WEIGHTREDUCING GRAMMARS AND ULTRALINEAR LANGUAGES

ULRIKE BRANDT1, GHISSLAIN DELEPINE1 AND HERMANN K.-G. WALTER1

Abstract. We exhibit a new class of grammars with the help of weightfunctions. They are characterized by decreasing the weight during the derivation process. A decision algorithm for the emptiness problem is developed. This class contains non-contextfree grammars. The corresponding language class is identical to the class of ultralinear languages.

Mathematics Subject Classification. 68Q45.

INTRODUCTION

The emptiness problem for classes of grammars containing non-contextfree grammars is in general difficult to solve. The reader should remember that this problem is undecidable for context-sensitive grammars. Moreover the word problem can be reduced to the emptiness problem under very mild conditions. We exhibit a class of grammars with a solvable emptiness problem, which contains non-contextfree grammars. Our method uses weightfunctions such that the weight decreases during the derivation process, moreover a criterion is added, which separates via the weightfunction variables and terminals. This class of grammars is called the class of weightreducing grammars. For this class we develop a decision algorithm for the emptiness problem. Furthermore we show that the corresponding language family is exactly the family of ultralinear languages.

Keywords and phrases. Chomsky-grammars, weightfunctions, weightreducing grammars, emptiness problem, ultralinear languages.

1 University of Technology, Darmstadt Department of Computer Science, Germany; e-mail: [brandt; walter]@iti.informatik.tu-darmstadt.de, gdelepine@yahoo.fr

© EDP Sciences 2004
1. Basic notations and definitions

Let X be an alphabet, then X^* is the set of words w over X (free monoid). \Box is the empty word and $X^* = X^* \setminus \Box$. Fixing $x \in X$ we define the homomorphism $|w|_x : X^* \to \mathbb{N}$ by $|y|_x = \delta_{x,y}$ ($y \in X, \delta_{x,y}$ is Kronecker’s symbol), hence $|w|_x$ is the number of occurrences of x in w.

For $X' \subseteq X$ we define: $|w|_{X'} = \sum_{x' \in X'} |w|_{x'}$, therefore $|w|_X = |w|$ is the length of w.

A (Chomsky-)grammar G is a quadruple $G = (V,T,P,\sigma)$ where V,T are alphabets with $V \cap T = \emptyset$, $\sigma \in V$ and $P \subseteq V^+ \times (V \cup T)^+ \times V$ is a finite set.

We call V the set of variables, T the set of terminals, $A = V \cup T$ the alphabet of G, σ the startsymbol and P the set of productions. As usual $(p,q) \in P$ will be written $p \rightarrow q$.

With respect to the underlying Semi-Thue-System (A,P) we define derivations of words in the following way. For every $w,w' \in A^*$ we write $w \vdash w'$ iff there exist $u,v \in A^*$, $p \rightarrow q \in P$ such that $w = upv$ and $w' = uqv$. $w \vdash w'$ is the reflexive and transitive closure of \vdash.

For every grammar G the generated language $L(G)$ is defined by

$$L(G) = \{ w \in T^* \mid \sigma \vdash^* w \}.$$

Grammar classes are denoted by Γ and the associated language family is $L(\Gamma) = \{ L \mid \exists G \in \Gamma : L(G) = L \}$.

We are mostly interested in the following grammar classes:

- $\Gamma_{Ch} = \text{all Chomsky-grammars};$
- $\Gamma_{cf} = \{ G \in \Gamma_{Ch} \mid \forall p \rightarrow q \in P : |p| = 1 \};$
- $\Gamma_{lin} = \{ G \in \Gamma_{cf} \mid \forall p \rightarrow q \in P : q \in T^* \cdot (V \cup \Box) \cdot T^* \};$
- $\Gamma_{lin.index} = \{ G \in \Gamma_{Ch} \mid \exists k \in \mathbb{N} \forall w \in L(G) \exists n = u_0 \vdash u_1 \vdash \ldots \vdash u_n = w \forall 0 \leq i \leq n : |u_i|_V \leq k \} \text{ (see [1]);}$
- $\Gamma_{ultrilinear} = \{ G \in \Gamma_{cf} \mid \exists a \text{ partition } (A_i)_{i=1}^n \text{ of } V, \forall i \in [1 \ldots n], \xi \in A_i : \xi \rightarrow p \in P \Rightarrow p \in (T \cup \bigcup_{k=0}^{i-1} A_k)^* \cup T^* \cdot A_i \cdot T^* \} \text{ (see [4]).}$

The corresponding language families are $\mathcal{L}_{Ch}, \mathcal{L}_{cf}, \mathcal{L}_{lin}, \mathcal{L}_{lin.index}$ and $\mathcal{L}_{ultrilinear}$.

We assume the reader to be familiar with the basic concepts of grammars and languages (see [5,6]).

2. Weightreducing grammars

Definition 2.1. Let $G \in \Gamma_{Ch}, \gamma : A^* \to \mathbb{N}$ a homomorphism.

γ reduces G iff

(i) $\forall p \rightarrow q \in P : \gamma(p) \geq \gamma(q)$;

(ii) $\forall x \in A : \gamma(x) = 0 \Leftrightarrow x \in T$.

Definition 2.2. A grammar G is weightreducing iff there is a homomorphism γ that reduces G.

The class of weightreducing grammars is denoted by Γ_{wr} and L_{wr} is the associated language family.

Remark. Our definition is something of a counterpart of context-sensitive grammars. For context-sensitive grammars the weight is increasing.

Observation 2.1.

(i) $w \Rightarrow^* w' \Rightarrow \gamma(w) \geq \gamma(w')$;

(ii) $\sigma \Rightarrow^* w \Rightarrow |w|_V \leq \gamma(\sigma)$.

Example 2.1. For any $G \in \Gamma_{\text{lin}}$ let $\gamma(\xi) = 1$ for all $\xi \in V$. Then γ reduces G.

Example 2.2. Consider for any $k \geq 1$ the grammar $G_{1,k}$ with $\sigma = \sigma_k$ and the set of productions

$\sigma_{k-i} \rightarrow (\sigma_{k-i}) | (\sigma_{k-i-1}) \sigma_{k-i-1} | \Box$ ($0 \leq i \leq k - 2$)

$\sigma_1 \rightarrow (\sigma_1) | \Box$.

Choose: $\gamma(\sigma_{k-i}) = 2^{k-i}(0 \leq i < k)$ then γ reduces G.

Observe that with the help of $D_{1,k} = L(G_{1,k})$ the index-hierarchy is shown in [4].

Example 2.3. Consider the grammar G with $\sigma \rightarrow \sigma c \xi | \Box, \xi \rightarrow a \xi b | \Box$, then $L(G) = (c \cdot \{a^n b^n \mid n \geq 1\})^*$. G is a finite-index grammar, but not weightreducing.

Since $L_{\text{fin}} \subseteq L_{\text{wr}}$ by Example 2.1 and $L_{\text{fin, index}} \subseteq L_{\text{cf}}$ by the Ginsburg-Spanier-theorem [3] we conclude $L_{\text{fin, index}} \subseteq L_{\text{wr}} \subseteq L_{\text{fin}} \subseteq L_{\text{cf}}$ by Observation 2.1(ii).

We now study the question, how reducing γ’s can be calculated.

Theorem 2.1. The question whether a grammar allows a reducing function, i.e. is a weightreducing grammar or not, is decidable.

Proof. Let G be a grammar with $V = \{\xi_1, \ldots, \xi_n\}$ and $\sigma = \xi_1$. Since by condition (ii) of Definition 2.1 a possible γ must automatically fulfil $\gamma(x) = 0$ for $x \in T$, only the $\gamma(\xi_i)$ have to be determined. But then conditions (i) and (ii) of Definition 2.1 rewrite to

(1) $p \rightarrow q \in P \Rightarrow \sum_{i=1}^n (|p|_{\xi_i} - |q|_{\xi_i}) \cdot \gamma(\xi_i) \geq 0$;

(2) $\gamma(\xi_i) > 0$ for $1 \leq i \leq n$.

Therefore the construction of a reducing γ is equivalent to solve the following system of linear inequations with variables x_1, \ldots, x_n over \mathbb{Q}:

$$\sum_{i=1}^n (|p|_{\xi_i} - |q|_{\xi_i}) \cdot x_i \geq 0 \quad (p \rightarrow q \in P) \quad \text{and} \quad x_i > 0 (1 \leq i \leq n).$$

If γ is reducing then $x_i = \gamma(\xi_i) (1 \leq i \leq n)$ is a solution, conversely if (x_1, \ldots, x_n) is a solution then defining $\gamma(\xi_i) = \lambda x_i$ for $1 \leq i \leq n$ and suitable $\lambda \in \mathbb{N}$ we obtain a reducing γ.\qed
3. Ultralinear and Weightreducing Grammars

We want to show: \(\mathcal{L}_{\text{ultralinear}} = \mathcal{L}_{\text{wr}} \). To do this we study certain transformations of grammars. The following definitions introduced in [2] are useful:

Definition 3.1. For every \(G \in \Gamma_{\text{Ch}} \) and for every \(w \in A^* \) the rank of \(w \) \(r(w) \) is defined by \(r(w) = \sup \{|u|_V \mid u \in A^* \text{ and } w \vdash^* u \} \).

Observation 3.1.
(i) If \(G \in \Gamma_{\text{Ch}} \) then: \(w_1, w_2 \in A^* \Rightarrow r(w_1 w_2) \geq r(w_1) \cdot r(w_2) \).
(ii) If \(G \in \Gamma_{\text{cf}} \) then: \(w_1, w_2 \in A^* \Rightarrow r(w_1 w_2) = r(w_1) \cdot r(w_2) \).

Definition 3.2. A grammar \(G \in \Gamma_{\text{Ch}} \) is **variable-bounded** iff there exists a constant \(k \in \mathbb{N} \) such that for every \(w \in A^* : \sigma \vdash^* w \Rightarrow |w|_V \leq k \).

Theorem 3.1. If \(G \in \Gamma_{\text{Ch}} \) is weightreducing then \(G \) is variable-bounded.

Proof. Let \(G \in \Gamma_{\text{cf}} \) be weightreducing and \(\gamma \) the corresponding weightfunction. Suppose \(G \) is not variable-bounded. Consider \(k = \gamma(\sigma) \) and a word \(w \in A^* \) with \(\sigma \vdash^* w \) and \(|w|_V > k \). But then \(\gamma(w) \geq |w|_V > k \geq \gamma(\sigma) \), a contradiction to Observation 2.1(ii). □

A variable \(\xi \in V \) is **reachable** from \(\sigma \) iff \(\sigma \vdash^* u\xi v \) for some \(u, v \in A^* \).

Theorem 3.2. If \(G \in \Gamma_{\text{cf}} \) is variable-bounded and every variable is reachable from \(\sigma \) then \(G \) is weightreducing.

Proof. Let \(G \in \Gamma_{\text{cf}} \) be variable-bounded by \(k \) and every \(\xi \in V \) reachable from \(\sigma \). In this case the rank \(r \) has the property \(r(\xi) \leq k \) for every \(\xi \in V \). Furthermore by definition of \(r \), \(r(x) = 0 \) for every \(x \in T \). Hence, \(r \) is a reducing function for \(G \) because Observation 3.1(ii) ensures that \(r \) is a homomorphism in the context-free case. □

Combining Theorems 3.1 and 3.2 we get

Theorem 3.3. If \(G \in \Gamma_{\text{cf}} \) and every \(\xi \in V \) is reachable from \(\sigma \) then \(G \) is variable-bounded iff \(G \) is weightreducing.

Theorem 3.4. The family of ultralinear languages coincides with the family of contextfree weightreducing languages.

Proof. In [2] is shown: If \(G \in \Gamma_{\text{cf}} \) then \(G \) is ultralinear iff \(G \) is variable-bounded. □

Theorem 3.4 doesn’t transfer directly to \(\mathcal{L}_{\text{wr}} \). This is due to the fact that the rank of \(G \in \Gamma_{\text{Ch}} \) is in general not a homomorphism and Theorem 3.2 does not hold in the general case if \(G \) is any Chomsky-grammar.
Consider for example the grammar G given by

$$
\begin{align*}
\sigma & \rightarrow \xi\beta \\
\xi\beta & \rightarrow a\xi b\beta c\gamma d \\
\xi & \rightarrow a \\
\beta & \rightarrow b \\
\gamma & \rightarrow c.
\end{align*}
$$

G is variable-bounded with $k = 3$ but not weightreducing.

But there is another way to show $L_{\text{ultralinear}} = L_{\text{wr}}$ and that we prove $L_{\text{wr}} = L(\Gamma_{\text{cf}} \cap \Gamma_{\text{wr}})$ using a construction similar to the one showing $L_{\text{fin}, \text{index}} = L(\Gamma_{\text{cf}} \cap \Gamma_{\text{fin}, \text{index}})$ found in [3].

For every alphabet A and $k \in \mathbb{N}$ let $A \leq k = \{ w \in A^* \mid |w| \leq k \}$.

Theorem 3.5. The family of ultralinear languages coincides with the family of weightreducing languages.

Proof. Like mentioned above we show $L_{\text{wr}} = L(\Gamma_{\text{cf}} \cap \Gamma_{\text{wr}})$. Consider $G \in \Gamma_{\text{wr}}$.

Then G is variable-bounded with $k = \gamma(\sigma)$ by Theorem 3.1.

Our aim is to replace every production $p \rightarrow q$ with $p \in V^+$ by a set of contextfree productions simulating $p \rightarrow q$. This is possible because there are only finitely many $x, y \in V^*$ such that xpy occurs in a word derivable from σ. Every xpy of this kind interpreted as a new single variable builds the left hand-side of a new production. Then we can show that the resulting contextfree grammar remains variable-bounded and generates the same language as G.

More precisely, given a word $w = v_0 x_1 v_1 \ldots x_n v_n$ with $n \geq 0$, $v_i \in V^*$ ($0 \leq i \leq n$), $x_i \in T$ ($1 \leq i \leq n$), associate to it a new word $f(w)$ defined by $f(w) = \langle v_0 \rangle x_1 \langle v_1 \rangle \ldots x_n \langle v_n \rangle$. Identify $\langle \Box \rangle$ with the empty word \Box. Then $f(w)$ is defined over the new alphabet $T \cup \langle V \leq k \rangle$. Note that if a set M of words over A is “variable-bounded” in the sense that $|w|_V \leq k$ for every $w \in M$, the new set of words $f(M)$ is defined over $T \cup \langle V \leq k \rangle$ and this alphabet is finite.

Now, define the new contextfree grammar G' by

$$
T' = T, \quad V' = \langle V \leq k \rangle \setminus \langle \Box \rangle, \quad \sigma' = \langle \sigma \rangle
$$

and

$$
P' = \{ (xpy) \rightarrow f(xqy) \mid p \rightarrow q \in P \text{ and } xy \in V \leq k - |p| \}.
$$

Clearly, P' is finite, because P is finite and $V \leq k - |p|$ is finite for every p on the left hand-side of a production in P.

Furthermore, if $u \vdash w$ by some production in G, $f(u) \vdash f(w)$ by some production in G' and vice versa.

Hence $\sigma \vdash^* w$ if and only if $f(\sigma) \vdash^* f(w)$ where $f(\sigma) = \langle \sigma \rangle = \sigma'$ showing $L(G) = L(G')$.

It remains to show, that G' is variable-bounded. Consider a derivation $\sigma' = \langle \sigma \rangle \vdash u$ in the new grammar G'. Then $u = f(w)$ for some $w \in A^*$, i.e. $\sigma \vdash w$ is a derivation in G. But then $|w|_V \leq k$, since G is variable-bounded with k. By construction $|u|_V = |f(w)|_V \leq |w|_V \leq k$, i.e. G' is variable-bounded with the same k as G and the statement follows directly by Theorem 3.2. □

Corollary. The emptiness problem for Γ_{wr}, i.e. the question whether a grammar $G \in \Gamma_{wr}$ generates the empty set or not, is decidable.

Proof. Let $G \in \Gamma_{wr}$ and γ the weightfunction. If γ is not given compute it by Theorem 2.1. Then the following algorithm decides if $L(G) = \emptyset$: Let $k = \gamma(\sigma)$.

1. Construct the corresponding contextfree and weightreducing grammar G' by Theorem 3.5 with $|P'| \leq |V|^{\leq k} \cdot |P|$.
2. Decide if $\sigma' \vdash w$ for some $w \in T^*$. This may be done with the help of the following algorithm:
 2.1 construct the grammar G'' from G' replacing every terminal in every production by the empty word;
 2.2 construct the directed graph with nodes from $\langle V^{\leq k} \rangle^{\leq k}$ such that two nodes u and v are connected by an edge if and only if v is directly derivable from u by a production of G'';
 2.3 decide if there is a path from $\langle \sigma \rangle$ to the empty word. □

4. **Closing remarks**

We haven’t discussed any complexity question for the possible algorithms. The suggested approach to the emptiness-problem for weightreducing grammars involves:

(i) the solution of a (special) system of linear inequalities over \mathbb{Q};
(ii) the construction of a specific directed graph associated to the grammar under inspection;
(iii) solving a specific pathproblem for this graph.

The last problem depends heavily on the size of the constructed graph, so this would be the crucial point.

References

Communicated by J. Berstel.
Received May 15, 2003. Accepted November 7, 2003.

To access this journal online:
www.edpsciences.org