjunctive grammars and trellis
automata define the same class of languages, which will imply the computational
equivalence of all five formal systems emphasized with italic above. An overview
of these concepts is given in Section 2, followed by the main equivalence result in
Section 3 and some of its corollaries in Section 4.

2. The formal systems to be proved equivalent

This section gives an overview of all the formalisms that will be proved equiv-
alent as the result of this paper.

2.1. Trellis automata and one-way real time cellular automata

Although trellis automata and cellular automata have different motivation and
background, and are intended to model processes of a different kind in a different
way, the correspondence between them goes beyond computational equivalence: it
turns out [2] that internally they are the same.

In order to emphasize this strong similarity, uniform notation for both types of
automata, derived from the notation used for finite automata, will be used in this
paper.

Definition 1. One-way real-time cellular automata and trellis automata are de-
fined as quintuples M = (Σ, Q, I, δ, F ), where Σ is the input alphabet, Q is a finite
nonempty set of states, I : Σ → Q is the initial function, δ : Q × Q → Q is the
transition function, and F ⊆ Q is the set of final states.

While syntactically two types of automata have been defined to be identical,
the definitions of the way they operate differ.

For a one-way real-time cellular automaton, computation is parallel transfor-
mation of nonempty strings over the alphabet Q, where positions in these strings
represent cells. The initial function I is extended to a homomorphism I : Σ∗ → Q∗

that transforms an input w ∈ Σ+ to the initial configuration I(w). The transition
function δ(q′, q′′) determines the new value of every cell that has current value q′

and right neighbour with current value q′′. δ is extended to δ̂ that applies δ to
every pair of consecutive states, resulting in a new contents of the tape. Given
a string w, the state in the leftmost cell after |w| − 1 such steps determines the
acceptance (whence the title real-time).

Successive configurations of a one-way real-time CA and the dependencies be-
tween the contents of the cells at different steps of the computation are shown in
Figure 1a.

Definition 2. Let M = (Σ, Q, I, δ, F ) be a one-way real-time cellular automaton.
Define the initial function I(a1 . . . an) = I(a1) . . . I(an). Define the transition
function between configurations δ̂ : Q+ → Q+ as follows:

δ̂(q1q2q3 . . . qn−1qn) = (δ(q1, q2), δ(q2, q3), . . . , δ(qn−1, qn)). (1)
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Figure 1. (a) one-way real-time CA; (b) homogeneous
(triangular) TA.

The computation of M on a string w is a succession of configurations: I(w),
δ̂(I(w)), δ̂2(I(w)), . . . , δ̂|w|−1(I(w)). The language accepted by M is now de-
fined as:

L(M) = {w ∈ Σ+ | δ̂|w|−1(I(w)) ∈ F}· (2)

For convenience, denote ∆(q1 . . . qn) = δ̂n−1(q1 . . . qn) ∈ Q for every string of states
q1 . . . qn ∈ Q+. Now (2) can be reformulated as

L(M) = {w ∈ Σ+ | ∆(I(w)) ∈ F}· (3)

Semantics of trellis automata [4] is defined in a different way. Input strings of
length n are loaded into a trellis of n(n + 1)/2 elementary processing units illus-
trated in Figure 1b: n designated processors at the bottom receive their symbols
and each of them computes its value using I. Each of the rest of the processors
has two predecessors in the trellis, and it computes its value by applying δ to what
it receives from its predecessors. The value computed by the pinnacle of the trellis
determines the acceptance of the input.

Definition 3. Let M = (Σ, Q, I, δ, F ) be a trellis automaton. For every string
w = a1 . . . an ∈ Σ+, the trellis consists of processors {(i, j) | 1 � i � j � n}.
Denote the value in a processor (i, j) as ∆i..j [w], and define these values as

∆i..i[a1 . . . an] = I(ai), (4a)

∆i..j [a1 . . . an] = δ(∆i..j−1[a1 . . . an],∆i+1..j [a1 . . . an]) for i < j. (4b)

The language accepted by a trellis automaton M = (Σ, Q, I, δ, F ) is

L(M) = {w ∈ Σ+ | ∆1..|w|[w] ∈ F}· (5)

Comparing Figures 1a and 1b, it is easy to note that, despite the different inter-
pretation of the values, these are the same n(n + 1)/2 elements of Q computed
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using the same formulae. Formally, the ith cell of the instantaneous description
δ̂k(I(a1 . . . an)) is the same as the value in the processor ∆i..i+k[a1 . . . an], and
both equal ∆(I(ai . . . ai+k)).

In our notation, the result on the equivalence of trellis automata to one-way
real-time cellular automata can be stated as follows:

Theorem 1 (Choffrut and Culik [2]). Definitions 2 and 3 are equivalent.

If one looks upon Figure 1 and uses the present notation, this result of [2] might
seem obvious. But taking into account that even the symmetry of one-way real-
time cellular automata was not initially understood [6], and the original motivation
and notation for cellular and trellis automata were quite different from each other,
it should be admitted that showing them identical was a nontrivial observation.

An evident limitation of both types of automata is their inability to accept or
reject the empty string. Although this is only a technical limitation that does
not affect their generative power on longer strings, it is essential for defining the
language family properly. Since the other devices considered in this paper do not
have problems with handling ε, it is convenient to assume that trellis automata
are also equipped with the means to handle it. Formally this can be achieved by
defining them as M = (Σ, Q, I, δ, F, e), where e ∈ {0, 1}, and ε ∈ L(M) if and only
if e = 1.

2.2. A restricted type of Turing machines

A certain type of sequential computational devices was introduced in [7] in
order to characterize trellis automata. These are Turing machines with a one-
way read-only input tape and a two-way read-write work tape. The work tape
alphabet Γ contains start marker # and blank symbol Λ. Initially, the one-way
infinite work tape contains # in the leftmost cell and an infinite number of Λs
to the right. The movement of the machine’s heads is restricted so that it makes
alternate left-to-right and right-to-left sweeps over the work tape.

On its way to the right, such a machine is required to remain in state q0 until
it reaches the leftmost Λ symbol; then it reads an input symbol, enters some state
other than q0, rewrites Λ with some symbol from Γ \ {#,Λ}, and proceeds to the
left. On its way to the left it can do arbitrary rewriting. Once it reaches the start
marker, the machine proceeds to the next right sweep, unless the input string has
ended; in this case it accepts or rejects depending on the current state.

Formally, these restrictions upon the standard Turing machine can be stated as
follows:

Definition 4. [7]. A simple Turing machine is a sextuple M = (Σ,Γ, Q, δ, q0, F ),
where #,Λ ∈ Γ, δ : Q×Γ× (Σ∪{ε}) → Q× (Γ \ {Λ}) \ {−1,+1}, q0 ∈ Q, F ⊆ Q.

The following restriction is imposed on δ: for all q, q′ ∈ Q, x, x′ ∈ Γ, a ∈ Σ∪{ε}
and d ∈ {−1,+1}, if δ(q, x, a) = (q′, x′, d), then:

(1) if q = q0 and x �= Λ, then a = ε, q′ = q0, x′ = x and d = +1: left-to-right
sweep without changing the state and the tape;



74 A. OKHOTIN

a1 a2 an-1 an

. . .

. . .

. . .a3

(a) (b)

#

#

#

#

#

## Λ Λ Λ Λ ΛΛ ...

# ΛΛ ...

# Λ Λ ΛΛ ...x12x22

# Λ ΛΛ ...x13x23x33

# x11 Λ Λ Λ ΛΛ ...
(READ a1)

(READ a2)

(READ a3)

(READ an-1)

xxxxx

# Λ ...xxxxx xnn

(READ an)

. . .

. . .

. . .

. . .

. . .

. . .

. .
 .

Figure 2. (a) a computation of a simple Turing machine; (b) its
trellis automaton interpretation.

(2) if q = q0 and x = Λ, then a �= ε, q′ �= q0, x′ �= # and d = −1: an input
symbol is read at the beginning of the right-to-left sweep;

(3) if q �= q0 and x �= #, then a = ε, q′ �= q0, x′ �= # and d = −1: right-to-left
sweep, the tape is being changed;

(4) if q �= q0 and x = #, then a = ε, q′ = q0, x′ = # and d = +1: end of a
right-to-left sweep, starting a left-to-right sweep.

If the machine’s input is exhausted and it is reading the first # square, it accepts
the input if its current state is in F , rejects otherwise.

The equivalence of this restricted type of Turing machines to trellis automata
was proved in [7]; the relationship between the two devices, despite their different
origin, again amounts to isomorphism: in Figure 2 it is shown how a computation
of such a Turing machine actually computes the same states that comprise the
triangle of a computation of a trellis automaton. For the technical details of this
simulation the reader is referred to the original paper [7].

2.3. Linear conjunctive grammars

Let us start with a definition of conjunctive grammars of the general form [9]:

Definition 5. A conjunctive grammar is a quadruple G = (Σ, N, P, S), where Σ
and N are disjoint finite nonempty sets of terminal and nonterminal symbols; P is
a finite set of grammar rules of the form

A → α1& . . .&αn (A ∈ N ; n � 1; α1, . . . , αn ∈ (Σ ∪ N)∗), (6)

where the strings αi are distinct and their order is considered insignificant; S ∈ N
is a nonterminal designated as the start symbol.
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A conjunctive grammar generates strings by deriving them from the start sym-
bol, generally in the same way as the context-free grammars do. Intermediate
strings used in course of a derivation are defined as follows:

Definition 6. Let G = (Σ, N, P, S) be a conjunctive grammar. The set of con-
junctive formulae F ⊂ (Σ ∪ N ∪ {“(”, “&”, “)”})∗ is defined inductively:

• the empty string ε is a conjunctive formula;
• any symbol from Σ ∪ N is a formula;
• if A and B are nonempty formulae, then AB is a formula;
• if A1, . . . ,An (n � 1) are formulae, then (A1& . . .&An) is a formula.

Definition 7. Let G = (Σ, N, P, S) be a conjunctive grammar. Define the relation
of one-step derivability of the set of formulae:

• a nonterminal can be rewritten with a body of a rule enclosed in paren-
theses:

s1As2
G=⇒ s1(α1& . . .&αn)s2; (7)

• a conjunction of one or more identical terminal strings enclosed in paren-
theses can be replaced with one such string without the parentheses:

s1(w& . . .&w)s2
G=⇒ s1ws2. (8)

Let G=⇒∗ be the reflexive and transitive closure of G=⇒ .
The language of a formula is the set of all terminal strings derivable from the

formula: LG(A) = {w ∈ Σ∗ |A G=⇒∗ w}. The language generated by the grammar
is the language generated by its start symbol: L(G) = LG(S).

Let us now restrict general conjunctive grammars to obtain the subclass called
linear conjunctive grammars:

Definition 8. A conjunctive grammar G = (Σ, N, P, S) is said to be linear, if
every rule in P is of the form

A → u1B1v1& . . .&umBmvm (m � 1, ui, vi ∈ Σ∗, Bi ∈ N) (9a)

A → w (w ∈ Σ∗). (9b)

A number of usual examples of non-context-free languages, including {anbncn |n �
0}, {ambncmdn |m,n � 0}, {wcw |w ∈ {a, b}∗} and the language of all derivations
in any string-rewriting system were proved to be linear conjunctive in [9,11]. The
question of whether linear conjunctive grammars and conjunctive grammars of the
general form are equal in generative power was left open in [9,11]; it will be solved
negatively as one of the results of this paper.

It has been proved in [9] that every linear conjunctive grammar can be effectively
transformed to an equivalent grammar of the following form:
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Definition 9. A linear conjunctive grammar G = (Σ, N, P, S) is said to be in the
linear normal form, if each rule in P is of the form

A → bB1& . . .&bBm&C1c& . . .&Cnc (m + n � 1; Bi, Cj ∈ N ; b, c ∈ Σ), (10a)

A → a (A ∈ N, a ∈ Σ), (10b)

S → ε, only if S does not appear in right hand sides of rules. (10c)

Despite the increased generative power in comparison with linear context-free
grammars, any language generated by a linear conjunctive grammar is still a
quadratic-time language. Let us briefly describe the O(n2) time recognition algo-
rithm of [9], which will be used in the simulation of linear conjunctive grammars
by trellis automata.

Given a string a1 . . . an ∈ Σ+ (n � 1), the algorithm computes the sets

Tij = {A | A ∈ N, A
G=⇒∗ ai . . . aj} (11)

for all i and j (1 � i � j � n). The sets Tii can be computed immediately as

Tii = {A | A ∈ N, A → ai ∈ P}· (12)

In order to compute the sets Tij for i < j, it suffices to note that

Tij = {A | there is a rule A → bB1& . . .&bBm&C1c& . . .&Cnc ∈ P,

such that b = ai, c = aj , for all p (1 � p � m) Bp ∈ Ti+1,j,

and for all q (1 � q � n) Cq ∈ Ti,j−1}, (13)

i.e., Tij depends on the sets Ti+1,j and Ti,j+1, and the symbols ai and aj . The
recognition algorithm [9], Algorithm 2, does n assignments (12) and n(n − 1)/2
assignments (13), and each of these assignments can be done in constant time.

2.4. Language equations with union, intersection and linear

concatenation

Context-free grammars are known to have an algebraic representation by least
solutions of systems of language equations with union and concatenation [1]. Con-
junctive grammars possess a similar characterization by language equations with
union, intersection and concatenation [10].

Definition 10 (system of equations). Let Σ be an alphabet. Let n � 1. Let X =
(X1, . . . , Xn) be a vector of language variables, which assume values of languages
over Σ. Let ϕ1, . . . , ϕn be expressions that depend upon the variables X and
may contain these variables, the constant languages {ε} and {a} (for all a ∈ Σ),
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set-theoretic union and intersection, as well as concatenation. Then



X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(14)

is called a resolved system of equations over Σ in variables X .
A vector of languages L = (L1, . . . , Ln) is a solution of (14) if for every i the

value of ϕi under the assignment Xj = Lj (for all j) is Li.

Note that language equations can be defined in a more rigorous way by first
defining a formula as a syntactical concept and then supplying semantics for it by
defining its value on a vector of languages [10,13].

Denote the right hand side of a system (14) as a vector function

ϕ(X1, . . . , Xn) = (ϕ1(X1, . . . , Xn), . . . , ϕn(X1, . . . , Xn)), (15)

and inductively define its substitutions into itself as

ϕ0(X1, . . . , Xn) = (X1, . . . , Xn) and (16a)

ϕi+1(X1, . . . , Xn) = ϕ(ϕi(X1, . . . , Xn)). (16b)

Define the partial order “�” on the set of language vectors of length n as com-
ponentwise inclusion: (L′

1, . . . , L
′
n) � (L′′

1 , . . . , L′′
n) if and only if L′

i ⊆ L′′
i for all i

(1 � i � n).
Then one can prove that the operator ϕ on the set (2Σ∗

)n is monotone and ∪-
continuous with respect to this partial order [10], which, by the fixed point theory,
yields the following result:

Theorem 2. [10]. Every system (14) over an alphabet Σ and in vari-
ables X1, . . . , Xn has least solution (with respect to “�”) given by

L = (L1, . . . , Ln) = sup
i�0

ϕi(∅, . . . , ∅︸ ︷︷ ︸
n

). (17)

Theorem 3. [10]. A language L is generated by a conjunctive grammar if and
only there exists a system of equations (14), such that L is the first component of
its least solution.

The same result for the linear case is not directly stated in [10], but can be
proved using the same method:

Theorem 4. A language L is generated by a linear conjunctive grammar if and
only there exists a system of equations (14), in which the use of concatenation is
restricted to left- and right-concatenation of terminals to expressions, such that
L is the first component of its least solution.
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3. The equivalence result

3.1. Linear conjunctive grammars to trellis automata

Let us show that trellis automata can accept any language generated by a
linear conjunctive grammar by simulating the recognition algorithm described in
Section 2.3.

Each state of the automaton will be associated with some subset of N , so that
the state ∆(I(ai . . . aj)) “knows” the set Tij ; thus, the essence of conversion is
subset construction. In order to eliminate the direct dependence of every step of
computation on the input string (as in (13)), the characters of the input string will
also be encoded in the states, so that the processing unit responsible for computing
the state ∆(I(ai . . . aj)) will additionally remember the symbols ai and aj . The
computation of each Tii out of ai will be done by the function I following (12).
The assignment (13) to every Tij (i < j) will be modeled by the function δ.

Formally, let G = (Σ, N, P, S) be a linear conjunctive grammar in the linear
normal form. Construct the trellis automaton M = M(G) = (Σ, Q, I, δ, F ), where
Q = Σ × 2N × Σ and

I(a) = (a, {A | A → a ∈ P}, a), (18a)

δ((b,X, b′), (c′, Y, c)) = (b, {A | ∃A → bB1& . . . bBm&C1c& . . .&Cnc :
X,Y ⊆ N, Bi ∈ Y, Cj ∈ X}, c), (18b)

F = {(a,X, b) | X ⊆ N, S ∈ X, a, b ∈ Σ}· (18c)

The correctness of the construction is stated in the following lemma:

Lemma 1. Let w ∈ Σ+ and let ∆(I(w)) = (b,X, c). Then the first symbol of
w is b, the last symbol of w is c, and for each nonterminal A ∈ N , A

G=⇒∗ w if
and only if A ∈ X.

Proof. Induction on |w|.
Basis |w| = 1. Let w = a ∈ Σ. Then ∆(I(w)) = (a,X = {A | A → a ∈ P}, a),

and A ∈ X if and only if A → a ∈ P if and only if a ∈ L(A).
Induction step. Let w = buc (b, c ∈ Σ, u ∈ Σ∗). By the definition of

∆, ∆(I(buc)) = δ(∆(I(bu),∆(I(uc)). By the induction hypothesis, ∆(I(bu)) =
(b, Y, b′), where b′ is the last symbol of bu and Y ⊆ N , and ∆(I(uc)) = (c′, Z, c),
where c′ is the first symbol of uc and Z ⊆ N . Then, by (18b), ∆(I(buc)) = (b,X, c)
for some X ⊆ N . Fix A ∈ N .

⇒©: If the nonterminal A generates buc, then there exists a rule of the form

A → bB1& . . . bBm&C1c& . . .&Cnc ∈ P, (19)

such that uc ∈ L(Bi) and bu ∈ L(Cj) for all i, j.
By the induction hypothesis, this means that Bi ∈ Z and Cj ∈ Y for

all i, j, which, by the rule (19) and by the construction of δ, implies that
A ∈ X .
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Table 1. The states of the automaton.

0 (a, ∅, a)
1 (a, ∅, b)
2 (a, {S,K,R}, a)
3 (a, {K}, a)
4 (a, {K,P}, b)

5 (a, {K,P,A}, b)
6 (a, {A}, b)
7 (a, {R}, a)
8 (b, ∅, a)
9 (b, ∅, b)

10 (b, {A,B}, b)
11 (b, {R,Q}, a)
12 (b, {R,Q,B}, a)
13 (b, {B}, a)

⇐©: If A ∈ X , then, by (18b), there exists some rule of the form (19), where
Bi are all in Z and all Cj are in Y . Then, by the induction hypothesis,
Bi =⇒∗ uc and Ci =⇒∗ bu, which allows to construct a derivation of the
string w from the nonterminal A. �

Theorem 5. For every linear conjunctive grammar G = (Σ, N, P, S) there exists
and can be effectively constructed a trellis automaton M = (Σ, Q, I, δ, F ), such
that L(M) = L(G) \ {ε}.

Let us give an example of transformation (18) of a grammar in the linear normal
form into an equivalent automaton.

Example 1. The following linear conjunctive grammar in the linear normal form
generates the language {anbnan | n � 0}:

S → Ka&aR | ε
K → aA | Ka
P → aA
A → Pb | b
R → Ba | aR
Q → Ba
B → bQ | b.

The cardinality of the set Σ × 2N × Σ is 2·128·2 = 512, but in fact only fourteen
of these states will be potentially reachable from the initial state. These reachable
states are enumerated in Table 1. The initial function I of the constructed au-
tomaton maps a to 0 and b to 10; the transition function δ : Q × Q → Q is given
in Table 2; the set of accepting states is F = {2}.

Consider the string aba ∈ L and the computation of the recognition al-
gorithm [9] Algorithm 2, for the grammar G given the input aba. The sets
Tij ⊆ N = {S,K, P,A,R,Q,B} (1 � i � j � 3), as in (11), constructed by
this algorithm are given in Figure 3a. The next Figure 3b shows the computa-
tion of the constructed automaton on the same input string. This computation
is explained in Figure 3c, where the numbers of the states of the automaton are
interpreted according to Table 1.
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Table 2. The function δ.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 1 7 0 1 4 4 7 0 1 4 7 7 0
1 0 1 7 0 1 4 4 7 0 1 4 7 7 0
2 3 1 2 3 1 4 4 2 3 1 4 2 2 3
3 3 1 2 3 1 4 4 2 3 1 4 2 2 3
4 3 6 2 3 6 5 5 2 3 6 5 2 2 3
5 3 6 2 3 6 5 5 2 3 6 5 2 2 3
6 0 1 7 0 1 4 4 7 0 1 4 7 7 0
7 0 1 7 0 1 4 4 7 0 1 4 7 7 0
8 8 9 8 8 9 9 9 8 8 9 9 13 13 8
9 8 9 8 8 9 9 9 8 8 9 9 13 13 8
10 11 9 11 11 9 9 9 11 11 9 9 12 12 11
11 8 9 8 8 9 9 9 8 8 9 9 13 13 8
12 11 9 11 11 9 9 9 11 11 9 9 12 12 11
13 11 9 11 11 9 9 9 11 11 9 9 12 12 11

T11 T22 T33

T13

T12 T23

(b)

b aa
0 10 0

4 11
2

{A, B}

{K, P} {R, Q}

{S, K, R}

b aa

(b, {A,B}, b)

(a, {K,P}, b) (b, {R,Q}, a)

(a, {S,K,R}, a)

b aa

(a,     , a) (a,     , a)

(c)(a)

Figure 3. The string aba: (a) recognition algorithm for the
grammar; (b) computation of the automaton; (c) explanation of
the computation.

3.2. Trellis automata to linear conjunctive grammars

Having proved that trellis automata are at least as powerful as linear conjunctive
grammars, it remains to demonstrate how the grammars can in turn simulate the
automata.

Let M = (Σ, Q, I, δ, F ) be a trellis automaton. Construct the grammar G =
G(M) = (Σ, NQ ∪ {S}, P, S), where NQ = {Aq | q ∈ Q} and P contains the
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following rules:

S → Aq (for all q ∈ F ) (20a)

AI(a) → a (for all a ∈ Σ) (20b)

Aδ(q1,q2) → Aq1c&bAq2 (for all q1, q2 ∈ Q and b, c ∈ Σ). (20c)

The following lemma states the correctness of the construction.

Lemma 2. For every string w ∈ Σ+ and for every state q ∈ Q, Aq
G=⇒∗ w if and

only if ∆(I(w)) = q.

Proof. Induction on |w|.
Basis |w| = 1. Let w = a ∈ Σ. Aq

G=⇒∗ a iff Aq → a ∈ P iff q = I(a) iff
q = ∆(I(a)).

Induction step. Let w = buc (b, c ∈ Σ, u ∈ Σ∗).

⇒©: If Aq
G=⇒∗ buc, then there exists a rule

Aq → Aq1c&bAq2 ∈ P, such that (21a)

Aq1 =⇒∗ bu, (21b)

Aq2 =⇒∗ uc, (21c)

where, by the construction of P , the rule (21a) must have q = δ(q1, q2); by
induction hypothesis, (21c) holds if and only if q2 = ∆(I(uc)) and (21b)
holds if and only if q1 = ∆(I(bu)). Therefore, q = δ(∆(I(bu)),∆(I(uc))) =
∆(I(buc)).

⇐©: Let q1 = ∆(I(bu)), q2 = ∆(I(uc)). Then δ(q1, q2) = ∆(I(buc)) = q. By
induction hypothesis, this implies Aq1 =⇒∗ bu, Aq2 =⇒∗ uc, and, using
the rule (20c), Aδ(q1,q2) =⇒∗ buc, which means that Aq =⇒∗ w. �

Corollary 1. For every trellis automaton M , L(M) = L(G(M)).

Proof. L(M) = L(G(M)) \ {ε} follows from Lemma 2. Since ε /∈ L(M) and ε /∈
L(G(M)), the languages of the automaton and the grammar coincide completely.

�

Theorem 6. For every trellis automaton M there exists and can be effectively
constructed a linear conjunctive grammar G, such that L(G) = L(M).

Together with the earlier Theorem 5, this allows to make the following conclu-
sion, which is the main result of this paper:

Theorem 7. A language L ⊆ Σ+ is accepted by some trellis automaton if and
only if it is generated by some linear conjunctive grammar.

Let us give an example of this transformation. Consider a trellis automaton for
the Dyck language, a common example of a language that is not linear context-free:
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Example 2. Define M = (Σ, Q, I, δ, F ), where Σ = {a, b}, the set of states is
Q = {↗,↖, Acc, }; the initial function is I(a) =↗ and I(b) =↖; the transition
function is defined as δ(↗,↖) = Acc, δ(↗, q) =↗ (for all q �= Acc), δ(q,↖) =↖
(for all q �= Acc), δ(q,↖) =↖, δ(Acc, ) =↗, δ( , Acc) =↖ and the rest of
transitions lead to . Let the set of accepting states be F = {Acc}.

The general idea of constructing a one-way real-time cellular automaton for
this language was given in [6], while an actual construction of a trellis automaton
was independently done in [4]; the construction above mostly follows [4]. The
transition table of this automaton and a sample computation on the string w =
aabaababbbaabb (borrowed from [6], Fig. 5) are depicted in Figure 4.

Direct application of the automaton-to-grammar construction yields the follow-
ing linear conjunctive grammar:

S → AAcc

AAcc → A↗b&aA↖
A↗ → AAcca&aA | AAcca&bA | AAccb&aA | AAccb&bA
A↗ → A↗a&aAAcc | A↗a&bAAcc | A↗b&aAAcc | A↗b&bAAcc

A↗ → A↗a&aA↗ | A↗a&bA↗ | A↗b&aA↗ | A↗b&bA↗
A↗ → A↗a&aA | A↗a&bA | A↗b&aA | A↗b&bA
A↗ → a
A↖ → AAcca&aA↖ | AAcca&bA↖ | AAccb&aA↖ | AAccb&bA↖
A↖ → A↖a&aA↖ | A↖a&bA↖ | A↖b&aA↖ | A↖b&bA↖
A↖ → A a&aA↖ | A a&bA↖ | A b&aA↖ | A b&bA↖
A↖ → A a&aAAcc | A a&bAAcc | A b&aAAcc | A b&bAAcc

A↖ → b
A → A↖a&aA↗ | A↖a&bA↗ | A↖b&aA↗ | A↖b&bA↗
A → A↖a&aA | A↖a&bA | A↖b&aA | A↖b&bA
A → A a&aA↗ | A a&bA↗ | A b&aA↗ | A b&bA↗
A → A a&aA | A a&bA | A b&aA | A b&bA .

Some rules of this grammar are clearly superfluous: for instance, since S gener-
ates the Dyck language, then no string derived by AAcc can start with b, thus
no string can be derived from the formula (AAcca&bA ), and therefore the rule
A↗ → AAcca&bA can be safely removed. Once all the unused rules are elimi-
nated, nonterminals are renamed to the more common {S′, S,A,B,X} instead of
{S,AAcc, A↗, A↖, A }, and the empty string is reinstated, the grammar takes the
following form:

S′ → S | ε
S → Ab&aB
A → Sa&aX | Sb&aX | Ab&aS | Aa&aA | Ab&aA | Aa&aX | Ab&aX | a
B → Sb&aB | Bb&aB | Bb&bB | Xb&aB | Xb&bB | Xb&aS | Xb&bS | b
X → Ba&aA | Ba&bA | Bb&aA | Bb&bA | Ba&aX | Ba&bX |

| Bb&aX | Bb&bX | Xa&aA | Xa&bA | Xb&aA | Xb&bA |
| Xa&aX | Xa&bX | Xb&aX | Xb&bX .



ON THE EQUIVALENCE OF GRAMMARS AND AUTOMATA 83

a a ab a b b b b b

Acc Acc

Acc

a b a a
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Acc
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Acc

Acc

Acc

Acc

Acc

Acc

(b)(a)

Figure 4. Trellis automaton for the Dyck language:
(a) computation on aabaababbbaabb; (b) transition table.

However, this grammar is anything but human-readable. Constructing an intu-
itively meaningful linear conjunctive grammar for the Dyck language remains a
problem to solve.

4. General properties of the family

It is easy to prove that the languages generated by trellis automata are closed
under all set-theoretic operations: like in the case of DFAs, the closure under union
and intersection is obtained using a direct product construction, while complement
can be implemented by simply inverting the set of accepting states [4,6]. The same
was proved for linear conjunctive grammars using very different techniques: the
intersection operation is explicit; union, as in the context-free case, can be obtained
by writing multiple rules for one nonterminal; the closure under complement was
shown by an elaborate construction of a grammar [11].

Another question is the closure under reversal. It has once been proposed as
an open problem for one-way real-time cellular automata [6]; it was positively
solved only when their equivalence to trellis automata was noted [2]. For linear
conjunctive grammars it is straightforward.

The closure under quotient with finite languages has been shown only for linear
conjunctive grammars [11]; it can now be extended to trellis automata (augmented
with the capability of handling the empty string). The nonclosure under quotient
with regular languages is straightforward [11].

The problem of whether the languages accepted by trellis automata are closed
under concatenation was raised in [6] and was open for almost twenty years; finally,
the nonclosure was proved in [16] by giving a linear context-free language and
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showing by a counting argument that its square cannot be accepted by a one-way
real-time cellular automaton. In [11] the problem which we can now recognize
as equivalent was raised: whether the languages generated by linear conjunctive
grammars are closed under concatenation. A negative answer can now be given.

Although this family of languages is not closed under concatenation, it is closed
under some particular cases of concatenation: left-concatenation of Σ∗ [6], left-
and right-concatenation with arbitrary regular languages [7, 11], marked concate-
nation [7, 11] and concatenation over disjoint alphabets [7, 11].

The closure or nonclosure of this family under Kleene star was determined nei-
ther for trellis automata nor for linear conjunctive grammars [11]. Now, combining
the known results on both automata and grammars, this problem can be solved
negatively in a couple of lines.

Theorem 8. The family of linear conjunctive languages is not closed under Kleene
star.

Proof. Consider the following representation of concatenation:

L1 · L2 = {c}−1 ·
(
(c · L1 ∪ L2 · d)∗ ∩ c · Σ∗ · d

)
· {d}−1, (22)

where L1, L2 ⊆ Σ∗ and c, d are distinct symbols not in Σ. Since linear conjunctive
languages are closed under left- and right-concatenation with {a} [7,11], under left-
and right-quotient with {a} [11], under union and under intersection, if we suppose
their closure under star, then (22) would imply closure under concatenation, which
is not the case [16]. �

Every language accepted by a trellis automaton is easily seen to be determin-
istic context-sensitive. In fact, a longer chain of inclusions has been investigated
in relation to conjunctive and Boolean grammars [13]. Let L(LinCF ), L(CF ),
L(Lin&), L(&) and L(Bool) denote the families generated by linear context-free,
context-free, linear conjunctive, conjunctive and Boolean grammars, respectively.
Let L(DetCS) and L(CS) be (deterministic) context-sensitive languages. Then

L(Lin&) ⊂ L(&) ⊆ L(Bool) ⊆ L(DetCS) ⊆ L(CS). (23)

Only the first of these inclusions can now be proved to be proper (see Th. 9
below), and it is not even known whether there are context-sensitive languages not
generated by conjunctive grammars [9] (although the equality is highly improbable,
as it would imply P=PSPACE).

By the results of the present paper, the inclusions between the languages gener-
ated by linear context-free, context-free, linear conjunctive and conjunctive gram-
mars can be shown to be strict, thus solving a problem raised in [11].
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Theorem 9. The following relations hold:

L(CF ) \ L(Lin&) �= ∅, (24a)

L(LinCF ) ⊂ L(CF ) ∩ L(Lin&), (24b)

L(Lin&) \ L(CF ) �= ∅, (24c)

L(CF ) ∪ L(Lin&) ⊂ L(&). (24d)

Proof. (24c) can be proved, for instance, by giving the language Lwcw = {wcw|w ∈
{a, b}∗}, which is linear conjunctive [9], but not context-free.

The inclusion (24b) holds by definitions of the grammars involved, as context-
free and linear conjunctive grammars can both be viewed as generalizations of
linear context-free grammars. In order to prove that it is proper, it suffices to con-
sider the Dyck language, which is context-free by its definition, linear conjunctive
by [4, 6], but is known not to be linear context-free.

(24a) is known from [16]: the square of the Terrier language

LTerrier = {anbn | n � 1} ∪ {anb{a, b}∗abn | n � 1} (25)

is context-free, but not linear conjunctive.
Turning to (24d), the inclusion holds since context-free and linear conjunctive

grammars are both syntactical subcases of conjunctive grammars. Let us prove
that the language L = Lwcw ∪ L2

Terrier is neither context-free nor linear conjunc-
tive. If it were context-free, then, by the closure of context-free languages under
intersection with regular languages, the language L ∩ {a, b}∗ · c · {a, b}∗ = Lwcw

would also be context-free, which is known to be untrue. If L were linear con-
junctive, then, by the closure of linear conjunctive languages under intersection,
L ∩ {a, b}∗ = L2

Terrier would be linear conjunctive as well, which is also false. �

The relations between these four families, as given by Theorem 9, are summa-
rized in Figure 5.

For the case of a unary alphabet, the relationship is harder to determine. It is
known that linear context-free, context-free and linear conjunctive languages over
a one-letter alphabet are exactly the regular languages. It is an open problem
whether it is so for conjunctive grammars [9], while for Boolean grammars it is
actually false [13].

The results of this paper have one simple implication on conjunctive grammars
that is worth being mentioned. It turns out that the linear normal form of Def-
inition 9, originally introduced in [9], is not optimal in the sense that it can be
further restricted, at the same time preserving the generative power.
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{wcw}LTerrier
2

LDyck

LTerrier      {wcw}2

Figure 5. Relationship between families of languages.

Definition 11. A linear conjunctive grammar G = (Σ, N, P, S) is said to be in
the shortened linear normal form, if each rule in P is of the form

A → bB&Cc (A,B,C ∈ N, b, c ∈ Σ), (26a)

A → a (A ∈ N, a ∈ Σ), (26b)

S → ε, only if S does not appear in right hand sides of rules. (26c)

Every grammar can be transformed to this normal form by first converting it
into a trellis automaton according to Theorem 5 and then converting it back to
a grammar by Theorem 6; the construction (20) used in the latter step produces
grammars of the form (26).

Theorem 10. For every linear conjunctive grammar there exists and can be effec-
tively constructed an equivalent linear conjunctive grammar in the shortened linear
normal form.

5. Conclusion

It was proved that the class of languages generated by linear conjunctive gram-
mars and the class of languages accepted by trellis automata are the same. The
following formalisms are now known to be equivalent (see Fig. 6 for the known
equalities; the central one is established in this paper):

• one-way real-time cellular automata (1980) [6];
• trellis automata (1981) [2, 4];
• a restricted type of Turing machines (1985) [7];
• linear conjunctive grammars (2000) [9, 11];
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Figure 6. Equalities between classes.

• language equations with union, intersection and linear concatenation
(2002) [10], both by unique solutions and by least solutions.

There is one more item to be added to this list: linear Boolean grammars [13],
which are a further extension of linear conjunctive grammars, where the use of
negation is allowed under a certain semantical condition that prevents the concept
from being computationally universal.

So, it can be concluded that this single family of languages has characterizations
in terms of parallel computing devices, in terms of sequential machines, in terms
of transformational grammars, in terms of language equations and in terms of one
more class of formal grammars. All these characterizations are simple and natural,
and each of them associates this single family to a different area of theoretical
computer science. The abundancy of equivalent definitions coming from widely
different areas justifies the significance of the family and, hopefully, will lead to
further study of its properties.

Acknowledgements. I am grateful to Sheng Yu for pointing me to the concept of trellis
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well as for his detailed comments on its numerous revisions.
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