ANDRZEJ SZEPIETOWSKI

Lower space bounds for accepting shuffle languages

Informatique théorique et applications, tome 33, n° 3 (1999), p. 303-307

<http://www.numdam.org/item?id=ITA_1999__33_3_303_0>
LOWER SPACE BOUNDS FOR ACCEPTING SHUFFLE LANGUAGES

ANDRZEJ SZEPIETOWSKI

Abstract. In [6] it was shown that shuffle languages are contained in one-way-NSPACE(log n) and in P. In this paper we show that nondeterministic one-way logarithmic space is in some sense the lower bound for accepting shuffle languages. Namely, we show that there exists a shuffle language which is not accepted by any deterministic one-way Turing machine with space bounded by a sublinear function, and that there exists a shuffle language which is not accepted with less than logarithmic space even if we allow two-way nondeterministic Turing machines.

AMS Subject Classification. 68Q15, 68Q45.

1. INTRODUCTION

The operations shuffle and shuffle closure have been introduced to describe sequentialized execution histories of concurrent processes [7, 8]. Together with other operations they describe various classes of languages which have been extensively studied (see [1,3–5,10]). Here, we consider the class of shuffle languages which emerges from the class of finite languages through regular operations (union, concatenation, Kleene star) and shuffle operations (shuffle and shuffle closure). In [6] it was shown that shuffle languages are contained in the class one-way-NSPACE(log n) and thus in the class P (i.e. they are accepted in polynomial time by deterministic Turing machines). For every shuffle expression E, a shuffle automaton was constructed which accepts the language generated by E and it was shown that the computations of the automaton can be simulated by a one-way nondeterministic Turing machine in logarithmic space.

In this paper we show that nondeterministic one-way logarithmic space is in some sense the lower bound for accepting shuffle languages. Namely, we show that there exists a shuffle language which is not accepted by any deterministic one-way
Turing machine with space bounded by a sublinear function, and that there exists a shuffle language which is not accepted with less than logarithmic space even if we allow two-way nondeterministic Turing machines.

2. Shuffle Languages

Let Σ be any fixed alphabet and λ the empty word. The shuffle operation \oplus is defined inductively as follows:
- $u \oplus \lambda = \lambda \oplus u = \{u\}$, for $u, \in \Sigma^*$ and
- $au \oplus bv = a(u \oplus bv) \cup b(au \oplus v)$, for $u, v \in \Sigma^*$ and $a, b \in \Sigma$.

For any languages $L_1, L_2 \subseteq \Sigma^*$ the shuffle $L_1 \oplus L_2$ is defined as

$$L_1 \oplus L_2 = \bigcup_{u \in L_1, v \in L_2} u \oplus v.$$

For any language L, the shuffle closure operator is defined by:

$$L^\oplus = \bigcup_{i=0}^{\infty} L^{\oplus i}, \quad \text{where} \quad L^{\oplus 0} = \{\lambda\} \quad \text{and} \quad L^{\oplus i} = L^{\oplus i-1} \oplus L.$$

Definition 1. Each $a \in \Sigma$, λ and \emptyset are shuffle expressions. Besides, if S_1, S_2 are shuffle expressions, then $(S_1 \cdot S_2)$, S_1^*, $(S_1 + S_2)$, $(S_1 \circ S_2)$ and S_1^\odot are shuffle expressions, and nothing else is a shuffle expression.

The language $L(S)$ generated by a shuffle expression S is defined as follows.

$L(a) = \{a\}$, $L(\lambda) = \{\lambda\}$, $L(\emptyset) = \emptyset$. If $L(S_1) = L_1$ and $L(S_2) = L_2$, then $L((S_1 \cdot S_2)) = L_1 \cdot L_2$, $L((S_1 + S_2)) = L_1 \cup L_2$, $L(S_1^*) = L_1^*$, $L((S_1 \circ S_2)) = L_1 \circ L_2$, and $L(S_1^\odot) = L_1^\odot$.

A language L is a shuffle language if there exists a shuffle expression E such that $L = L(E)$. We shall also use the following notation, for arbitrary string z: $|z|$ denotes the length of z, $|z|_e$ the number of occurrences of a symbol e in z, z_i the i-th symbol of z, and z^R the reverse of z (z written backwards).

3. Turing Machines

We consider the Turing machine model with a read-only input tape and a separate two-way, read-write work tape. The number of tape cells used on the work tape, called space, is our measure of computational complexity. A Turing machine is called one-way if its input head cannot move to the left.

We use so called weak mode of space complexity. Let $L(n)$ be a function on natural numbers. A Turing machine is said to be weakly $L(n)$ space-bounded if for every accepted input of length n, at least one accepting computation uses no more than $L(n)$ space. But our results are also valid for strong mode of space complexity, which requires that for every input of length n, all computations are $L(n)$ space bounded. We shall use the following notation: $\text{DSPACE}[L(n)]$.
or \(NSPACE[L(n)] \) denotes the class of languages accepted by deterministic or nondeterministic \(L(n) \) space-bounded Turing machines, respectively. We add the prefix \textit{one-way} if we consider classes of languages accepted by one-way Turing machines.

By a configuration of a Turing machine \(M \) we shall mean a tuple \((q, \gamma, j)\), where \(q \) is the current state of \(M \), \(\gamma \) are the contents of the non-blank sector of the work tape, and \(j \) is the position of the work head, \(1 \leq j \leq |\gamma| + 1 \) (we assume that \(M \) cannot write the blank symbol on its work tape). The space used by the configuration \((q, \gamma, j)\) is equal to \(|\gamma| \) – the number of non-blank cells on the work tape. It is easy to see that the number of all configurations with space bounded by \(k \) is less than \(r^k \), for some constant \(r > 1 \) (for more details see [9] or [2]).

4. LOWER BOUND FOR ONE-WAY TURING MACHINES

In this section we show that there exists a shuffle language which is not accepted by any deterministic one-way Turing machine in space bounded by a sublinear function.

\textbf{Theorem 2.} There exists a shuffle language \(L \) such that \(L \notin \text{one-way-}DSPACE[S(n)] \), for any \(S(n) = o(n) \).

\textit{Proof.} Consider the shuffle language

\[
L = (a + b)^* a(ac + bd)^0 d(c + d)^* + (a + b)^* b(ac + bd)^0 c(c + d)^*
\]

and let \(h : \{a, b\}^* \rightarrow \{c, d\}^* \) be the isomorphism described by \(h(a) = c \) and \(h(b) = d \). First we shall prove the following.

\textbf{Lemma 3.} Let \(k \) be a positive number. For every \(u, v : u \in (a + b)^k \) and \(v \in (c + d)^k \), the concatenation \(uv \) belongs to \(L \) if and only if \(h(u) \neq v^R \) (\(v^R \) denotes the reverse of \(v \)).

\textit{Proof.} If \(uv \in L \) then \(uv \) can be decomposed into

\[
uv = u'au''v''dv' \quad \text{or} \quad uv = u'bu''v''cv'
\]

with \(u', u'' \in (a + b)^* \), \(v', v'' \in (c + d)^* \), and \(u''v'' \in (ac + bd)^0 \). We shall only deal with the first case. Note that in this case \(u = u'au'' \) and \(v = v''dv' \).

Since \(u''v'' \in (ac + bd)^0 \), we have

\[
|u''v''|_a = |u''v''|_c \quad \text{and} \quad |u''v''|_b = |u''v''|_d
\]

(where \(|z|_e \) denotes the number of occurrences of a symbol \(e \) in a string \(z \)).

And because

\[
|u''v''|_a + |u''v''|_b = |u''| \quad \text{and} \quad |u''v''|_c + |u''v''|_d = |v''|
\]
we have
\[|u''| = |v''| \]
and hence
\[|u'| = |v'|. \]

Let \(i = |u'| + 1 = |v'| + 1. \) Then the words \(h(u) \) and \(v^R \) disagree on the \(i \)-th symbol,
\[(h(u))_i = h(u_i) = h(a) = c \text{ and } (v^R)_i = d \] (where \(z_i \) denotes the \(i \)-th symbol of a word \(z \)). Thus \(h(u) \neq v^R \).

Suppose now that \(h(u) \neq v^R \) and that \(i \) is the last index, where \(h(u) \) and \(v^R \) disagree. We can assume that \(u_i = a \) and \((v^R)_i = d \). Then \(u \) and \(v \) can be decomposed in the following way: \(u = u'au'' \), \(v = v''dv' \), and \(h(u'') = (v''')^R. \) (It is possible that \(u'' = v'' = \lambda. \) In this situation \(u''v'' \in (ac + bd)^\otimes \) and thus \(uv \in L. \) This ends the proof of the lemma.

Suppose now, for a contradiction, that \(L \) is accepted by a one-way deterministic Turing machine \(M \) with space weakly bounded by \(S(n) \).

Let \(k \) be a positive number. For every \(u \in (a + b)^k \), let \(conf(u) \) be the configuration reached by \(M \) after reading \(u \). Because there exists \(v \in \{c, d\}^k \) such that the word \(uv \in L \), then \(conf(u) \) uses at most \(S(2k) \) cells on the work tape. There are \(2^k \) different words in \((a + b)^k \), and at most \(r^{S(2k)} \) configurations with space bounded by \(S(2k) \), for some constant \(r > 1. \) Since \(\lim_{n \to \infty} \frac{S(n)}{n} = 0 \), there exists \(k \) such that \(r^{S(2k)} < 2^k \), and there exist two different words \(x, y \in (a + b)^k \), such that \(conf(x) = conf(y) = \alpha \).

Consider now the accepting computation of \(M \) on the word \(x(h(y))^R \). By Lemma 3, \(x(h(y))^R \in L \), because \(h(x) \neq (h(y))^R = h(y). \) In this computation \(M \) reaches the configuration \(\alpha \) just after reading \(x \). This means that \(M \) also accepts the word \(y(h(y))^R \) because \(M \) reaches \(\alpha \) after reading \(y \) and afterwards it proceeds exactly like for \(x(h(y))^R \) and accepts at the end. But, by Lemma 3, \(y(h(y))^R \) does not belong to \(L \), a contradiction.

5. LOWER BOUND FOR TWO-WAY TURING MACHINES

In this section we show that there exists a shuffle language which is not accepted by any nondeterministic two-way Turing machine in space bounded by a sublogarithmic function.

Theorem 4. There exists a shuffle language \(L_1 \) such that \(L_1 \notin NSPACE[S(n)] \) for any \(S(n) = o(\log n) \).

Proof. Consider the shuffle language
\[L_1 = (ab)^\otimes. \]

The theorem follows from the fact that the class \(NSPACE[S(n)] \) is closed under intersections with regular languages, and that the language
\[L_1 \cap a^*b^* = \{a^nb^n \mid n \geq 0 \} \]
is not accepted by any nondeterministic Turing machine with space bounded by $S(n) = o(\log n)$ (see [9]).

REFERENCES

Communicated by Ch. Choffrut.
Received March 15, 1999. Accepted July 18, 1999.