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TOWARDS PARALLELIZATION
OF CONCURRENT SYSTEMS (*) (1)

by F. CORRADINI (2), R. GORRIERI (3) and D. MARCHIGNOLI (3)

Communicated by W. BRAUER

Abstract. - A notion of parallel 'nation of concurrent processes is proposée that satisfies some
intuitive requirements. Roughly, given aprocess P, a more parallel version Q of P can be the resuit
of replacing one of the sequential summands S in one of P subterms by a process R, provided that
Q is functionally equivalent to P and R is either a parallel term or a summand of S. This defines
an équivalence preserving preorder on processes Q Ç F according to which in Q parallelism is
increased or the amount of redundancy is decreased. We show that our notion has some connection
with the notion of 'factorization proposed by Milner and Mollen Finally, we identify some classes of
processes for which the most parallel version is unique. © Elsevier, Paris

Résumé. - Nous proposons une notion de parallélisation de processus concurrents qui satisfait
quelques exigences intuitives. En gros, si P est un processus, une version plus parallèle Q de P
peut être obtenue en remplaçant un des sommants séquentiels S dans un sous-terme de P, pourvu
que Q soit fonctionnellement équivalent à P et que R soit ou bien un terme parallèle ou bien
un somant de S. Ceci définit une équivalence qui conserve le préordre sur les processus QQP
suivant lequel ans Q le paralélisme est augmenté ou bien la quantité de redondance est diminuée.
Nous montrons que notre notion est reliée à celle de factorisation proposée par Milner et Moller.
Finalement, nous identifions quelques classes de processus pour lesquels la version la plus parallèle
est unique. © Elsevier, Paris

1. INTRODUCTION

Given a process P, the problem of defining the most parallel version Q
of P has been largely ignored up to now in the literature. To the best of our
knowledge, there is no work that studies this problem in a process algebraic
setting. Only the définition of factorization, proposed by Milner and Moller
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100 F. CORRADINI, R. GORRIERI, D. MARCHIGNOLI

[MM93], might be thought of as a possible notion of parallelization (even
if it was not proposed to this aim). Intuitively, we would like that the most
parallel version Q of a process P satisfies the following requirements.

• Equivalence préservation: Once chosen an équivalence notion ~
among processes, we would like that P ~ Q, as the parallelization
procedure shold not alter the "functional" behaviour of the process. As
the behavioural équivalence is a free parameter, we fix it by choosing
strong bisimulation [Mil89].

• Persistency: During exécution, a maximally parallel process P should
remain so. To be more précise, if P is maximaly parallel and P-^P1',

then also P1 must enjoy the property. This ensure that the property holds
for ail derivatives.

• Summation context independence: If some summands of P can be
parallelized, then they can be replaced by their most parallel version.
For instance, consider P — a.b + b.a + a.a; it is clear that both subterms
a.b + 6.a and a.a can be made more parallel as a\b and a\a. Hence
the most parallel versions of P is Q = a\b + a\a. In other words, we
require that, independently of the choice of the exécution path, this is
in the most parallel form. Note that this requirement is not the reverse
of persistency (which could be read as "if all the non-trivial derivatives
are maximally parallel than also the initial process is so"), as P above
is a counter-example.

• Decrease of redundancy: It seems reasonable to assume that a maximaly
parallel process should not offer redundant, less parallel computations.
For instance, consider P = a\b + ab, It is clear that the non-determinism
offered by the subterm ab is useless, as P can do the same in a more
parallel way from the subterm a\b. Hence, P can be safely reduced to a|6.

• Increase of distribution/efficiency: We would like to prove that, given
a process P , its maximal parallelization Q is more distributed and more
efficient than P. And moreover, that there is no way to do better (at
least, under some circumstances). Of course, this means that we need to
introducé suitable truly concurrent semantics which express distribution
and timing information. Even if crucial for assessing the merits of a
notion of parallelization, hère we only provide some examples that give
intuitive évidence that this requirement is met. More can be found in
Marchigloli's thesis [Mar96].

Intuitively, our parallelization notions is defined as follows: in a process
P we allow the replacement of one of the sequential summands S in one
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TOWARDS PARALLELIZATION OF CONCURRENT SYSTEMS 101

of P subterms by a process R if the resulting process Q is equivalent to P
and R is either a parallel term or a summand of S. This defines a preorder
on processes QQP according to which parallelism is increased in Q or the
amount of redundancy is decreased in Q.

Contrary to many preorders in the literature, our preorder is équivalence
perserving in order to meet the first requirement above. This choice has
been driven essentially by the following considération. There are two main
interprétations that can be given to actions in a process algebra. According
to the first, actions are channels or interacting ports; hence, ab + ba is indeed
equivalent to a\b as the same interactions are provided by both processes, but
the latter is more parallel and possibly efficient. The second interprétation sees
actions as opérations to be performed (e.g., on a shared memory), equipped
by a dependency relation which states which pairs cannot be executed in
parallel. Under this interprétation, if a and b are dependent, then ab + ba is
equivalent to a\b, as the exécution of the actions in the latter process can be
done only in mutual exclusion; similarly, if they are independent, then a\b
should be considered equivalent to ab and to ba, and so also to ab-\-ba (even
if with redundancy). As we do not want to fix any interprétation, we have
noticed that the set of possible traces should be preserved while parallelizing.
Hence, we need to choose an équivalence relation which is at least as strong
as trace équivalence. Bisimulation équivalence, that is stronger than trace
équivalence, has been chosen because it is one standard équivalence relation
for concrete (i.e., without invisible actions) process algebras and, moreover,
it is widely used in the only paper we know that might offer material for
a comparison [MM93].

The paper is organized as follows. Section 2 introduces the language
we use. Like in [MM93], the language we use is very simple: it contains
prefixing, summation and parallel composition without comunication. Some
remarks about the extension of the work to other operators are reported in the
conclusions. Section 3 recalls the basic définition and results from [MM93],
which will be useful in the following, not only for comparison. Section 4
introduces our notions of parallelization, while closure and structural
properties are reported in Section 5. Section 6 compares parallelization
and Milner & Moller's factorization, showing that the latter cannot be
considered an adequate notion of parallelization. Section 7 présents an
abstract réduction System to show that the parallelization procedure always
terminâtes. However, it is not confluent; uniqueness of normal forms (up
to a structural congruence considering associative and commutative the
parallel and alternative composition operators) is guaranteed only for the
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102 F. CORRADINI, R. GORRIERI, D. MARCHIGNOLI

sublanguage without the + operator and, in the full language, under some
conditions (Section 8).

2. PRELIMINAIRES

The language used in the paper as a case study is a subset of Milner's
CCS. The set of atomic actions is denoted by Act, ranged over by a, 6,
The set P of processes, ranged over by P, Q, . . . , is composed by the terms
generated by the grammar below:

P := 0 j a.P j P + P | P | P where a G Act

0, called nil, dénotes a terminated process. a.P dénotes a process which
can do an action a and then behaves like P. P + Q dénotes alternative
composition of P and Q, while P\Q dénotes their parallel composition, that
does not enable communication. Final nil's are usually omitted; e.g., a + b
stands for a.O + è.0. As usual, the precedence of operators is as follows:

. > i > +.
The standard operational semantics is given in terms of a labelled transition

System (P, Act, —•), where the transition relation - ^ C P x Act x P is defined
through the set of inference rules listed in Table 1 (where the symmetrie
rules for alternative and parallel compositions are omitted).

TABLE 1

The Rules for the Operational Semantics (symmetrie rules omitted).

The semantic congruence we consider is strong bisimilarity ~ [Mil89]. It
is defined as the largest binary symmetrie relation on P such that P ~ Q
if and only if, for all a G Act:

P-^Pf implies Q^Q' for some Q' such that P ' - Q'.
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TOWARDS PARALLELIZATION OF CONCURRENT SYSTEMS 103

In the rest of the paper we will use = to dénote the syntactic identity and =
to dénote the structural congruence generated by the set of équations below

P+(Q + R) = (P + Q) + R P\{Q\R) = (P\Q)\R

This structural congruence is convenient to define a flexible notion of
subterm, letting us to interpret + and | as if they were n-very operators.
Let P < Q dénote that P is a subterm of Q and let consider process
P — (a + b) + c; we would like to have, for instance, the following:
(a + b) < P , a < P , b < P , c < P , bu t a l so a + c<P a n d b + c< P .

Relation < is the reflexive (up to =) and transitive closure of the binary
< over P . Formally: <d= Ul€N < \ where < ° d= = and < »"+1 d=< 'o <
and, finally, < is defined by the following rules:

P<a.P P<P + Q P<P\Q

We say that Q is a strict subterm of P if Q < P but Q ^ P . In the
following we will always refer to the définition of subterm as given above.

PROPOSITION 2.1: P = Q implies P - Q for all P, Q e P.

Proof: Obvious, as all the équations for = are sound w.r.t. bisimulation
équivalence. •

The proposition above justifies the use of the structural congruence, as all
the terms in the same class have the same semantics. In virtue of this, an
alternative représentation of a congruence class of terms is a term where the
operators + and | are n-vary. For this reason, we sometimes represent any
term of the congruence class in a form where parentheses are fogotten as in
Pi + . . . + Pn and Pi | . . . \Pn. Sometimes we will abbreviate Pi + . . . + Pn

with J2i(zjPi and Q i j . . . \Qn with ILe/ Q%* I — [l-*nl> understanding that
each Pi does not have + as its outermost operator and that each Qi does not
have | as its outermost operator. These conditions are useful, as they give
the précise number of summands or parallel components, respectively.

Some of the proofs in this paper will proceed by induction on the size of
processes, denoted by |P|; that is defined by induction as follows:

|0| = 0 |a.P| = l + |P |

\P + Q| = max{|P|, \Q\) \P\Q\ = \P\ + \Q\

It is not difficult to see that bisimilar processes have the same size. Among
the conséquences of this f act, we mention that \P\ > 0 iff P -P 0.
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104 F. CORRADINI, R. GORRIERI, D. MARCHIGNOLI

3. FACTORIZATION OF PROCESSES

In this section we briefly review the main concepts and results behind
Milner and Moller's work on factorization of processes [MM93]. In no way
we intend to say that Milner and Moller proposed factorization as a possible
solution to the problem we are facing hère. Nonetheless, their notion of
factorization could be read as a form of parallelization, and so we feel
authorized to make a (rather ingenerous) comparison. Moreover, another
reason for recalling factorization is that it is also used in another part of the
paper, namely in the proof of Proposition 8.1.

DÉFINITION 3.1: A process P is prime if P ^ 0 and whenever P ~ P\\P2
we have that either P\ ~ 0 or P2 ~ 0.

DÉFINITION 3.2: A process P = P\\... \Pn is factorized if every Pi is prime.

Note that we could define 0 as the parallel composition of zero terms. By
this way we can consider 0 as factorized, even if not prime.

In [MM93] it has been shown that for any process P there is a unique (up
to ~) multiset { P i , . . . , Pn} of primes for which P ~ p11... \pn.

THEOREM 3.1: Any process can be expressed uniquely, up to ~, as a parallel
composition of primes,

Now we want to see if the notion of factorization may be a sensible
candidate to match our intuition (still quite informai) of maximal parallelism.
Unfortunately, this is not the case, as the following examples show that not
all the requirements discussed in the Introduction are met.

Clearly (see Theorem 3.1) the factorization of a process is strongly bisim-
ilar to the process itself, thus équivalence préservation holds. Factorization
does not always satisfy the requirement of distribution/efficiency increase:
consider the factorized process P — a.(b.c + c.b); however, Q — a.(c\b)
seems, intuitively, to be more parallel than P (confirmed also by the fact
that Q E pP and Q Ç. /P where Q p and Ç j are the performance preorder
and the location preorder studied, respectively, in [CGR95, CGR97] and
[BCHK92]). Process P also shows that persistency does not hold because,
after the exécution of action a, the resulting process is not factorized.

Factorization does not even satisfy the requirement of summation context
independence: the factorized process P = (a\b) + a.a can be turned into the
more parallel process (a\b) + (a\a) ~ P .
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TOWARDS PARALLELIZATION OF CONCURRENT SYSTEMS 105

Finally we show that also the decrease of redundancy does not hold
for factorization, as they are disjont concepts; We can have factorized,
minimal redundant terms (e.g. a\b) as well as factorized redundant terms
(e.g. a\b + a.b + a, that is more redundant than a\b + a).

4. MAXIMALLY PARALLEL PROCESSES

In this section we present a notion of reducible process that takes into
account the maximal parallelism that a process can show up. We will show
in Section 5 that the new notion satisfies ail requirements discussed in the
Introduction and prove some pleasant properties it enjoys.

Trying to obtain the new notions by refining factorization, the obvious
extension that immediately springs in mind is that of requiring that each
subprocess is also factorized. In this way, for instance, we would obtain a
persistent property. However, also this notion - apparently more suitable -
is not completely satisfactory. Process P = (a|6|c) + (c.a.b) + (b.c.a) is such
that every subprocess is factorized even if P ~ (a|6|c) + (c\a.b) + (b\c.a)
and the right-hand side is clearly more parallel than P.

We need some preliminary définitions. First we introducé choice processes,
that are processes not having parallel composition as the outermost operator.

DÉFINITION 4.1: A process P is a choice process if it is generaled by the
following grammar

S ::= a.P \ P + Q with a E Act, P , Q e P

Choice processes will be ranged over by S (possibly indexed).

The next définition introduces our notion of completely reduced (or
maximally parallel) processes. The définition is given inductively on the
syntactical structure of process. Intuitively, it states when a process cannot
be turned into a more parallel version by replacing some sequential subpart
with a parallel term.

DÉFINITION 4.2: (Completely Reduced or maximally Parallel Process) A
process P is completely reduced if and only ifone of the following holds:

1) P = 0;
2) P — a.P1 and both conditions below hold:

i) P1 is completely reduced,
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106 F. CORRADINI, R. GORRIERI, D. MARCHIGNOLI

ii) $Pi </< 0, $P2 T6 0 with Pi and P2 completely reduced such that

Pi\Pi ~ P\
3) P = Pf + P" and VPi, P2 such that P = Pi + P2, the four conditions

below hold:

i) Pi and P2 are completely reduced,
ii) $P{ <t> 0, $P^ ^ 0 with P[ and P2 completely reduced such that

P[\I% ~ P 1 + P 2 ,
iii) if P! = S, then $P[ * 0, $P£ ^ 0 with P{ and P£ completely

reduced such that (P[\P2) -f P2 ~ Pi + P2,
iv) Pi <* Px + P2,

4) P = P ' | P " and P1 and P " are completely reduced.

Cases 1, 2 and 4 are obvious. More interesting is case 3: for ail choices
of Pi and P2 such that their summation is structurally congruent to P , we
require that i) they are both maximally parallel and, more importantly, that
ii) Pi + P2 cannot be transformed in a term with | as outermost operator - as
well as iii) Pi, if it is a choice process; flnally, the fourth condition avoids
présence of redundancy. Note that condition ii) is independent of the choice
of Pi ad P2, as for every such Pi, P2 we have that P = P ' + P" ~ P1 + P2,
and so condition ii) can be moved outside the universal quantification.

The following of this section is devoted to give a characterization of
maximally parallel processes that will be useful in the following. It is based
on the reducibility property of sequential processes given below.

DÉFINITION 4.3: (Reducible process) A process P is reducible ifone of the
following three conditions holds (otherwise P is irreducible).

i) P is a choice process and 3R\ & 0, 3P2 T6 0 with R\ and R2
completely reduced such that i?i|i?2 ~ P . Ri\R2 is said contraction
of P in P ;

ii) P ~ S + P" and 3J?i ^ 0, 3R2 ^ 0 with Ri and R2 completely
reduced such that (Ri\R,2) + P " ~ P . Ri\R2 is said contraction of
S in S + P";

iii) P = Pf + P" and Pf ~ P! + P". P ' is said contraction of P1 + P"
in P7 + P".

Q is a réduction of P if it is obtained from P by applying the contraction; in
other words, Q = R\ \R2 for i), Q = (Ri \R2)+P" for ii) and Q = P ' for iii).

Observe that items 2.ii), 3,ii) and 3.iii) of Définition 4.2 and items i) and
ii) of Définition 4.3 share a similar side condition of the form "with Pi
and P2 completely reduced". It is not difficult to see that, if we remowe
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TOWARDS PARALLELIZATION OF CONCURRENT SYSTEMS 107

such a condition in every item of Définition 4.3, we would get an equivalent
définition of completely reduced process and of reducible process. The
current définition has the advantage of permitting shorter proofs of the
propositions in Section 5 and 7.

Let us see some examples. Process a\a is a contraction of a.a, so
that the latter is reducible. And also a is a contraction of a + a. Hence
a + a is reducible. To give a more interesting example consider process
P = a + a.b+b.a. Given S = a.b+b.a and Q — a, we have S + Q ~ a\b-\~Q
thus P is reducible. Process a\b + a is now irreducible. Note that the notion
of irreducibility is quite different of that of prime given in the previous
section. Indeed, a parallel process (e.g. a\b) is always irreducible, but it
cannot be prime. More on this comparison in Section 6.

The example below show that, in a contraction, the substituted terms can
even be not bisimilar.

Example 4.1: In process P = a\b\c + a.c.b + c.a.b there is no contraction
R bisimilar to any summand of P. Nevertheless P is reducible; in fact,
by letting S = ca.b, Q = a|&|c + a.c.b and R — c\a.b, we have
P = 5 + Q ~ J ? + QEE c\a.b + a\b\c + a.c.b. Again, process R + Q is
reducible. Similarly as above, let S ~ a.c.b we have P ~ a\b\c+c.b\a+c\a.b.

Now we want to relate the notion of maximal parallelism with the notion
of reducibility.

PROPOSITION 4.1: A process P is completely reduced if and only if each of
its subterms is irreducible.

Proof: Assume P completely reduced. We prove that $Pf < P such that
either item i), ii) or iii) of Définition 4.3 holds. We proceed by induction
on the syntactic structure of P.

a) P — 0, then the statement immediately follows.

b) P = a.P\. We distinguish two cases:

i) P( < P\. As P is completely reduced P\ is so too. Then, the thesis
follows by induction.

ii) P1 = a.P\. Since P is completely reduced, $P{ <* 0, $P^ <* 0 with
P{ and P*2 completely reduced such that P\\Pli ~ a.P\. And so there
is no contraction of a.P\.

c) P — P\ + P2. Again we have two cases to consider:

i) P1 is a strict subterm of Pi 4- P2- Hence, P1 is a subterm of some
P[ such that there exists a P^ with P\ + P2 = P{ + P^ Note that

vol. 32, n° 4-5-6, 1998



108 F. CORRADINI, R. GORRIERI, D. MARCHIGNOLI

P[ is completely reduced by item 3.i) of Définition 4.2. Hence, P ' is
irreducible by induction hypothesis.

ii) P ' = P{ + P2 = Pi + P2. By définition of completely reduced we have

1) ^J?i T6 0, $R2 T6 0 with Ri and i?2 completely reduced such that
Ri\R2 ~ P ' .

2) If P( = 5 then $Ri <* 0, J # 2 ^ 0 with i?i and R2 completely
reduced such that (Ri\R2) + P*2 ~ P ' .

3) P{ 96 J* + i*.

Items 1) 2) and 3), corresponding to the similar items of Définition 4.3,
show that it is not possible to find any contraction in Pf'.

d) P = Pi \P2. The subterms of P are the subterms P- of Pi for i - 1,2,
as well as their parallel composition. By définition of completely
reduced, each Pi is completely reduced. By induction, each P[ is
irreducible, and so are also their parallel compositions P1IP2.

Conversely, let us now assume that $Pf < P such that either item i), ii)
or iii) of the définition of reducible process holds. Then, we prove that P
is completely reduced. Also in this case, we proceed by induction on the
syntactic structure of P .

a) P = 0, then P is completely reduced by définition.

b) P = a.Pi. As Pi is a strict subterm of P, then each of Pi subterms
is irreducible. By induction hypothesis, Pi is completely reduced, and
so we have matched the first requirement for a.Pi to be completely
reduced. Now, we also know that a.Pi is irreducible. As only item i)
of the Définition 4.3 could be applicable in this case, we know that
$Ri ^ 0, $R2 *f> 0 with R\ and R2 completely reduced such that
i?i|i?2 ~ a.Pi. And this is the second requirement for a.Pi to be
completely reduced.

c) P = P1 + P2 . We prove that the four items of the définition of
completely reduced hold. Consider a generic P ' — P{ + P2 = Pi + P2.
Item i) is proved as follows: As all the subterms of P are irreducible,
then also P{ and P^ are so, as they are subterms. Hence, by induction
hypothesis, P{ and P^ are completely reduced. To prove items ii), iii)
and iv), let us note that, as P ' is a subterm of P , it is irreducible.
Then, item ii) is a conséquence of item i) of Définition 4.3; similarly,
item iii) follows by item ii) of Définition 4.3, as well as item iv) by
item iii) of Définition 4.3.

Informatique théorique et Applications/Theoretical Informaties and Applications



TOWARDS PARALLELIZATION OF CONCURRENT SYSTEMS 109

d) P = P1IP2- As all the subterms of P are irreducible, then Pi and P2
are irreducible. By induction hypothesis, we have that Pi and P2 are
completely reduced; hence, so is also P. D

We end this section with some examples.

Example 4.2: P = a.(a.b + b.a) is irreducible but it is not completely
reduced; indeed its subterm a.b+b.a is reducible, as we saw before. Similarly
Q = a + a.b + b.a is not completely reduced. Note that both P and Q are
factorized.

Example 4.3: P = a\b + a\b is reducible; indeed a\b is a (bisimilar)
contraction for P in P . Clearly P and a|6 have exactly the same degree of
parallelism, but in some way the latter is less redundant than the former.

Example 4.4: Process Q — a.b\a\b + a.b\a.b + a is not completely reduced
because subterm a.b\a\b + a.b\a.b is reducible. Indeed Q ~ a.b\a\b + a.

This example is particularly interesting because it shows how our notion of
complete réduction permits to obtain processes that are more parallel and, at
the same time, more deterministic, using only rule ii) of Définition 4.3. This
suggests that - while parallelizing - it is sometimes necessary to decrease
redundancy.

5. SOME PROPERTIES OF MAXIMALLY PARALLEL PROCESSES

5.1. Closure properties

Maximal parallelism is not preserved by prefixing and alternative
composition, as the following example establishes, while it is preserved
by parallel composition.

Example 5.1: Consider process P — a\ obviously, P is completely reduced
but a.P is not so. Furthermore, processes P — a.b and Q = b.a are
completely reduced, while P + Q is not.

The following proposition - implicitly used in a few places in the proof
of Proposition 4.1 - follows directly by item 4) of Définition 4.2.

PROPOSITION 5.1: Let P,Q completely reduced processes. Then P\Q is
completely reduced.

Finally, the proposition below guarantees that we can always work modulo
the structural congruence =.

vol. 32, n° 4-5-6, 1998



1 1 0 F. CORRADINI, R. GORRIERI, D. MARCHIGNOLI

PROPOSITION 5.2: Let P be completely reduced and P = Q. Then Q is
completely reduced.

Proof: Observe that, for all the équations defining =, if the lhs is completely
reduced, then so is the rhs. Indeed, the case of +-associativity follows by the
universal quantification in item 3) of Définition 4.2, while the |-associativity
follows by a simple inductive argument. D.

5.2. Structural properties

PROPOSITION 53 : If Q is the réduction of P, then P ~ Q.

Together with Theorem 5.1, this proposition, that follows by Définition 4.3,
ensures that the first requirement (équivalence préservation) is actually met.

PROPOSITION 5.4: Each subterm of a completely reduced process is
completely reduced,

The proposition above follows directly by définition of completely reduced
process, because 0 has no strict subterms, 2.i) and 3.i) requires this property
to hold for all proper subterms of a choice process; finally, 4) asks this
for the immédiate components of a parallel composition, whence the thesis
by induction and by Proposition 5.1. This proposition states that our notion
satisfies the requirement of summation context independence: In order to be
completely reduced, each summand of a choice process has to be completely
reduced.

The following proposition shows that the notion of maximal parallelism
satisfies also the persistency requirement. Indeed, we prove that each
derivative of a completely reduced process is completely reduced.

PROPOSITION 5.5: Let P be a completely reduced process. Then P~-^Pf

implies P1 is completely reduced.

Proof: By induction on the depth of the dérivation tree of transition
JL proceed by cases analysis on the syntactic structure of P.

Let P = a.Pf. Then a.P'-^P'. Since P ' is a subterm of P , P1 is
completely reduced by Proposition 5.4.

Let P = Pi|P2- Assume Pi—>P[ (the symmetrie case is similar).
Note that processes Pi and P2 are completely reduced because they
are subterms of P . Thus, by induction hypothesis, also P{ is completely
reduced and, by Proposition 5.1, also P[\P2 is completely reduced.
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• Let P — Pi + P2. As above, assume Pi—>P[ (the symmetrie case is
similar). Note that processes Pi and P2 are completely reduced as they
are subterms of P . Then, by induction hypothesis. P{ is completely
reduced too. D

Now we want to show another property of completely reduced processes,
related to the degree of nondeterminism of processes. More precisely, we
prove that every completely reduced process shows only the "unavoidable"
nondeterminism, in the sensé given by the following définition.

DÉFINITION 5.1 (Multiple Branches): A process P has multiple branches
if there exists a subterm R of P with R = R\ + R2 such that R ~ Ri ;
otherwise it is without multiple branches (or wmb for short).

A wmb process shows, in a sensé, only unavoidable nondeterminism or,
equivalently, offers the minimum amount of redundancy. As an example,
consider the process P — a\b + a.b. Let Pi — a\b and P2 = a.b. We have
P = p1 + P2 ~ Pi, and hence P has multiple branches, while Pi is wmb.

The following proposition shows that completely reduced processes are
without multiple branches, hence proving that our parallelization notion
satisfies the requirement on Decrease of Redundancy,

PROPOSITION 5.6: Every completely reduced process P is wmb.

Proof: By contradiction, assume that P has multiple branches. Then, by
définition, there exists a subterm R of P with R ~ R\ -\- R2 such that
R ^ Ri. Therefore, Ri is a contraction of R in R. Hence R is reducible
and P is not completely reduced, contradicting the hypothesis. D

Note that, for a given process P , different contractions could be possible.
Some of them lead to wmb processes, while others do not.

Example 5.2: Consider process a.b + b.a. Clearly a\b is a contraction of
both a.b + b.a and a.b in a.b + b.a. We would obtain respectively: i) a\b,
which is wmb, ii) a\b + b.a which has multiple branches.

5.3. Existence of completely reduced processes

In this section we show that every process P has at least one maximally
parallel version. First, we need a preliminary resuit.

LEMMA 5.1: Let S = X^e/ Pi &e not completely reduced, with P% completely
reduced for every i e I and \I\ > 2. Then 3P{, 3P^ with S = P{+ P!

2 such
that either ii), or iii) or iv) of item 3) of Définition 4.2 does not hold.

vol. 32, n° 4-5-6, 1998



1 1 2 F. CORRADINI, R. GORRIERÏ, D. MARCHIGNOLI

Proof: By induction on |/ | . The base case is when | / | = 2. Consider
generic R\ and R2 such that S = Ri + R2. Since in Ri and R% the
operator + does not appear at the outermost position, we can only have
R\ = Pi and R2 = P2 or Ri = P2 and R2 = Pi- Moreover, since Pi and
P2 are completely reduced, and = preserves completely reduced processes
(Proposition 5.2), we have that also Ri and R2 are completely reduced.
As S is not completely reduced, either i), ii), iii) or iv) of item 3) of the
définition of completely reduced process should not hold. Since for every
R\, R2 such that S = R\ + R2, -Ri and R2 are completely reduced, then i)
holds. Necessarily, for Ri or R2 one of ii), iii) or iv) does not hold.

Inductively, assume that the statement holds for | / | < n; we now prove
it for | / | = n. By contradiction, assume that for every Ri and R2 such
that S = Ri + R2 then ail of ii), iii) and iv) of item 3) of the définition of
completely reduced process hold. Nonetheless, S is not completely reduced
and since every Pi such that S = Yli^i Pt is completely reduced, we can
only have that there exist R\ and R2 such that S ~ Ri + R2 and Ri or
J?2 is not completely reduced. W.l.o.g. assume Ri not completely reduced.
Now we have two cases:

1) If the outermost operator of JRI is not +, then Ri is one of the P/s .
This contradicts the hypothesis that all summands are completely reduced.

2) If the outermost operator of Ri is -f, then it is a choice process with
less than n summands. Hence, the induction hypothesis can be applied. So,
we have that there are R[ and R!2 such that Ri = R!x + R!2 and either ii),
iii) or iv) of item 3) of Définition 4.2 does not hold. We distinguish the
following three cases:

- Item ii) does not hold. Then 3P 3 ^ 0, 3P'4 / 0 with P 3 and T[
completely reduced such that P3IP4 ~ R[ + R^ ~ Ri- But then
S = Ri + R2 ~ P3IPI + #2. Thus Ri in Ri + R2 would be reducible
and item iii) of item 3) of the définition of completely reduced process
can be applied to contradict the hypothesis.

- Item iii) does not hold. Then R[ == Si and 3P'3 ^ 0, 3P[ </> 0 with P 3

and P 4 completely reduced such that P3IP4 + R!2 ~ R[ + R^ ~ Ri-
Now__5 = R1 + R2 = (Rli + R!2) + R2 = R[ + (Rf

2 + ^2) -
( H 1^4) + (R2 + R2)' Thus by taking P[ = i?i and Pj = R'2+R2 we
have that 5 = P{ + P2 and P[ can be reduced and item iii) of 3) of
the définition of completely reduced process can be used to contradict
the hypothesis.
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- Item iv) does not hold, Le., R!x ~ R[ + R2. Then R[ + R2 ~
R[ + R!2 +R2 = R[ + R2 + Rf

2. But R[ + R2 + i2'2 = 5. Thus we
contradict the hypothesis that item iv) of the définition of completely
reduced process holds. •

THEOREM 5.1: Let P be a P process. Then there exists P completely
reduced such that P ~ P.

Proof: By induction on the size of P. Assume the statement true for
\P\ < n and prove it for \P\ = n. We proceed by case analysis on the
structure of P.

a) P = 0, then we take P = 0.

b) P = a.P\. By induction hypothesis (as |Pi| < n) there exists P i
completely reduced such that Pi ~ Pi and a.Pi ~ a.Pi. Now, if
$P{ rf o, $P^ </> 0 such that P{\P^ - a.Pi then a.Pi is completely
reduced and the statement follows. Otherwise, assume 3P[ </> 0,
3P^ rf o such that P{|PJ - a.Pi. Note that |P{| > 0 and j ^ [ > 0
because P{ ^ 0 and P2 ^ 0; moreover, \P{\ < n and IPJ) < n as
IP1IP2I = |P{| + IP2I = 1 + |Pi| = n. Hence the induction hypothesis
can be applied: 3PX) 3P 2 completely reduced such that P i ~ P{ and
P 2 ^ PjJ. Also P1IP2 ~ a.Pi and P i | P 2 is completely reduced.

c) P — P1IP2. If one of the two subprocesses (assume w.l.o.g. Pi)
is bisimilar to 0, then P ~ P2 and we proceed on the structure
of P2. Otherwise, for both Pi and P2 the size is less than n. By
induction hypothesis, there are Pi and P2 completely reduced such
that Pi ~ Pi and P2 ~ P2. Then, process P1IP2 is completely
reduced and P i | P 2 ~ P1IP2.

d) P = X^e/ P% w i t r i \I\ ^ 2. Each Pi is in one of the following forms:
0, or a.P1 or P'IP". In any case, there exists a completely reduced
bisimilar term for each P% by a), or b) or c) above. Hence, we can
assume already completely reduced each summand of P . We prove
by induction on | / | that there exists P completely reduced such that
P ~P.
Assume \I\ = 2. There are two cases:
1) Pi + P2 is completely reduced. Then this is the process we were
looking for.
2) Pi + P2 is not completely reduced. By Lemma 5.1, there exist
P{, P2 such that P = P[+ P2 and ii), iii) or iv) does not hold. Let
us consider the three cases in the following order: iv), ii) and then iii),
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meaning that one case is explored only if the previous one does hold. If
iv) does not hold, then P[ ~ P[ + P^: since P[ is completely reduced,
we have done. Similarly if ii) does not hold: 3P% ^ 0, 3P^ ^ 0
with P 3 and P 4 completely reduced such that P3IP4 ~ P{ + P^ If
iii) does not hold, then the situation is a bit more complex. We have
that 3P3 9̂  0, 3F4 */* 0 with P3 and P4 completely reduced such
that (P3IP4) + P2 ~ P{ + ^2* However, we have no guarantee that
(P3IP4) + P2 is completely reduced, even if P3IP4 and P!

2 are so.
In such a bad case, again item ii) or iii) or iv) does not hold. In the
first case, this means that also for P{ + P'2 item ii) does not hold, and
so item iii) should have not bee considered. Similarly if item iv) does
not hold. In case iii) does not hold for the second time, then we can
only have: 3P$ */> 0, 3PQ 70 0 with P5 and Pg completely reduced
such that (P3IP4) + (PslPe) ~ (P3IP4) + P^ This produced term is
completely reduced. Thus, the statement follows when \I\ = 2.
Assume true the thesis for | / | < n and prove it for |/ | — n. Assume
P = Yliei ^ n o t c o mpl e t e ly reduced. By Lemma 5.1, 3P[, 3P^ with
P = S = P{ +P2 such that ii), iii) or iv) of the définition of completely
reduced process does not hold. If item ii) fails, then 3P3 </ 0, 3P4 </ 0
with P 3 and P 4 completely reduced such that P3 |P4 ~ P{ + P'2. Thus
P3IP4 is completely reduced and P3IP4 ~ P . Similarly if iv) fails,
Le., P[ - P{ + P^ Clearly, P{ = ^2jeJ Pj with J C / and hence,
since / is finite, \J\ < \I\ = n. By induction hypothesis, there exists
P completely reduced such that P — P{ ~ P{ + P^ ~ P. And so P
is the required process. Finally, assume that item iii) fails (if neither
ii) nor iv) fails). Then P[ = S and 3P 3 ^ 0, 3P 4 ^ 0 with P 3 and
P4 completely reduced such that (P3IP4) + P^ ~ P[ +P^ Of course,
P{ = J2jeJ Pi w ^^ J — I- Among all the possible pairs P[, P}

2 that
makes item iii) fail, consider the one which maximizes \J\ (i.e., the
"maximal" contraction). We have two cases:
1) If \J\ > 1, then we have that P is equivalent to a new sumform
where the number of summands is less than n : P ~ (P3IP4) + P^.
Therefore, by induction hypothesis, there exists P completely reduced
such that P - (P3IP4) + P2 - P .
2) If | J\ = 1, then P{ is necessarily of the form a.Px. This means
that (P3IP4) + P2 is a bisimilar form of P with the same number
of summands, but with one sequential addend a.Pl replaced by a
parallel addend P3IP4, which is also completely reduced. Hence
P ~ J2heH Ph> where \H\ = |/ | and all the P^ are completely
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reduced. Thus we have found a new term which is in the same theorem
hypothesis of P, except for the fact that one addend - namely P$ \P± -
cannot be replaced by a more parallel version. Then we can try to apply
several times the réduction above 1 until one of the following happens:
2.1) for the obtained term item iii) does hold. What we gain is the
completely reduced term we were looking for 2.
2.2) no more summands of the form a.Ph occur in the obtained term,
but item iii) fails again. This is not possible as - for item iii) to
fail - we need at least two summands in this case, contradicting the
hypothesis of having chosen the maximal contraction the first time. •

6. ON THE RELATIONSHIP BETWEEN REDUCTION AND FACTORIZATION

In this section we compare completely reduced processes and factorized
processes. We will prove that every completely reduced process is factorized
and so are îts subterms.

First of all, we want to relate irreducible terms and prime terms. Consider
process 0: this is irreducible but not prime. Further, consider a factorized term
P = P\\...\Pn\ obviously, we have P irreducible but not prime (provided
that n > 1). The cases discussed above outline an important différence
between prime and irreducible terms. In gênerai, a prime term is a term
that cannot be decomposed into simpler, non empty processes; differently,
an irreducible term is a term that cannot be rewritten to obtam a more
deterministic or more parallel one.

PROPOSITION 6.1: Let S be a non prime, choice process. If S </> 0, then
S is reducible.

Proof: By the fact that S is not prime and is not (bisimilar to) 0,
there are i?i, R2 </< 0 such that S ~ #i |#2- By Theorem 5.1 there
are #3, R$ completely reduced such that Ü3 ~ i?i, R4 ~ R2. Hence,
S ~ R\\R2 ~ i?3|i?4, with R$\R4 completely reduced.

The reverse of the above proposition could be something like: "If S 9̂  0 is
reducible, then S is non prime". This is false as a + 0 is reducible but prime.

(') Remember that only one (prefixed) addend can be transformed into a parallel addend, as
we have assumed to choose P[ , P^ that maximazes \J\, if we started with \J\ — 1, then all the
following cannot have a larger size

(2) Remind that items n) and îv) cannot be applicable, as we were considenng item 111) only if
both 11) and îv) failed, moreover, in no step we introducé a possibihty for 11) or îv) to be applicable
again
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PROPOSITION 6.2: Let S be a completely reduced, choice process. If S </> 0,
then S is prime.

Proof: We need to prove that if S is decomposable as P\\P2 then either
Pi ~ 0 or P2 ~ 0. By ii) of item 2) of Définition 4.2, if 5 is in prefix form,
then S is prime. By ii) of item 3) of Définition 4.2, if 5 is in sumform,
then S is prime.

From the fact that 0 is completely reduced, it follows immediately that,
given P factorized and completely reduced, P|0 is still completely reduced,
even if it is no more factorized. Hence, it is not true, in gênerai, that a
completely reduced term is also factorized. However, this implication is
false only for this trivial case. We first need to introducé the notion of
cleaned process. Let us call clean(P) the process P where the occurrence
of 0 (in gênerai, the sequential subprocesses bisimilar to 0) are removed
if they are argument of a parallel composition operator. For instance, if
P = (a + 0)|0|6.(c|0) then clean(P) = (a + 0)|6.c.

PROPOSITION 6.3: Let P be a completely reduced process. Then clean(P)
is factorized.

Proof: Consider a generic completely reduced process P = P\\...\Pn

where each P? does not contain a parallel composition as the outermost
operator. Then we have clean(P) = YlieI clean(Pi), where I C {1, ...,n}
contains the indexes of the P?;'s not bisimilar to 0. Moreover, every clean{Pl)
is a completely reduced, choice term. Thus, every clean(Pi) is prime by
Proposition 6.2, and so clean(P) is factorized.

We complete the comparison with the following proposition.

COROLLARY 6.1: The cleaned version of every subterm of a completely
reduced process is factorized.

Proof: Every subterm of a completely reduced process is, by définition, a
completely reduced process. Thus, by Proposition 6.3, its cleaned version is
also factorized. D

The vice versa of Proposition 6.3 and Corollary 6.1 could be something
like: "If all the subterms of a factorized process P are factorized, then P is
completely reduced". Unfortunately, this does not hold in gênerai. Consider
P — a\b\c + acb + cab and note that each of its subterms is decomposed
as the parallel composition of primes, even if P is not completely reduced;
see Example 4.1.
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7. AN ABSTRACT REDUCTION SYSTEM FOR PROCESSES

The définition of contracting given in Section 4 will be used to define an
abstract réduction System for processes (see [Klo90]). We will prove that it
is strongly normalizing and that its normal forms are exactly the completely
reduced processes.

DÉFINITION 7.1 (Réduction Relation): Let =» be the least binary relation
over P defined by the following rules:

1. P => R if p = S and R is a contraction of S in S
2. P => R + Q if P = S + Q and R is a contraction of 5 in 5 + Q
3. a .P => tx.P' if P => P '
4. P + Q ^ iî if P + Q = Pi + P2 and Pi => P{ and iî = P{ + P2
5. P|Q =» i i if P|Q = Pi|P2 and Pi => P[ and P = P1

/|P2

The réduction relation =̂> given in Définition 7.1 together with P dermes an
abstract réduction System. It will be denoted by {P, =>). Relation =>> defines
also a partial ordering on processes: QQP if and only if P =>* Q, where
=>* is the reflexive and transitive closure of the réduction relation. Relation
Q is indeed a partial ordering as => is acyclic, as we will prove later on.

PROPOSITION 7.1: ^ is sound with respect to ~.

Proof: By induction on the depth of the proof of P => P ' . The base cases
are rules 1 and 2, for which we can resort to Proposition 5.3. All the other
cases follows by induction hypothesis and by the congruence property of ~.

A normal form of the réduction System (P,=^) is a process P such
that there exists no Q for which P ^ Q. Note that, by Proposition 7.1, if
P ^ * Q and Q is a normal form, then P ~ Q. Hence, if the normal forms
are the completely reduced processes, this proposition offers an alternative
way to prove that the first requirement on équivalence préservation is met.
Indeed, we have the following:

PROPOSITION 7.2: A process P is a normal form if and only ifit is completely
reduced.

Proof: Assume P is a normal form. Then there exists no Q such that
P =$> Qm This means that rules 1, 2, 3, 4 and 5 can never be applied. It follows
that there is no subterm P ' of P which is reducible. By Proposition 4.1, P
is completely reduced. Conversely, assume P completely reduced. Again by
Proposition 4.1, none of its subterms is reducible; thus, we never can apply
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rules 1 and 2 above, hence neither can apply it in any context (rules 3, 4
and 5). •

We want to prove formally that the abstract réduction System (P, =>) is
strongly normalizing. To do this we need some new notation and results.
A reduciton séquence is a séquence Pi =>- P<i... =» Pn . . . of réductions

for k G N. The next lemma states an obvious fact.

LEMMA 7.1: Let P be aV process such that every réduction séquence is
finite and P => P. Then P has only finite réduction séquences.

Now we call inner those réduction séquences where each contraction has
always been applied to one single summand.

DÉFINITION 7.2: Let Qk = Yliti Pf f° r k E N. A réduction séquence
Qo => Qi =^ Q-2 • • - is inner if for each k we have that

1) ph => pf*1 for some i e /;
2) Pf =» Pf+1 for every i G I and i + i.

LEMMA 7.2: Let S ~ J2?ei ^» ^ " ^ t^at 1̂1 — ^ a w^ every P2 tos only finite
réduction séquences. Then every inner réduction séquence from S is finite.

Proof: It trivially follows from the fact that an inner réduction séquence
from 5 is an "interleaving" of the (finite) réduction séquences from the
(finite) summands of S. •

The lemma below generalizes the previous resuit to ail réduction séquences.

LEMMA 7.3: Let S ~ Y^ïei ^ suc^ f^a* 1̂1 — ^ an^ eveiJ Pi ^as only finite
réduction séquences. Then every réduction séquence from S is finite.

Proof: Let r be the number of P2's with i e I of the form a.P-. The
proof is by induction on r + |/ | .

The base case is when r + | / | = 2, with r = 0 and | / | = 2
because 5 has at least two summands. Hence, neither Pi nor P2 is in
prefix form. By Lemma 7.2 every inner réduction séquence from 5 is
finite. So, we focus on non inner réduction séquences. After (zero or
more) steps of an inner réduction séquence from S, we reach a process
Qk = P\ + P2" such that there exists a réduction involving both summands.
Let S => Q\ ^ Q2 => Qs . - - => Qk => P be such a réduction séquence,
where Q^ =^ P is the first non inner réduction, which involves both
summands. As the réduction séquence is inner until Qk, both Pf and
P2

fc have finite réduction séquences by Lemma 7.1. Now if a contraction is
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applied to the whole Qk, then rule 1 of the réduction relation has been used.
Moreover, if P is a contraction of Pf + P | , only i) or iii) of Définition 4.3
can be applied. Note that i) reduces P-f + P2

fc to the parallel composition
of completely reduced processes, and so the réduction séquence ends with
P; similarly, item iii) reduces Pf + P2

fc to Pf, that has finite réduction
séquences. Summing up, in all the cases, a réduction séquence is finite.

Assume now the thesis hold for r + |/ | < n and prove it for r + \I\ = n
(with n > 2). By Lemma 7.2 every inner réduction séquence from 5 is finite.
So, we focus on non inner réduction séquences. After (zero or more) steps of
an inner réduction séquence from 5, we reach a process Qk = Pf + P^ such
that there exists a réduction which involves either more than one summand, or
only one in a +-context such that rule 2) is applicable. Let Qk => P be such a
non inner réduction. Assume that rule 1 was applied; then, P is a contraction
of Qk in Qfc. Thus, only i) or iii) of Définition 4.3 can be applied. Note
that i) reduces Pf + P2

fc to the parallel composition of completely reduced
processes, and so the réduction séquence ends with P ; similarly, item iii)
reduces Pf + P* to Pf, that has finite réduction séquences. Assume instead
that rule 2 was applied for Qk => P; then, Qk = S" + Q', P = R! + Q1

and R! is a contraction of S1 in Qk. Then only item ii) of Définition 4.3 can
be applied. Depending on the form of S', this contraction reduces either a
choice process S\ + S2 as the parallel composition of completely reduced
processes, or the number of processes of the form a.Pf decreases. In both
cases, for the produced term P the number of summands in prefix form plus
the total number of summands is decreased w.r.t. the corresponding value
for Qk. Hence, induction hypothesis is sufficient to prove that P has finite
réduction séquences. D

PROPOSITION 7.3: Let P be a P process. Then, every réduction séquence
from P is finite.

Proof: By induction on the syntactic structure of P .

a) P = 0 then P *>.

b) P — a.Pf. By induction, every réduction séquence for P ' is finite.
Hence, applying rule 3, we can obtain only finite réduction séquences
for a.P''. The only other possible réduction for a.Pf is by rule 1, which
gives a completely reduced process in one step.

c) P = P ' + P". By induction hypothesis, both P ' and P" have finite
réduction séquences only. By Lemma 7.3 also P has only finite
réduction séquences.
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d) P — P ' |P" . By induction hypothesis, every réduction of both Pf and
P " is finite. The statement follows by observing that any réduction
séquence of P is - roughly speaking - the "interleaving" of réductions
séquences of P1 and P" , respectively. D

COROLLARY 7.1: Réduction System {P, =>) is strongly normalizing.
We will see later an example of a process which admits more than one

normal form. Refer to Example 8.2. Finally, another obvious conséquence
is that the réduction relation is acyclic, hence:

COROLLARY 7.2: Ç is a partial ordering on P.

8. UNIQUE NORMAL FORMS

This section addresses the problem of finding conditions under which
normal forms are unique, up to the structural congruence. As we want to
prove this resuit independently of the définition of the abstract réduction
System for processes given in Section 7, new définitions and results are
needed.

DÉFINITION 8.1: Let P, Q be processes such that P ~ Q. We say that P
and Q are structural bisimilar (denoted P ~ Q)if one of the following holds:

i) P = Q = 0;

ii) P = a .P ' , Q = a.Q' and P1 ~ Q';

iii) P = J2i€i P*> Q = E i e / & a n d P* ~ Qi f o r a11 * e / ;

iv) P = Uzel P^ Q = n.-€7 Q* a n d P* ~ & for a11 * e L

Recall that in (iii) above none of the Pu Qi is a sum of processes; and
also in (iv) above none of the Pu Q% is a parallel composition of processes.
The following holds trivially.

LEMMA 8.1: P = Q implies P = Q.
However, the reverse does not hold, as shown by the following example.

Example 8.1: Given P = a.(b\c) and Q = a.(b.c + c.b), we have that
P ^ Q but P ^ Q.

Intuitively, structural bisimilarity implies structural congruence whenever
the former is inductively required under ail possible subterms. If we could
prove that bisimilar, completely reduced terms are structurally bisimilar, we
would also have that they are in the relation =. Hence, since subterms
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of completely reduced terms are also completely reduced, the problem of
uniqueness of normal forms could be equivalently stated in terms of structural
bisimilarity. The following (meta-)theorem formally defines the above.

LEMMA 8.2: Let C be a pwperty over P such thaï VP, P ' G P, P ' < P
and C(P) imply C(Pf). Let P, Q be processes and consider the following
two statements:

1) VP,Q such that P ~ Q,C(P) and C{Q) imply P 9Ê Q;
2) VP,Q such that P ~ Q,C(P) and C(Q) imply P = Q.
Then C satisfies condition 1) if and only if it satisfies condition 2).

Proof: Let C be a property for which 1) holds. Let P , Q be such that P ~ Q
and C(P), C(Q). We prove that P = Q by induction on the structure of P.

- P = 0. Clearly Q = P.
- P = a .P ' . By 1) follows Q = a.Qf with P1 - Qf. By hypothesis

C(Pf) and C(Qf), and hence by induction hypothesis P1 = Q', and
also P = Q.

- P = E Ï G J
 p ^ By i t e m !) foUows Q = E i e / Q* s u c h t h a t p* ~ Qi

for ail J ç I. By hypothesis we have that C(Pi) and C(Qi) for every
i G / . Induction hypothesis ensures that P« = Qi, and also P = Q.

- P = n ^ e / ^ * Similar to the previous case.
Now we prove the other implication by contradiction. Assume that C does

not hold 1) for some pair of bisimilar processes P and Q. We prove that
P ^ Q. If C does not satisfy 1), then we have that P ~ Q, C(P) and
C(Q) but P and Q that are not structurally bisimilar. Hence, by Lemma 8.1,

Consider the following property

Ci (P) = (P is completely reduced)

and note that by proposition 5.4, Ci(P) satisfies the hypothesis of Lemma
8.2. Unfortunately, it does not satisfy 1); indeed bisimilar and completely
reduced processes not necessarily are also structural bisimilar as the following
example shows.

Example 8.2: Let P be the process

It is easy to convince that both processes

Q = a\(c + d) + b\(c + d) + c\(a + b) + d\(a + 6)
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and
R = (a + b)\(c + d) + a|c + a|d + b\c + fe|d

are bisimilar to P . However, both Q and R are completely reduced.

In order to obtain a unique normal form for processes, we single out some
properties that ensure condition 1) of Lemma 8.2, together with its premises.
First of ail, consider the subset of sum-free concurrent processes, that is the
terms built with prefixing and parallel composition only. Let

C2.(P) = (P is sum-free and completely reduced).

The following proposition shows that C2 satisfies both 1) and the hypothesis
above.

PROPOSITION 8.1: If P ~ Q and C2(P) and C2(Q), then P = Q. Moreover,
C2(P) implies C2(P

f) for every P1 < P.

Proof: We prove only the first part of the statement, as the second one is
trivial. Consider P , Q be completely reduced processes with P ~ Q. The
proof proceeds by case analysis. If P = a.P' , then necessarily, it has to be
Q = a.Q1. Otherwise, we could have for instance Q = Yli Qi contradicting
the hypothesis that P is completely reduced. Similarly if P = Yli ̂  ^ e n

Q is forced to have parallel composition as its outermost operator, and by
Milner and Moller's unique factorization theorem, it is possible to prove that
the primes of P and Q are pairwise bisimilar. D

Now we want to introducé another suitable property, this time on the
whole language; it states that a process P has a unique normal form if any
state it reaches has never more than two possible alternatives. Let

= (P is completely reduced and has at most two choices).

We first need to formalize the condition on the number of choices.

DÉFINITION 8.2: Let P be a process. Define succ(P) — {(a, [P']~) :
P-^P'}, where [P]„ is the congruence class of P w.r.t.~.

DÉFINITION 8.3: Let P be a process and n G N. We say that P has at most
n choices if for every P ' , s G Act* such that P— -̂» P ' is \succ(Pf)\ < n.

PROPOSITION 8.2: C3 satisfies condition î) of Lemma 8.2 and its hypothesis.
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Proof: We first prove the hypothesis of the Lemma, that is C$(P)
implies C$(P*) for every P ' < P. Case P = 0 is trivial. Consider case
P = a.Pf. If P ' would have more two choices then the same holds for
P contradicting the hypothesis. Consider case P = Yliei Pi and note that
\succ(P)\ > \$ucc(Y,jeJ Pj)\ for every J Ç L Similarly if P = Hl€l Pt.

Now let us prove condition 1). Assume P ~ Q,Cs(P) and C$(Q). Cases
P = 0, P = a.P' and P = Yl{ P2 are similar to those in Proposition 8.1.
Take case P = J2ieip^ T h i s f o r c e s 1*1 = 2 ' indeed if | / | > 2 we have
two possible cases to distinguish: either P has not at most two choices,
or P is not completely reduced because it has multiple branches. Both of
them contradict the hypothesis. Thus P = Pi + P<i. If Q would be of the
form Q = a.Q* then P would not be completely reduced. If Q would be of
the form Q = Ylj Qj then P would be reducible and hence not completely
reduced. Thus Q is forced to be of the form Q = Q1 + Q2 (similar reasonings
of P hold also for Q). As each of the P^'s and of the Q7's can offer exactly
one choice (otherwise either P and Q have extra branches or they would
not be completely reduced), it is possible to set the required bijection among
them. D

9. CONCLUSION AND FURTHER RESEARCH

We have addressed the problem of finding the maximally parallel version
of a given process from a theoretical point of view. This means that in our
investigation we have not bound the number of available processors which
the parallel components can be mapped onto. This is also what we need
in the case of extending our work to recursive processes. To explain why,
let us consider process P that repeats the same action a forever: P = a.P.
The same computations of P can be performed by P | P , or by P | P | P , or
even with an infinity of finite processes, each executing one single action
a. It is clear that this forms a chain of processes, each to be preferred to
the previous one because it increases distribution and efficiency. Hence, if
one wants to maximize parallelism for infinité processes, one has to cope
with infinité terms. Further study should be devoted to a constrained version
of this problem, where the maximum number of available processors (i.e.,
number of parallel components) is fixed a priori; a solution to such a problem
could be useful practically, also in case of recursion.

The problem of finding the maximally parallel version of a given process
has not been widely studied up to now. Maybe this is due to the fact that,
despite of its expected intuitive simplicity, the parallelization of a process
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is actually a delicate notion that can be influenced by several parameters
as shown in [Mar96]. These have to do mainly with the interplay between
increase of parallelization and decrease of non-determinism. In particular,
we show that these two are confliciting requests! For instance, consider
agent P = (a.a.b + c)\b. It is easy to see that P is completely reduced.
Nonetheless, the non completely reduced agent Q = P + a.b\a.b may be,
intuitively, faster in some cases as the two occurrences of action a are not
sequentialized. In other words, Q is faster but has multiple branches, while
P is wmb but at the price of being, in some cases, slower. The définition
have presented here is the one we have found more intuitively appealing;
see [Mar96] for a detailed discussion on possible variations.

Concerning the requirement of Increase of disîribution/efficiency, we
would like to prove that the most parallel version Q of a process
P is more distributed and more efficient than P. And moreover, that
there is no way to do better (at least, under some circumstances). Of
course, mis means that we need to introducé suitable truly concurrent
semantics which express distribution and timing information. These are
crucial criteria for assessing the merits of a notion of parallelization;
hence, the problem we are facing sheds new light on the rôle of
truly concurrent semantics, which should be used to check structural
properties of Systems, rather than their functionality (already expressed
by the interleaving semantics). Indeed, in [Mar96] our parallelization
preorder is compared with the location preorder [BCHK92] and with
the performance preorder [CGR95, CGR97]. These two preorders are,
as ours, bisimulation-based and interleaving bisimulation équivalence
preserving. These comparisons are not included here because they require
an extensive treatment which goes outside the scope of this introductory
paper.

The language we have used is certainly simple. Besides the extension to
recursion (already discussed), we would like to mention the problems arising
when communication and estriction are included. Consider the completely
reduced process P = a.a.b, However, if we allow communication,
P ~ Q = (a.c.b)\(a.c) \ c, which is more parallel than P. Nonetheless,
besides the technical problem of singling out such communications, it is not
clear that the increase in distribution will cause an increase of efficiency
as communication is usually a costly opération. Furthermore, the présence
of unobservable communications (as in CCS), forces to choose a different
underlying équivalence, e.g. weak bisimulation.
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