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ASSOCIATIVE CLOSURE AND PERIODICITY OF o;-WORDS (*)

by A. MATEESCU ("*") and G. D. MATEESCU (*)

Communicated by J. BERSTEL

Abstract. - We investigate some shuffle-like opérations on cu-words and u-languages. The
opérations are introduced using a uniform method based on the notion of an oj-trajectory. Our
main results concern associativity. An interconnection between associative closure and periodicity
will be exhibited. This provides characterizations of periodic and ultimately periodic u)-words,
Finally, a remarkable property of the Fibonacci aj-word is proved, Le., the associative closure of
this io-word properly contains ail periodic u-words. © Elsevier, Paris

Résumé. — Nous étudions des opérations similaires à l'opération de mélange sur des mots infinis
et sur des u-langages. Les opérations sont introduites par une méthode uniforme fondée sur la
notion d'u)-trajectoire. Nos résultats principaux concernent Vassociativité. Une connexion entre la
fermeture associative et la périodicité est établie. Elle fournit des caractérisations de mots infinis
périodiques et ultimement périodiques. Finalement, nous prouvons une propriété remarquable du
mot infini de Fibonacci, à savoir que la fermeture associative de ce mot contient strictement tous
les mots infinis périodiques. © Elsevier, Paris

1. PRELIMINAIRES

Parallel composition of words and languages appears as a fundamental
opération in parallel computation and in the theory of concurrency. Usually,
this opération is modelled by the shuffle opération or restrictions of this
opération, such as literal shuffle, insertion, left-merge, or the infiltration
product, [6].

We investigate some shuffle-like opérations on u;-words and u;-languages.
The reader is referred to [11] for an early approach of this problem in
connexion to parallel composition of concurrent processes. The shuffle-like
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154 A. MATEESCU, G. D. MATEESCU

opérations considered below are define using syntactic constraints on the
u;-shufrle opération.

The constraints are based on the notion of an u-trajectory and describe
the gênerai strategy to switch from one o;-word to another o;-word. Roughly
speaking, an u;-trajectory is a brokenline in plane, starting in the origin and
continuing parallel with the axis Ox or Oy. The broken line can change its
direction only at points with nonnegative integer coordinates. An aMrajectory
defines how to move from an a;-word to another o;-word when carrying out
the shuffle opération. Each set T of oMrajectories defines in a natural way
a shuffle opération over T. Given a set T of u;-trajectories the opération
of shuffle over T is not necessarily an associative opération. However, for
each set T there exists a smallest set of trajectories T such that T contains
T and, moreover, the opération of shuffle over T is associative. The set T
is referred to as the associative closure of T. We show that the associative
closure of some very simple finite sets leads to the set of periodic or to the
set of ultimately periodic u;-words.

The set of nonnegative integers is denoted by UJ. The set of all subsets
of a set A is denoted by V{A).

Let S be an alphabet, Le., a finite nonempty set of éléments called letters.
The free monoid generated by E is denoted by E*. Eléments in X* are
referred to as words. The empty word is denoted by À.

If w e E*, then \w\ is the length of w. Note that |À| = 0. If a G S and
w G S*, then \w\a dénotes the number of occurrences of the letter a in
the word w. The mirror of a word w — a\a>2 . . . an, where a* are letters,
1 < i < n, is w = an . . . d2(ii and À = À. A word w is a palindrome
iff w = w.

Let S be an alphabet. An uj-word over E is a function ƒ : eu —• S.
Usually, the u;-word defined by ƒ is denoted as the infinité séquence
/ ( 0 ) / ( l ) / ( 2 ) / ( 3 ) / ( 4 ) . . . An u/-word w is ultimately periodic iff w =
avvvvv . . . , where a; is a (finite) word, possibly empty, and v is a nonempty
word. In this case w is denoted as avu. An u;-word w is periodic iff
w — vvv... for some nonempty word v E S*. In this case w is denoted
as vu. The set of ail o;-words over E is denoted by Ew. An to-language is
a subset L of £w . The reader is referred to [12], [14] and [15] for gênerai
results on u;-words.

We now recall some opérations from formai language theory that simulate
the parallel composition of words. The shuffle opération, denoted by LU, is

Informatique théorique et Applications/Theoretical Informaties and Applications



ASSOCIATIVE CLOSURE AND PERIODICITY OF u;-WORDS 155

defined recursively by:

au LU bv = a(u LU bv) U 6(au LU v),

and
uLUA = A L U u = {W},

where u, v G S* and a, 6 G S.
The shuffle opération is extended in a natural way to languages: the

shuffle of two languages L\ and L2 is:

L\ LU L2 = (J wLUt;.

The liîeral shuffle, denoted by LU/, is defined as:

ƒ a\b\a2b2 . . . anbnbn+i . . . 6 m , if n < m,
[ aib\a2O2 • • • a m o m a m + i . . . aTC, 11 m < n,

where a2,6j G E.

ii LU/ A = A LU/ u = {^},

where u G S*.

2. o;-TRAJECTORIES

In this section we introducé the notions of u;-trajectory and shuffle
on o;-trajectories. The shuffle of two o;-words has a natural geometrical
interprétation related to lattice points in the plane (points with nonnegative
integer coordinates) and with a certain "walk" in the plane defined by each
oMrajectory.

Let V = {r, u} be the set of versors in the plane: r stands for the right
direction, whereas, u stands for the up direction.

DÉFINITION 2A: An uj-trajectory is an element t,t G Vu. A set T, T Ç Vu,
is called a set oftu-trajectories. D

Let S be an alphabet and let t be an u;-trajectory, t — £ 0 ^ 2 * * *, where
U € V,i > 0. Let a,/? be two a;-word sover E, a =

*--> where aj,6j G E , i , j > 0.

vol. 32, n° 4-5-6, 1998



156 A. MATEESCU, G. D. MATEESCU

DÉFINITION 2.2: The shuffle of a with fi on the us-trajectory ty denoted
a LJJt (3, is defined as follows:

a LU* /? = C0C1C2 . . . , where, if 1*0*1*2 . . . U\T — k\ and |<o*i*2 • * • U\u —

&2, then

h6jb2_i, if U = u.

D
If T is a set of o;-trajectories, the shuffle of a with f3 on the set T of
üü'trajectories, denoted a LLÎ  /?, is:

a LUT j3 = ( J a LUt (3.

The above opération is extended to a;-languages over E, ifLi,L2 Ç Sw,
then:

LUr L2 = | J a LUr /3.

Notation. If T is y w then LJJT is denoted by LLL.

Example 2.1: Let a and /3 be the u;-words a =
assume that t = r2v?r^uru The shuffle of a

with /3 on the trajectory t is:

a LU* yö = {aoaibobib2a2a3a4La^a^b^a7b4 . . . } .

The result has the following geometrical interprétation (see Fig. 1): the
trajectory t defines a broken line (the thinner line in Figure 1) starting in
theorigin and continuing one unit right or up, depending on the current letter
of t. In our case, first there are two units right, then three units up, then
five units right, etc. Assign a on the Ox axis and /? on the Oy axis of
the plane. The result can be read following the broken line defined by the
trajectory t, that is, if being in a lattice point of the trajectory, (the corner
of a unit square) and if the trajectory is going right, then one should pick
up the corresponding letter from a, otherwise, if the trajectory is going up,
then one should add to the result the corresponding letter from /3. Hence, the
trajectory t defines a broken line in the plane, on which one has "to walk"
starting from the origin O. In each lattice point one has to follow one of the
versors r or u, according to the définition of t.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Assume now that t1 is another trajectory, say: t1 — urbu4r3

trajectory t1 is depicted in Figure 1 by the bolder broken line.

Observe that:

157

The

a UJt' 0 — • • •}•

Consider the set of trajectories T = {t,tf}. The shuffle of a with (3 on
the set T of trajectories is:

a (3 =

1
:
h

h

h

h

\

t

t'

_
1

O \ QQ Üi 0*2 Û3 0,4 Û5 CLQ dj

Figure 1.

Remark 2.1: The shuffle on (finite) trajectories of (finite) words is
investigated in [9]. In this case a trajectory is an element t, t G V*.

Let S be an alphabet and let t be a trajectory, t — tot\ .. .tn> where
U E V, 1 < i < n. Let a,/? be two words over E, a = aoai . . . ap,f3 =
&0&1 . . . &9, where a«, 5j G S, 0 < i < p and 0 < j < q.

The shuffle of a with (3 on the trajectory t, denoted a LU* /?, is defined
as follows:

if | a | ^ |t|r or |/3| ^ \t\U9 then a LU* (3 = 0, else

vol. 32, n° 4-5-6, 1998
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a LU* (3 = C0C1C2 - . . Cp+q+2, where, if |*o*i • • • U\r = k\ and
• - -U\u — &2, then

= fcl_i, if U = r,

&*2_i, if *i = u.fÇ2~

Observe that there is an important distinction between the finite case,
Le., the shuffle on trajectories, and the infinité case, Le., the shuffle on
u;-trajectories: sometimes the resuit of shuffling of two words a and (3 on
a trajectory t can be empty whereas the shuffle of two cj-words over an
u;-trajectory is always nonempty and consists of only one o;-word.

3. ASSOCIATIVITY

The main results in this paper deal with associativity. After a few gênerai
remarks, we restrict our attention to the set V+ of üMrajectories t such that
both T and u occur infinitely many times in t. (It will become apparent below
why this restriction is important.) It turns out that associativity can be viewed
as stability under four particular opérations, referred to as O-operations. This
characterization exhibits a surprising interconnection between associativity
and periodicity, which in our opinion is of direct importance also for thebasic
theory of o;-words.

DÉFINITION 3.1: A set T of u-trajectories is associative iff the opération
\AAT is associative, Le,,

(a LUT /?) LUT 7 = a LJJT (/? LUT 7),

for ail a, ^ , 7 G Sw. D
The following sets of aMrajectories are associative:

2. T = { t ' e V" I |t|r < ex)}.
3. T — {aoPoaiPi . . . | ai G r*, j3% G u* and, a2, /?« are of even length,

i > 0}.
Nonassociative sets of u;-trajectories are for instance:

1. T = {ru)".
2. T = {t G Vu | t is a Sturmian o;-word }.
3. T — \w§w\w<i . . . | Wi G L}, whereL = {rnun \ n > 0}.
Observe that for each set of w-trajectories, T, the opération LJLJx is

distributive over union both on the right and on the left side. Moreover, we
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adjoin to Vu a unit element with respect toeach LJJr, denoted 1. Note that
1 is not an u;-word. Hence, we obtain the following resuit:

PROPOSITION 3.1: If T is an associative set of trajectories, thenfor any
alphabet £,

S = (V(Z*),U, LUT) 0,1)

is a semiring.

Proof: One can easily verify the axioms of a semiring, see [4]or [5], D
The following proposition provides a characterization of those sets of

a;-trajectories that are associative.

DÉFINITION 3.2: Let D be the set D = {x,y,z}. Define the substitutions
a, T : V{V")—>V{D"), as follows:

a(r) = {x,y}, a(u) = {z},

r(r) = {x}, T(U) = {y,z}.

Consider the morphisms ip and Î/J, cp, ip : Vu—>D^, defined as:

(p(r) = x, (p(u) = y,

i/;(r) = y, ip{u) — z. D

PROPOSITION 3.2: Let T be a set of u>-trajectories. The following conditions
are equivalent:

(i) T is an associative set of ou-trajectories.
(ii) a(T) n (<p(T) LUu z") - T(T) n (^(T) L±JU x").

Proof: (i) => (ii). Assume that T is an associative set of u;-trajectories.
Consider w such that w G a(T) D (<p(T) LUW ^ ) . It follows that there
exists ti , ti G T, such that w G <j{t\) and there exists t, t ET, such that
w G <p(t) LUa; z"- Assume that

ti =ri°ujlril ...ujnrin . . . ,

for some nonnegative integers ig,jh, 0 < g, 1 < h. From the définition of
a we conclude that
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160 A. MATEESCU, G. D. MATEESCU

Since w G <p(t) LU^ zu, it follows that t = SQSI . . . sn . . . , such that Sfc G V*
and \sk\ = à* for all &, 0 < &. Therefore,

w G (xw LU* yw) LUtl zw.

Because T is associative, there are t1 and ^ in T such that

( ^ LU* y») UJ t l ^ = * w LU

Hence, we obtain that w G x" LU^ (yw LU^ ^w ) , for some t' and t'2 in T.
Now, it is easy to observe that this simplies that w G r(T) n (ip(T) LJJa? a^7).
Thus, cr(T) n (y?(T) LUu; ^ ) Ç r(T) H (^(T) LUW x"). The converse
inclusion is analogous. Therefore, the equality from (ii) is true.

(ii) =» (i). Let E be an alphabet and let a, /?,7 be a;-words over S.
Consider an c^-word tu, such that it; G (a LU^ /?) LUT 7* There exist
t and ti in T such that w £ (a LUt /?) LLJ*! 7. Let v be the o;-word
obtained from ^ by replacing each letter from a by x, each letter from
0 by y and each letter from 7 by z. Observe that v is in cr(ii) and
also in cp(t) UJ^ z". Therefore, v G a(T) n (<p(T) LJJu; ^ w ) . By our
assumption, it follows that v G r(T) n (^(T) LU^ x"). Hence, there
are t' and ^ in T such that v G r(t ' ) n O(t'a) LUW xw). Note that
this means that v G x^ LU^ (yw LU*' zu), Hence, it is easy to see
that w e a LLJt/ (p LUt" 7), i.e., ^ G a LUT (/3 LUr 7)- Thus,
(a LUT /3) LU71 7 Ç a UU^ (j9 LLĴ  7). The converse inclusion is analogous.
Therefore, for all a,/3,7 G Ew,

(a LUT /?) LUr 7 = OL L U T (/3 UUT 7).

Thus, T is an associative set of a;-trajectories. D

Now we introducé the notion of the associative closure of an arbitrary
set of a;-trajectories.

Notation. Let A be the family of all associative sets of w-trajectories.

We omit the proof of the following proposition.

PROPOSITION 3.3: If(T%)iei is a family of associative sets ofw-trajectories,
then,

tel

is an associative set of uj-trajectories. D

Informatique théorique et Applications/Theoretical Informaties and Applications
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DÉFINITION 3.3: Let T be an arbitrary set of u-trajectories. The associative
closure of T, denoîed T, is

TÇT>,T'eA

Observe that for every T Ç {r,u}*, T is an associative set of u-
trajectories and, moreover, T is the smallest associative set of ct;-trajectories
that contains T.

Remark 3.1: The fonction " , ~ : V{VU)—>V(VU) defined as above is a
closure operator. D

Notation. Let V+ be the set of ail otrajectories t € Vu such that t contains
infinitely many occurrences of both r and u.

Now we give a characterization of an associative set of u;-trajectories
from F£\ This is useful in finding an alternative définition of the associative
closure of a set of cj-trajectories and also to prove some other properties
related to associativity.

However, this characterization is valid only for sets of u;-trajectories from
V+ and not for the gênerai case, i.e., not for sets of u;-trajectories from Vu.

DÉFINITION 3.4: Let W be the alphabet W = {x^y^z} and consider the
following four morphisms, pi, 1 < i < A, where pi : Wu—>V+, 1 < i < 4,
and

pi{x) = A, pi(y) - T, pi(z) - u,
P2(x) = r, p2(y) = u, pï{z) = u,
P3(s) = r, ps(y) = u, pz(z) = A,
p4(ar) = r, p4(y) - r, p4(z) = u.

where A dénotes the empty word. D

Next, we consider four opérations on the set Vĵ  of o;-trajectories.

DÉFINITION 3.5: Let <>;, 1 < i < 4, èe the following opérations on V+:

<>z : V£ x Kf—>V+, 1 < i < 4,

, /or a// ^ t ' G V+, by:

1. 0 i ( « , 0 = Pl((a^ LU*
2. O2(t,f) - p2((xw LJJt
3. Oa^,*) = P 3 ( ^ LUt' (y" LU*
4. O4(t',t) - p 4 ( ^ LUr ( ^ HAt J*)). D
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162 A. MATEESCU, G. D. MATEESCU

Remark 3.2: Hère we like to point out why we restricted our attention to
the set V+ and not to the gênerai case Vu. The opération Oi is defined to
produce the cj-trajectory t\ (see the above proof). However, if T contains
a trajectory t that is not inV+\ then <>i(M) is not necessarily in V^. For
instance, if t = rur^, then <h(i, t) — UT £ V^". Thus the opération Oi is
not well defined. A similar phenomenon happens with the opération O3. D

DÉFINITION 3.6: A set T Ç V+ w staW<? wn̂ fer (^-opérations iff, for ail
*i,*2 G T, itfollows that <>l{tut2) G T, 1 < i < 4 D

PROPOSITION 3.4: Le/ T be a set of uj-trajectories, T Ç V^. The following
assertions are equivalent:

(i) T is an associative set of w-trajectories.
(ii) T is stable under O-operations.

Proof: The idea of the proof is that for two o;-trajectories t, t1 and for
the u;-words xu, y^ and zw, the opération Oi applied to t and t1 gives the
(unique) trajectory t[ that occurs in the equality:

(x" mt i H LU, f - xw LUtl ( ÎT LUti z
w).

The opération O2 gives the (unique) a;-trajectory t\ that occurrs in the above
equality. Analogously, O3 applied to t\ and ^ gives the (unique) trajectory
t whereas ^4(^1,^) = tf.

(i) = > (ii) Assume that T+ is an associative set of co'-trajectories. Since
T is associative, there are ti and t\ in T such that

( ^ LUt y") LLV ^ = xw LUtl (yw LJUti ^ ) .

Hence,

• l ( * , 0 = Pl{ix» HJt jf) LLit' z") = P l ( ^ LUtl (y" LUti z"))

= rw LUti u" = ti G T.

Thus T is stable for Oi.
Analogously,

O2(t,t') = P2((x" LUt y
w) LUt, ^ ) = P2(x" LUtl ( ^ LUti «"))

= rw LUtl M" = h G T.

Hence T is stable for O2.
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A similar proof shows that T is also stable for <>3 and <C>4.
(ii) ==>> (i) Now assume that T Ç V+ is a set of u;-trajectories stable

under 0? , 1 < i < 4.

Let E be an alphabet and consider a,/3,7 G Sw and £,£' G T. Note that
Oi(M') = t[ and <>2(M') = *i, for some £1, ^ G T. Now it is easy
to see that

(a LU*/?) LU*/ 7 = <* W t l (/3 LUt/ 7) .

Thus, we obtain

(a LUT ƒ?) LUT 7 Ç a LUT (ƒ? LU r 7).

For the converse inclusion, the proof is similar, using the fact that T is
stable under O3 and <C>4. •

Comment. Observe that V — (V(V+), (0«)i<»<4) *s a ^niversal algebra,
see [3]. If T is a set of u;-trajectories, then dénote by f the union of all
those sets of u;-trajectories that are in the subalgebra generated by T with
respect to the algebra V.

PROPOSITION 3.5: Let T Ç V+ be a set of uj-trajectories.
(i) T is anassociative set of cj-trajectories and, moreover,
(ii) T — T, i.e., the associative closure of T is exactly the subalgebra

generated by T in P .

Proof: (i) T is stable under the opérations <0i, 1 < i < 4 and thus, by
Proposition 3.4, T is an associative set of w-trajectories.

(ii) Observe that T Ç f and that f is associative, hence T ÇT. For the
converse inclusion, let T' Ç V+ be an associative set of u;-trajectories such
that T Ç T'. Note that by Proposition 3.4, T' is stable under the opérations
•z, 1 < i < 4 and thus f Ç T'. ThereforeT Ç T . •

4. PERIODICÏTY AND ASSOCIATIVITY

This section is dedicated to investigate some interrelations between the
periodicity property and the associativity of the shuffle on trajectories.

PROPOSITION 4.1: Let T Ç V+ be a set of tu-trajectories.
(i) Ifeach t ET is a periodic u-word, each t1 E T, has the same property,

Le., each uj-trajectory in T is a periodic uj-word.
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164 A. MATEESCU, G. D. MATEESCU

(ii) If, additionally, each t G T has a palindrome as its period, then the
associative closure of T, T, has the same property.

(iii) IfTisa set of ultimately periodic uj-trajectories, then the associative
closure of T, T, has the same property\ Le., each u-trajectory in T is
ultimately periodic.

Proof: (i) Note that the morphisms pi, 1 < i < 4, preserve the periodicity.
Now consider the opération Oi- Let t\ = su and £2 = s'w. Define p and q
by p = \s\r andç - \s\u. Observe that xu - {xpY and y^ = {yqY. Let v
be the unique word xp LU „5 yq (note that this is the shuffle over a finite
trajectory, see Remark 2.1). Observe that x^ LU^ yu — vu is a periodic
a>word for some nonempty word v that contains both r and u (T Ç V+ ).

Now assume that i — | s ' | r , j = \sf\u and k — \v\. Let n be the least
common multiple of i , j , fc. Assume that n — iif = jj' — kkf for some
positive nonzero integers i\j\kf. Note that

0rw LUtl y") UJt2 z" = vu LU,- ^ = ( ^ T LU50- (zk'f = aw,

where a is the unique word v*' LLJ5/y zk'.

Hence OiC^i,^) is a periodic cj-word. Similarly, ^2(^1^2) is a periodic
u;-word, 2 < z < 4.

(ii) Observe that the morphisms pi, 1 < i < 4, are weak codings and
hence they preserve the palindromes. The proof now proceeds as above. The
resulting periods are palindromes.

(iii) The proof is similar with the proof of (i). D
The above proposition yields:

COROLLARY 4.1: The following sets of ou-trajectories are associative:

(i) the set of all periodic u-trajectories fromV+"'.
(ii) the set of ail periodic u-trajectories fromVj^ that have as their period

a palindrome.

(iii) the set of ail ultimately periodic u-trajectories fromV^. D

DÉFINITION 4.1: Let sym be the following mapping, sym : V —• V,
sym(r) = u and sym(u) = r. Also consider the mapping <p : {x,y, z} —•
{x,y,z}> (p(x) = z, <p(y) — y and <p(z) = x. sym and (p are extended to
uj-words over V and, respectively over {x, y, z}. D

Next theorem provides a characterization of those o;-trajectories that are
periodic. As such it is also a direct contribution to the study of u;-words,
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exhibiting an interconnection between periodicity and associativity. The
theorem gives also a concrete example of a calculation of the associative
closure of a set of cj-trajectories.

THEOREM 4.1: Let t be an uj-trajectory such that t ^ ru and t / uu. The
following assertions are equivalent:

(i) t is a periodic cj-word.
(ii) t is in the associative closure of (rw)w.
Consequently, we obtain the following:

COROLLARY 4.2: An u-word t E V+ is a periodic u-word if and only if
t can be obtained from the u-word^uj0 by finitely many applications of
opérations §i, 1 < i < 4. D

Proof of Theorem 4.1: (ii) = » (i) It follows from Proposition 3.5, (ii),
and Proposition 4.1, (i).

(i) =>- (ii) Let A be the associative closure of the o;-trajectory(ru)u;.
Assume that w is a nonempty word from F*, w = dO^d?* .. .d\k, where
dip € {r, u}, 1 < j p , for ail 1 < p < k and, moreover, diq / <kq+19 for
ail 1 < q < k. The degree of w, denoted deg(w), is by définition k. Note
that for each nonempty word w over V, deg(w) is a unique integer greater
than 1. Let t be a periodic a;-word over V such that t ^ rw and t ^ u™. It
follows that t = w" for some nonempy word w. Clearly, deg(w) > 2.

We prove by induction on deg(w) that t = u>w is in A. First we prove
two claims:

Claim A: For ail i,j > 1, the cj-trajectories t — wu, where w — rlu
or w — nrJ, are in A.

Proof of Claim A: Note that Oi((^w)w, (ru)u) — (uru)u. Moreover,
<>3((nrn)w, (rn)w) = (ur)w. Hence we obtain that (ur)w G A.

Assume now that w = rzu, i > 1. We show by induction on i that
t — w^ e A. For i = 1, obviously t G A. Assume the statement true for ail
w = r%u with i < k and consider w — rfc+1w. If k is an even number, say
k = 2j, then let t\,t% be the u;-trajectories *i — {ruf and 2̂ = {r^uf'. By
the inductive hypothesis £2 is in A. Now observe that:

04(ti, t2) - P±{X f f

Consider now the other case, Le., k is an odd number, say k = 2j — 1. Let
ti,t2 be the u?-trajectories t\ — (r^uf and i<i — (ur)w . By the inductive
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hypothesis t\ is in A. Now observe that:

<>3(ti,*2) = P3(z" LUtl {zy)u) = f*((x>zx>xyf) = {r*>uf =

Therefore (r'u)^ G A for ail i > 1.
A similar proof shows that (vPr)u, (ur?')u;, {rv?)^ G A for ail j > 1.

Claim B: For ail i, j , p, # > 1, the u;-trajectories i — tu'*', where w = r V
or tu = wprg, are in A

Proof of Claim B: First, assume that w = rlv?, i,j > 1. The proof is by
induction on the number i + j . Obviously, if w — ru, then t = w^ G A.
The inductive step: let t\ = {r%u^f be in A. By Claim A it follows that
t2 = (r'+Jit)^ G A. Observe that:

Hence Claim B is true also for w = r
Note that the o;-trajectory t3 = ( r ^ + J ) w is also in A, see Claim A.

Moreover, <>4( î, ̂ 3) = (r*+1itJ")u;. Therefore, for ail words of the form
w = r'u-7, i , j > l ^ w G A.

A similar proof shows that for ail words of the form w = uprq,
p,q > 1,11/" G A,

We are now ready to prove the implication (i) = > (ii). Let t = w™ be a
periodic cj-word such that t ^ ru and t ^ u^. The proof is by induction on
k = deg(w). The case k = 2 follows from Claim B. Assume the implication
true forwords w with deg(w) < k. Let tu be a word with deg(w) = A; + 1,
sayzt; = rHul2rl3 . . . rlkuq. Dénote w\ — rHuÎ2rl3 ... r%k and note that by
the inductive hypothesis the u;-trajectory t\ — (ifi)^ is in A. Consider also
the o;-trajectory t<i — {rsuqy, where 5 = \w\\ and note that £2 is also in
A, Observe that:

<>2(*1,*2) - P 2 ( ( * V 3 • --Xlk) LUta ^ ) = P2tt*ilyi2 ' •.J'Z*)") - t.

If tu = T%XU%<2T%Z ... uîkrp, then dénote wi = rllul2rîz .. .u%k and note that,
again by the inductive hypothesis, the u/-trajectory £i = (wi)u is in A.
Consider also the o;-trajectory t2 ~ (u 5 ^)^ , where 5 = \w\\ and note that
*2 is also in A. Moreover, it is easy to see that: 04(^2,£1) = *•

The situation when tu begins with it is similar. D

Next theorem is similar to Theorem 4.1. It states a characterization of
ultimately periodic o;-words in terms of the associative closure of a certain
set ofcü-trajectories.
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THEOREM 4.2: Let t be an ou-trajectory such that t G V+. The following
assertions are equivalent:

(i) t is a ultimately periodic u-word.
(ii) t is in the associative closure of the u-trajectory r(ru)u.
Thus, we obtain the following:

COROLLARY 4.3: Let t be an cu-word, t G V+.t is a ultimately periodic
u-word if and only if t can be obtained from the uj-word r^u)^ by finitely
many applications of opérations <>2, 1 < % < 4. •

Proof of Theorem 4.2: We start the proof by considering the notion of
a formai description. Let T be a set of oMrajectories. A finite séquence
£i,£2,---j£n °f ^-trajectories is referred to as a formai description of tn

with respect to T iff for each 1 < k < n, either t& G T, or there exists
1 ^ i ^ 4, and there are 1 < p, q < k, such that tj- — Qi(tp, tq).

A formai description t\, t2,..., tn oïtn with respect to T is denoted by

< t i , i 2 î * • • itn >T *

One can easily verify that

T = {tn\ there exists < t i , ^ , • • • ,*n > T } -

Moreover, if < t j , t2) • • • » *n >T and T Ç T', then < t1? t2 , . • •, *» >T'-
(ii) = > (i) It follows from Proposition 3.5, (ii) and Proposition 4.1, (iii).
(i) = > (ii) We start the proof by proving some claims. Consider the

notations To = { H w } , T\ = {r(rn)U7}, T2 = {(rw)w, r(rw)w} and

Claim A: The sets T\ and T2 have the same associative closure, i.e.,

TÏ = n.
Proof of Claim A: One can easily verify the following two equalities:

and

Note that sym(T) = sym(T) and using Theorem 4.1 we obtain that
(ur)u = (ru)u. Hence T<i Ç 7\. The converse inclusion is obviously true.
Thus we obtain Claim A.
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Claim B: The sets T% and T3 have the same associative closure, i.e.,
% = %•

Proof of Claim B: Note that u{ru)u = (ur)w and hence u(ru)w is a
periodic u;-trajectory. By Theorem 4.1, u{ru)u is in the associative closure
of (ru)00. Thus we obtain Claim B.

Claim C: If < *i,*2, • • • ,*n >ro> then

< h,t2,... ,tn,rti,uti,rt2,ut2,.. - ,rtn,utn >r2 •

Proo/ o/ C/a/m C: We show by induction on fc that

Assume that k = 1. Observe that from the définition of a formai
description, it follows that t\ — (rn)w. By définition of T% and Claim B
we conclude that < t\, £2, • • •, tn, r t i , wti >x2. Assume by induction
that< t i , t2 , . . . , t n , r t i ,u t i , r t2 ,u t2 , . . . , r i f c „ i ,n t f c - i >r2- If *fe = (ru)w,
then the conclusion follows as in the case k — 1. Now, assume that
£fc = Oi(*p)*g) for some 1 < i < 4, 1 < p, q < k and we show that
the trajectory rtfc has a formai description with respect to T%. Consider ail
possible situations:

If % — 1, that is tk — Oi(*pj*g), then note that

rtk = pi((irw LUutp y") mrtq z") = Oi(utp,rtq).

Assume that i = 2. Hence tk = ^>2(tP,tq), and note that

rtk - M ( ^ LUrtp Î ^ ) LJJrt, ^ ) - <>2(rtp,rtq).

Consider now that i = 3. Thus t^ = <>3(£p,£g), and observe that

rtk - P3((^w L^rtp yw) mtq z") = 03(rtp,*9).

If i — 4 and therefore tk — 04(tp , tq), then note that

rtk -

Finally, we prove how the trajectory utk can be obtained. Again, we
consider ail possible situations.
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Assume that i = 1 and tk = §\{tp,tq). Observe that

utk = pi((a^ LU*, y") LUutg ^ )

If i = 2, and thus £& = ^2(*p,*g). then note that

Consider that % — 3. Hence £& = <^3(tp,tq) and notice that

Jrtq

If i = 4, that is £*. = <>4(^,^), then note that

Next two claims assert that certain trajectories are in the associative
closure of the setT2 = {(ru)w,r(rit)w}.

Claim D: If t is a periodic trajectory, t E V+\ then the trajectories rt
and ut are in T2.

Proof of Claim D: Let i be a periodic trajectory, t E V+\ Observe
that from Theorem 4.1 and from the définition of the formai description,
there exists a formai description of t with respect to TQ = {(ru)^}, say
< ti,t2) • • • »*ïi5* >T0- From Claim B it follows that

Hence, we conclude Claim D.

Claim E: The trajectories r2(ra)w and ur{ruY are in T2.

Proof of Claim E: Observe that: r2{ruY = p^x" UJtl (yu LUt2 )
where ti = (ra3)w and t2 = r{ru2y'. Moreover, ur(rtt)w =
pi((xw LUt3 y^) LUt4 2W), where £3 = u(ur)w and t2 = (wr2)w.

Note that as a conséquence of Theorem 4.1 and of Claim D, tj, 1 < i < 4
are in T2.

From the above Claim E, we deduce that there are the following formai
descriptions:

< x\,X2,...,Xi,r2{ruf >r2 and < 3/1,3/2, •• • ,Vj,ur{ruf >T2 -
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Using these notations we assert:

Claim F: If < t\, t%,..., tn >T2 , then

*i, .'-,tnirti,uti, ...,rtn,utn >T2.

Proof of Claim F: We show that for ail 1 < k < n, the trajectories rt^ and
u% are in T2. Assume k — 1 and note that ti = (rit)w or t\ — r(ru)u. Thus
rti and ut\ are among the following trajectories: r(ru)u, u(ru)ü\ r2(ru)u,
ur(ru)w. Using Claims B and E we obtain that in each case they are in T2.
Assume that k > 1. If £& is in T2, then the claim follows as in case fc = 1.
If tfc is obtained by using an opération <0>«, 1 < i < 4, i.e., ^ = Qi(tpitq),
for some 1 < i < 4, 1 < py q < k, then a similar proof as for Claim C
shows that rt^ and ut^ are in T2.

Now we end the proof of Theorem 4.2.
Let t — azw be a ultimately periodic a;-word, t E V+ . Let n be the length

of a, i.e., |a|. If n = 0, then t is a periodic u word and from Theorem 4.1
we conclude that t G T2. If n > 1, then using n times Claim F we obtain a
formai description of t with respect to T2. Hence, from the définition of the
formai description it follows that t G T2. Since, by Claim A, T2 — T\9 the
proof is complete. D

Next theorem shows a remarkable property of the most famous infinité
Sturmian word, known as the Fibonacci word. An infinité Sturmian word is
an cj-word t over V such that the subword complexity of t is defined by the
function tpt(n) = n + 1, i.e., for any n > 1, the number of subwords of t
of length n is exactly n + 1. See [1], [7] for other equivalent définitions of
infinité Sturmian words as well as for a number of properties of these words.

The Fibonacci word ƒ is defined as the limit of the séquence of words
(fn)n>o, where:

h = r, f\ = U9 fn+l = fnfn-l, n > 0.

Note that ƒ is an infinité word which has an initial prefix as follows:

ƒ — uruururuuruuruTuururu...

Remark AA: Note that for each n, \fn\ is equal with the n-th term of
the Fibonacci numerical séquence: 1,1,2,3,5,8,13.... Moreover, \fn\r =

/„|tt = |/n_2|. D
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We recall some properties of the opération of shuffle on finite trajectories,
see Remark 2.1. For more details on this topic the reader is referred to [9].

DÉFINITION 4.2: Let W be the alphabet W — {x,y,z} and consider the
following four morphisms, p[, 1 < i < 4, where p[ : W—>V*, 1 < i < 4,
and

pf
2{x) = r, p2(y) = u, pf

2{z) = w,

p3(x) = r, p'3(y) = u, pz(z) = A,

p'4(x) = r, p^y) = r, ^ ( z ) = «. D

DÉFINITION 4.3: Le? 0^, 1 < i < 4 èe the following partial opérations on y*.

<X : F* x V*-^> Vr*, 1 < z < 4,

Le/ i,i ' be in V* and assume that \t\ = n, \t\r — p, \t\u — qy \t*\ — nl,
|f |r = P', \t'\u = q',

1. if n = p', then <>; {t,t') = px((o? LU( y*) LUt- ««')), efae, <>i(t,0
is undefined.

2. ifn = p', then O'2(t,t') = p 2 ( ( ^ LU* y«) UJt- ««
w undefined.

3. ?ƒ n = c', 2Aen Os^',^) = Pz(ri>' LUt' (yp( LUt ^
w undefined.

4. !ƒn = ç', /Aen 0'4(t /,t) = p4(arp' LUf (yp( LU* ^ ) )
undefined. •

Note that the morphisms p'2, 1 < i < 4, as well as the opérations 0i>
1 < z < 4, are the versions of the morphisms p?, 1 < i < 4, and respectively
of the opérations Oz, 1 < i < 4, for the case of finite trajectories. In the
sequel p[ is denoted by p« and 0( is denoted by 0«, 1 < « < 4. Notice that
this simplification does not produce any ambiguity.

Now we are in position to state our resuit:

THEOREM 4.3: The associative closure of the Fibonacci word, ƒ, contains
ail periodic trajectories and the containment is strict.

Proof: We start by pro ving the following equality:
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Let (en)^>o be the Fibonacci numerical séquence 1,1,2,3, 5,8,13 Note
that en = | fn\ for every n > 0. Consider the notation t — <>i(/, <>3(/, ƒ)).
We show that each prefix of t of length 2en is of the form (ru)en. The
proof is by induction on n.

Let an be the value of O3(/ra+i,fn), i.e.,

an = pz(xBn-x LJU/n+1 (y 6 - 2 LJJ/n 2e™-1)).

Therefore, we prove by induction on n that:

Ol(fn-uan) = (ru)e-\ (II)

That is:

o/ induction: n — 3.
Notice that:

«3 = £3(s:2 LUuru«r (y LUwrw 2;2)) = p$(x2 LUuruur zyz) ~ p$(zxyzx) = TUT.

It follows that:

• l(/2,ûî3) = P\(UT,TUT) = pi((x YlAur y) VlArur z) =

= p\(yx LUrur z) = pi(yzx) = TU = (ru)e\

Hence, for n — 3 the equality (ƒƒ) is true.
The inductive step: n h n + 1
We start by computing the value of an+\:

an+i - Pz{xe- L±Jfri+2 ( y 6 -
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Therefore, we proved that:

= anan_i.

Using the above relation, the inductive hypothesis, the well-known properties
of the numerical Fibonacci séquence and the properties of the Fibonacci
séquence ƒ, it follows that:

• (rrc— LU/n_a

• i (ƒ*-! ,a„)<h( / n -2 ,an- i ) = (ru) e»-2(ru) e-1 - ( r u ) e

Hence, equality (/ /) , and consequently equality (/) are true.
Using Theorem 4.1, we deduce that all periodic cj-words from V+ are

contained in the associative closure of the Fibonacci séquence, ƒ.
Since the Fibonacci séquence is not a periodic o;-word, by Proposition 4.1,

we conclude that the above containment is strict. D

5. CONCLUSION

The shuffle-like opérations considered in this paper provide a new tooi for
investigating properties of u;-words. Recently, a characterization of cj-words
that are ultimately periodic has been obtained in [10]. This characterization
is based on a different approach. Interrelations between this characterization
and the characterization from the present paper are subject of further research.

Many other problems remain to be investigated. For instance: does exist a
proper ultimately periodic cj-word in the associative closure of the Fibonacci
u;-word f? What can be said about the associative closure of some other
Sturmian u;-words?
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