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ASSOCIATIVE CLOSURE AND PERIODICITY OF w-WORDS (*)

by A. Mateescu (1) and G. D. Mateescu (¥)

Communicated by J. BERSTEL

Abstract. ~ We investigate some shuffle-like operations on w-words and w-languages. The
operations are introduced using a uniform method based on the notion of an w-trajectory. Our
main results concern associativity. An interconnection between associative closure and periodicity
will be exhibited. This provides characterizations of periodic and ultimately periodic w-words.
Finally, a remarkable property of the Fibonacci w-word is proved, i.e., the associative closure of
this w-word properly contains all periodic w-words. © Elsevier, Paris

Résumé. — Nous étudions des opérations similaires a I’opération de mélange sur des mots infinis
et sur des w-langages. Les opérations sont introduites par une méthode uniforme fondée sur la
notion d'w-trajectoire. Nos résultats principaux concernent I’associativité. Une connexion entre la
fermeture associative et la périodicité est établie. Elle fournit des caractérisations de mots infinis
périodiques et ultimement périodiques. Finalement, nous prouvons une propriété remarquable du
mot infini de Fibonacci, & savoir que la fermeture associative de ce mot contient strictement tous
les mots infinis périodiques. © Elsevier, Paris

1. PRELIMINARIES

Parallel composition of words and languages appears as a fundamental
operation in parallel computation and in the theory of concurrency. Usually,
this operation is modelled by the shuffle operation or restrictions of this
operation, such as literal shuffle, insertion, left-merge, or the infiltration
product, [6].

We investigate some shuffle-like operations on w-words and w-languages.
The reader is referred to [11] for an early approach of this problem in
connexion to parallel composition of concurrent processes. The shuffle-like
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154 A. MATEESCU, G. D. MATEESCU

operations considered below are define using syntactic constraints on the
w-shuffle operation.

The constraints are based on the notion of an w-trajectory and describe
the general strategy to switch from one w-word to another w-word. Roughly
speaking, an w-trajectory is a brokenline in plane, starting in the origin and
continuing parallel with the axis Oz or Oy. The broken line can change its
direction only at points with nonnegative integer coordinates. An w-trajectory
defines how to move from an w-word to another w-word when carrying out
the shuffle operation. Each set 1" of w-trajectories defines in a natural way
a shuffle operation over T. Given a set T of w-trajectories the operation
of shuffle over T is not necessarily an associative operation. However, for
each set T there exists a smallest set of trajectories T' such that T' contains
T and, moreover, the operation of shuffle over T is associative. The set T
is referred to as the associative closure of T. We show that the associative
closure of some very simple finite sets leads to the set of periodic or to the
set of ultimately periodic w-words.

The set of nonnegative integers is denoted by w. The set of all subsets
of a set A is denoted by P(A).

Let 3 be an alphabet, i.e., a finite nonempty set of elements called letters.
The free monoid generated by X is denoted by %*. Elements in X* are
referred to as words. The empty word is denoted by A.

If w € ¥*, then |w| is the length of w. Note that |A\| = 0. If a € ¥ and
w € ¥*, then |w|, denotes the number of occurrences of the letter a in
the word w. The mirror of a word w = aja9...ay,, where a; are letters,
1<i<n,isw=ay...a2a; and A=A\ A word w is a palindrome
iff w = w.

Let ¥ be an alphabet. An w-word over ¥ is a function f : w — 3.
Usually, the w-word defined by f is denoted as the infinite sequence
FOFF(2)f(3)f(4)... An w-word w is ultimately periodic iff w =
avvvvy . . ., where « is a (finite) word, possibly empty, and v is a nonempty
word. In this case w is denoted as av®”. An w-word w is periodic iff
w = vvv... for some nonempty word v € X*. In this case w is denoted
as v*. The set of all w-words over ¥ is denoted by X“. An w-language is
a subset L of ¥“. The reader is referred to [12], [14] and [15] for general
results on w-words.

We now recall some operations from formal language theory that simulate
the parallel composition of words. The shuffle operation, denoted by LLI, is
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ASSOCIATIVE CLOSURE AND PERIODICITY OF W-WORDS 155
defined recursively by:
au L bv = a(u LW bv) U b(au L v),

and
wlld A=\ LW u = {u},

where u, v € ¥* and a, b € X.

The shuffle operation is extended in a natural way to languages: the
shuffle of two languages Ly and Ly is:

Ly W Ly = U u L v.
u€L,,vEL,

The literal shuffle, denoted by LLJ;, is defined as:

ai1biazby ... anbrbpyi ... by, if n <m,

a1a2...an L b1bo ... by = ;
102 n LI 0102 m arbrazby ... ambmam+1 ... an, if m <mn,

where a,,b; € X.

wlly A= AUy u={u},

where v € X*.

2. w-TRAJECTORIES

In this section we introduce the notions of w-trajectory and shuffle
on w-trajectories. The shuffle of two w-words has a natural geometrical
interpretation related to lattice points in the plane (points with nonnegative
integer coordinates) and with a certain “walk” in the plane defined by each
w-trajectory.

Let V = {r,u} be the set of versors in the plane: r stands for the right
direction, whereas, u stands for the up direction.

DEFINITION 2.1: An w-trajectory is an element t, t € V¥, Aset T, T C V¥,
is called a set of w-trajectories. O

Let ¥ be an alphabet and let ¢ be an w-trajectory, ¢ = tot1t2 ..., where
t; € V,i > 0. Let o, be two w-word sover X, o = agaiaz...,0 =
bob1bs ..., where a;,b; € £,4,7 > 0.
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156 A. MATEESCU, G. D. MATEESCU

DEerNITION 2.2: The shuffle of a with 3 on the w-trajectory t, denoted
o Ul B, is defined as follows:

alll B =cycicy ..., where, if ltotltz .. -tilr = ki and |t0t1t2 ... tilu =
ko, then

ag,—1, ifti=r,
br,—1, ift; =w.

O

If T is a set of w-trajectories, the shuffle of a with 3 on the set T of
w-trajectories, denoted « Lilp (3, is:

[0 LLIT ﬂ = U o Ll ﬂ
teT
The above operation is extended to w-languages over %, ifL1, Ly C X%,
then:

Ly Wy Ly = U a e B.
a€L,,B€L,

Notation. If 7" is V* then LLIT is denoted by LLl,,.

Example 2.1: Let « and (8 be the w-words o = apajazasasasasay ...,
B = bob1babsby ... and assume that t = r2u3rSurwu. ... The shuffle of «

with (8 on the trajectory ¢ is:
alll 8= {a0a1b0b1b2a2a3a4a5a5b3a7b4 .. }

The result has the following geometrical interpretation (see Fig. 1): the
trajectory ¢ defines a broken line (the thinner line in Figure 1) starting in
theorigin and continuing one unit right or up, depending on the current letter
of ¢t. In our case, first there are two units right, then three units up, then
five units right, etc. Assign o on the Ox axis and § on the Oy axis of
the plane. The result can be read following the broken line defined by the
trajectory ¢, that is, if being in a lattice point of the trajectory, (the corner
of a unit square) and if the trajectory is going right, then one should pick
up the corresponding letter from «, otherwise, if the trajectory is going up,
then one should add to the result the corresponding letter from 3. Hence, the
trajectory t defines a broken line in the plane, on which one has “to walk”
starting from the origin O. In each lattice point one has to follow one of the
versors r or u, according to the definition of ¢.
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ASSOCIATIVE CLOSURE AND PERIODICITY OF W-WORDS 157

Assume now that ¢’ is another trajectory, say: t' = wurSu®r®.... The
trajectory ¢’ is depicted in Figure 1 by the bolder broken line.

Observe that:
a Ly B = {bpapaiazazasbibrbzbsasasar .. .}.

Consider the set of trajectories T' = {t,¢'}. The shuffle of @ with 8 on
the set T of trajectories is:

a LWy B = {apa1bpbibrazazasasaebsarby . . .,
boagaiazasasbibabsbsasasar .. . }.

Ol ag a1 ay a3 a4 a @ ar ... T

Figure 1.

Remark 2.1: The shuffle on (finite) trajectories of (finite) words is
investigated in [9]. In this case a trajectory is an element ¢, ¢t € V*.

Let ¥ be an alphabet and let ¢ be a trajectory, ¢ = tpt1...%t,, Where
t; € V,1 < ¢ < n. Let a,8 be two words over &, a = agay...ap, =
bobi ...byg, where a;,b; € £,0< i< pand 0<j <gq.

The shuffle of a with 3 on the trajectory ¢, denoted « LLI; 3, is defined
as follows:

if || # |t|r or |B] # |tu, then a LU B = O, else
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a W B = cpcica...cppqr2, Where, if |toty ...tilr = ki1 and
[tot1 ... tilu = k2, then

¢ = 0k, —1, if ti=r,
¢ br,—1, ift; =w.

Observe that there is an important distinction between the finite case,
i.e., the shuffle on trajectories, and the infinite case, i.e., the shuffle on
w-trajectories: sometimes the result of shuffling of two words « and (3 on
a trajectory ¢ can be empty whereas the shuffle of two w-words over an
w-trajectory is always nonempty and consists of only one w-word.

3. ASSOCIATIVITY

The main results in this paper deal with associativity. After a few general
remarks, we restrict our attention to the set V}’ of w-trajectories ¢ such that
both r and u occur infinitely many times in ¢. (It will become apparent below
why this restriction is important.) It turns out that associativity can be viewed
as stability under four particular operations, referred to as {>-operations. This
characterization exhibits a surprising interconnection between associativity
and periodicity, which in our opinion is of direct importance also for thebasic
theory of w-words.

DerNiTION 3.1: A set T' of w-trajectories is associative iff the operation
Ly is associative, i.e.,

(o Ly B) LT v = o Lp (B Wit 7),

forall a,B,v € X¥. O
The following sets of w-trajectories are associative:
1. T = {r,u}”.
2. T ={te VY| |t < oo}
3. T={apoorfi-..|a; €r* B, €u* and, a;,f; are of even length,

i > 0}.
Nonassociative sets of w-trajectories are for instance:
1. T = (ru)”.
2. T ={teV¥]|tisa Sturmian w-word }.
3. T={wowiws...|w; € L}, whereL = {r"u" | n > 0}.

Observe that for each set of w-trajectories, 7', the operation Ly is
distributive over union both on the right and on the left side. Moreover, we
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adjoin to V% a unit element with respect toeach Ly, denoted 1. Note that
1 is not an w-word. Hence, we obtain the following result:

PropositioN 3.1: If T is an associative set of trajectories, then for any
alphabet %,

S=(P(Z%),u, Wr, 0,1)

is a semiring.
Proof: One can easily verify the axioms of a semiring, see [4]or [5]. O

The following proposition provides a characterization of those sets of
w-trajectories that are associative.

DErINITION 3.2: Let D be the set D = {z,y,z}. Define the substitutions
o, 7 : P(V¥)—P(D¥), as follows:

o(r) ={z,y}, o(u) ={z},
7(r) = {z}, 7(v) ={y,2}.

Consider the morphisms @ and 1, ¢, 1 : V¥— D", defined as:

= Y
P(r) =y, P(u) ==z O

ProrosiTioN 3.2: Let T be a set of w-trajectories. The following conditions
are equivalent:

(1) T is an associative set of w-trajectories.

() o(T) N ((T) W, 2¢) =7(T) N P(T) L, z).

Proof: (i) = (ii). Assume that 7" is an associative set of w-trajectories.
Consider w such that w € o(T) N (o(T) L, 2*). It follows that there
exists ¢, t1 € T, such that w € o(t1) and there exists ¢, ¢t € T', such that
w € p(t) L, 2*. Assume that

t1 = ploglipt | qinpin

b

for some nonnegative integers g, jp, 0 < g,1 < h. From the definition of
o we conclude that

w € {z,y} 2 {z,y} .. 2 {a,y)
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Since w € ¢(t) LLi, 2¥, it follows that ¢t = sps71 ... Sy . . ., such that s, € V*
and |sg| = 4 for all k, 0 < k. Therefore,

w € (¥ L y¥) Ly, 2%,
Because T is associative, there are ¢ and ¢} in T such that
(2% Lp ) Ly, 2% =% LWy (9 Wy, 2%).

Hence, we obtain that w € z* Liy (y* Ly, 2*), for some ¢’ and t; in T.
Now, it is easy to observe that this simplies that w € 7(T) N (¢Y(T') W z%).
Thus, o(T) N (p(T) Wi, 2*) C 7(T) N (Y(T) L, z*). The converse
inclusion is analogous. Therefore, the equality from (ii) is true.

(1) = (i). Let ¥ be an alphabet and let o, 3,y be w-words over %.
Consider an w-word w, such that w € (o L () L7 . There exist
t and t; in T such that w € (a L B) Li), v. Let v be the w-word
obtained from w by replacing each letter from « by z, each letter from
B by y and each letter from « by z. Observe that v is in o(t1) and
also in ¢(t) L, 2*. Therefore, v € o(T) N (o(T) L, 2). By our
assumption, it follows that v € 7(T) N (Y(T) L, z“). Hence, there
are t' and t} in T such that v € 7(¢') N (Y(¢}) L, z). Note that
this means that v € z“ Ll (y* LLy z). Hence, it is easy to see
that w € a Ly (B Ll v), ie, w € o Wy (6 LWr ). Thus,
(e L B) Wi v C a L7 (B L ). The converse inclusion is analogous.
Therefore, for all o, 3,7 € ¥¥,

(@ Wiy B) W v = o LWp (8 W 7).

Thus, T is an associative set of w-trajectories. O

Now we introduce the notion of the associative closure of an arbitrary
set of w-trajectories.

Notation. Let A be the family of all associative sets of w-trajectories.
We omit the proof of the following proposition.

ProposiTioN 3.3: If (T)),cr is a family of associative sets of w-trajectories,

then,
Nz
1€e1
is an associative set of w-trajectories. 0
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DerINITION 3.3: Let T be an arbitrary set of w-trajectories. The associative
closure of T, denoted T, is

T = ﬂ T O
TCT'T'eA

Observe that for every T C {r,u}", T is an associative set of w-
trajectories and, moreover, T is the smallest associative set of w-trajectories
that contains 7.

Remark 3.1: The function —, ~ : P(V¥)—P(V*) defined as above is a
closure operator. 0O

Notation. Let V{’ be the set of all w-trajectories ¢t € V* such that ¢ contains
infinitely many occurrences of both r and wu.

Now we give a characterization of an associative set of w-trajectories
from V. This is useful in finding an alternative definition of the associative
closure of a set of w-trajectories and also to prove some other properties
related to associativity.

However, this characterization is valid only for sets of w-trajectories from
V{ and not for the general case, i.e., not for sets of w-trajectories from V.

DerNITION 3.4: Let W be the alphabet W = {z,y, z} and consider the
following four morphisms, p;, 1 < i < 4, where p; : W¥—VY¥, 1 <1 < 4,
and

p(z)=A m@y)=r. pi(z) =1,
p(z) =7 p2(y) =u p2(2) =,
p3(z) =7, p3(y) =u p3(z) = A,
pa(z) =7, pa(y) =71, pa(z) = u
where A denotes the empty word. O
Next, we consider four operations on the set V{ of w-trajectories.

DErINITION 3.5: Let $;, 1 < i < 4, be the following operations on VY :
Qi : VP x VY —VY, 1<i<4,

defined, for all t,t' € V¥, by:
L O1(t,t) = p1((z Ll y) Ly 2*),
2. Oz(t,tl = pz((az‘*’ LLlg yw) Ly Zw),
3. Galtst) = po(a® Ui (5 W 2°),
4. Galt't) = pala® LWy (v Ly 29)). O
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Remark 3.2: Here we like to point out why we restricted our attention to
the set Vf}:’ and not to the general case V. The operation {1 is defined to
produce the w-trajectory ¢} (see the above proof). However, if T contains
a trajectory ¢ that is not inVY’, then {1(¢,t) is not necessarily in V*. For
instance, if ¢ = rur®, then $1(¢,t) = ur € V¥. Thus the operation {1 is
not well defined. A similar phenomenon happens with the operation 3. O]

DerINITION 3.6: A set T C VY is stable under {-operations iff, for all
t1,t2 € T, it follows that $i(t1,t2) € T, 1 <1 < 4. O

ProposiTION 3.4: Let T be a set of w-trajectories, T C V{’. The following
assertions are equivalent:

(i) T is an associative set of w-trajectories.
(ii) T is stable under <{-operations.

Proof: The idea of the proof is that for two w-trajectories ¢, ¢’ and for
the w-words 2%, y* and 2*, the operation <1 applied to ¢ and ¢’ gives the
(unique) trajectory ¢} that occurs in the equality:

(= Wy y) Wy 2° =2 L, (v Wy 2%).

The operation {7 gives the (unique) w-trajectory ¢; that occurrs in the above
equality. Analogously, {>3 applied to ¢; and ¢] gives the (unique) trajectory
t whereas {4(th,t)) = .

(i) = (ii) Assume that T is an associative set of w-trajectories. Since
T is associative, there are ¢; and t’l in T such that

(2% Ll ¢) Wy 2% = 3% Lk, (y* Wy 2%).
Hence,

G106, 1) = p1((2¥ W v) Wy 2%) = pr(z® Uy, (3 Wy 27))
= |_|_|t'1 u‘”=t/1 eT.

Thus T is stable for <{>1.
Analogously,

O2(t, 1) = pa((2* Ly ¢) Wy 2%) = pa(a® Ly, (3% Ly 2))
— Ly, W =t €T

Hence T is stable for ».
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A similar proof shows that 7" is also stable for {3 and 4.

(i) = (1) Now assume that 7' C V{’ is a set of w-trajectories stable
under $;, 1 < ¢ < 4,

Let X be an alphabet and consider o, 3,y € 3% and ¢, € T. Note that
O1(t,t') =t} and Oo(t,t') = t1, for some ¢, ¢§ € T. Now it is easy
to see that

(@ WeB) Wy v = a LW, (B LWy 7).

Thus, we obtain

(@ Wir B) Wiz v € o Wiz (B Wi 7).

For the converse inclusion, the proof is similar, using the fact that 7" is
stable under {3 and 4. 0
Comment. Observe that D = (P(VY), (i)1<i<4) is a universal algebra,
see [3). If T is a set of w-trajectories, then denote by 1’ the union of all

those sets of w-trajectories that are in the subalgebra generated by 7' with
respect to the algebra D.

ProposiTioN 3.5: Let T C VY be a set of w-trajectories.

1) T is anassociative set of w-trajectories and, moreover,

(11) T = T, i.e., the associative closure of T is exactly the subalgebra
generated by 7" in D.

Proof: (1) T isv stable under the operations ¢;, 1 < ¢ < 4 and thus, by
Proposition 3.4, T" is an associative set of w-trajectories.

(ii) Observe that T' C T and that T is associative, hence T C T'. For the
converse inclusion, let 7" C VY’ be an associative set of w-trajectories such
that T C T". Note that by Proposition 3.4, T” is stable under the operations
i, 1< i< 4 and thus 7' C T". ThereforeT C T. O

4. PERIODICITY AND ASSOCIATIVITY

This section is dedicated to investigate some interrelations between the
periodicity property and the associativity of the shuffle on trajectories.

ProrosiTioN 4.1: Let T C VY be a set of w-trajectories.

() If each t € T is a periodic w-word, each t' € T, has the same property,
i.e., each w-trajectory in T is a periodic w-word.
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(ii) If, additionally, each t € T has a palindrome as its period, then the
associative closure of T, T, has the same property.

(i) If T is a set of ultimately periodic w-trajectories, then the associative
closure of T, T, has the same property, ie., each w-trajectory in T is
ultimately periodic.

Proof: (i) Note that the morphisms p;, 1 < ¢ < 4, preserve the periodicity.
Now consider the operation {1. Let ¢t; = s* and t; = s™. Define p and ¢
by p = |s|r andq = |s|,. Observe that z* = (zP)* and y* = (y?)“. Let v
be the unique word zP L1l_s y? (note that this is the shuffle over a finite
trajectory, see Remark 2.1). Observe that z* LLJ;, y* = v“ is a periodic
w-word for some nonempty word v that contains both 7 and u (' C V).

Now assume that : = |s'|,, j = |§'|, and k = |v|. Let n be the least
common multiple of 4,7, k. Assume that n = 4’ = jj' = kK’ for some
positive nonzero integers 7,5, k’. Note that

w

(2% Wy, o) Wy, 2% = v* Lge 2% = ()" W,e (2)° =a”,

. - ! [/
where o is the unique word v' LI, 2.

Hence {¢1(t1,¢2) is a periodic w-word. Similarly, $;(t1,%2) is a periodic
w-word, 2 < ¢ < 4.

(ii) Observe that the morphisms p;, 1 < ¢ < 4, are weak codings and
hence they preserve the palindromes. The proof now proceeds as above. The
resulting periods are palindromes.

(ii1) The proof is similar with the proof of (i). 4
The above proposition yields:

COROLLARY 4.1: The following sets of w-trajectories are associative:
(i) the set of all periodic w-trajectories fromV;*.

(ii) the set of all periodic w-trajectories fromV..“ that have as their period
a palindrome.

(iii) the set of all ultimately periodic w-trajectories fromV,*. O

DEerINITION 4.1: Let sym be the following mapping, sym : V — V,
sym(r) = u and sym(u) = r. Also consider the mapping ¢ : {z,y,z} —
{z,y,2}, o(z) = 2, o(y) = y and p(z) = z. sym and @ are extended to
w-words over V and, respectively over {z,y, z}. O

Next theorem provides a characterization of those w-trajectories that are
periodic. As such it is also a direct contribution to the study of w-words,
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exhibiting an interconnection between periodicity and associativity. The
theorem gives also a concrete example of a calculation of the associative
closure of a set of w-trajectories.

THEOREM 4.1: Let t be an w-trajectory such that t # r° and t # u*. The
following assertions are equivalent:

(1) t is a periodic w-word.

(ii) t is in the associative closure of (ru)®.

Consequently, we obtain the following:

CoroLLARY 4.2: An w-word t € V is a periodic w-word if and only if
t can be obtained from the w-word(ru)® by finitely many applications of
operations i, 1 <1< 4. O

Proof of Theorem 4.1: (ii)) = (i) It follows from Proposition 3.5, (ii),
and Proposition 4.1, (i).

(i) = (ii) Let A be the associative closure of the_w-prajectqry(ru)w.
Assume that w is a nonempty word from V*, w = d{: d{: ...d]¥, where
di, € {r,u}, 1 < jp, for all 1 < p < k and, moreover, d;, # d;_,,, for
all 1 < g < k. The degree of w, denoted deg(w), is by definition k. Note
that for each nonempty word w over V, deg(w) is a unique integer greater
than 1. Let ¢ be a periodic w-word over V such that ¢t # r* and ¢ # u“. It
follows that ¢ = w“ for some nonempy word w. Clearly, deg(w) > 2.

We prove by induction on deg(w) that ¢ = w* is in A. First we prove
two claims:

Claim A: For all 7,5 > 1, the w-trajectories ¢t = w®, where w = riy
or w = wr/, are in A.

Proof of Claim A: Note that ¢1((ru)”, (ru)”) = (uru)”. Moreover,
O3((uru)®, (ru)”) = (ur)”. Hence we obtain that (ur)” € A.

Assume now that w = r'u, ¢ > 1. We show by induction on ¢ that
t= w“f € A. For ¢ = 1, obviously ¢t € A. Assume the statement true for all
w = r*u with ¢ < k and consider w = r**1q. If k is an even number, say
k = 27, then let 1, t3 be the w-trajectories t; = (ru)” and t2 = (r7u)”. By
the inductive hypothesis £ is in A. Now observe that:

Oaltr, 22) = pa(a® Wh, (¥72)") = pa(((zy)z2)")
= (r2j+1u)w = (rk"'lu)w.
Consider now the other case, i.e., k is an odd number, say k = 25 — 1. Let
t1,t2 be the w-trajectories t1 = (r/u)” and t, = (ur)“. By the inductive
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hypothesis 1 is in A. Now observe that:
O3(tr, t2) = pa(z® Wy, (21)*) = ps((&? 227 21)") = (r¥u)” = (FFH1u)”.

Therefore (riu)” € A for all i > 1.
A similar proof shows that (w/r)”, (ur?)”, (ru?)” € A for all j > 1.

Claim B: For all i,5,p,q > 1, the w-trajectories t = w*, where w = r'u/
or w = uPr?, are in A.

Proof of Claim B: First, assume that w = 7*u/, i,j > 1. The proof is by
induction on the number ¢ + j. Obviously, if w = ru, then { = w* € A.
The inductive step: let ; = (r'u?)” be in A. By Claim A it follows that
t = (r'tu)” € A. Observe that:

0a(t1,12) = pa((&'s?)” Lk, 2) = pal(a'y’2)") = (rad*1)”.

Hence Claim B is true also for w = riw/*1.

Note that the w-trajectory t3 = (ru't7)” is also in A, see Claim A.
Moreover, $a(t1,t3) = (rH1w/)¥. Therefore, for all words of the form
w=rl, 1,5 > Luw’ € A

A similar proof shows that for all words of the form w = wuPr9,
p,g 2 Lw” € A

We are now ready to prove the implication (i) == (ii). Let t = w* be a
periodic w-word such that £ # 7 and ¢ # «*. The proof is by induction on
k = deg(w). The case k = 2 follows from Claim B. Assume the implication
true forwords w with deg(w) < k. Let w be a word with deg(w) = k + 1,
sayw = riaytrts | pleyd. Denote wy = r*ul2r's ... 7" and note that by
the inductive hypothesis the w-trajectory t; = (w1)“ is in A. Consider also
the w-trajectory ¢t = (r*u?)”, where s = |wi| and note that ¢3 is also in
A. Observe that:

Oa(t, t2) = pa((zy® ... 2™) Ly, 2°) = po((zy® ... 5% 29)") = t.
If w = riru2ris .yt P then denote wi = r*u2r® .. 4% and note that,
again by the inductive hypothesis, the w-trajectory 1 = (w1)® is in A.

Consider also the w-trajectory t2 = (u°rP)“, where s = |w1| and note that
t2 is also in A. Moreover, it is easy to see that: {$4(t2,t1) = t.

The situation when w begins with v is similar. O

Next theorem is similar to Theorem 4.1. It states a characterization of
ultimately periodic w-words in terms of the associative closure of a certain
set ofw-trajectories.
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THEOREM 4.2: Let t be an w-trajectory such that t € V{’. The following
assertions are equivalent:

(1) t is a ultimately periodic w-word.
(it) t is in the associative closure of the w-trajectory r(ru)®.
Thus, we obtain the following:

CoroLLARY 4.3: Let t be an w-word, t € V.t is a ultimately periodic
w-word if and only if t can be obtained from the w-word r(ru)® by finitely
many applications of operations {;, 1 <1 < 4. O

Proof of Theorem 4.2: We start the proof by considering the notion of
a formal description. Let T be a set of w-trajectories. A finite sequence
t1,t2,...,t, of w-trajectories is referred to as a formal description of ¢,
with respect to T iff for each 1 < k < n, ecither ¢, € T, or there exists
1 < i< 4, and there are 1 < p,q < k, such that t = Oi(tp, tq).

A formal description t;, %2, ..., t, of ¢, with respect to T is denoted by
<ti,to, ...ty >T .
One can easily verify that
T = {tn | there exists < t1,t2,...,tn >T}.

Moreover, if < t1,t2,...,t, > and T C T’, then < t1,%2,...,tn >7.
(ii) = (i) It follows from Proposition 3.5, (ii) and Proposition 4.1, (iii).
(i) = (il) We start the proof by proving some claims. Consider the

notations Ty = {(ru)*}, T1 = {r(ru)*}, Ta = {(rw)*, r(ru)*} and

Tz = {(ru)“,r(ru)*, u(ru)*}.

__Claim_ A: The sets T and 7% have the same associative closure, i.e.,

T = 1.

Proof of Claim A: One can easily verify the following two equalities:
O1(r(ru)?, r(ru)?) = (uruw)”
and
O3((urw)”, r(ru)) = (ur)”.

Note that sym(T) = sym(T) and using Theorem 4.1 we obtain that
(ur)® = (ru)~. Hence T3 C Tj. The converse inclusion is obviously true.
Thus we obtain Claim A.
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Claim B: The sets T» and T3 have the same associative closure, i.e.,
T = Ts.

Proof of Claim B: Note that u(ru)” = (ur)” and hence u(ru)® is a
periodic w-trajectory. By Theorem 4.1, u(ru)“ is in the associative closure
of (ru)“. Thus we obtain Claim B.

Claim C: If < ty,t2,...,t, >7,, then

< ty,t2,...,tn,rt1,uty, rig, uty, ..., Tl uty >, .
Proof of Claim C: We show by induction on k that

< ti,ta,...,tn,Tt1,uty, Tt2, uly, ..., ik, uty >1, .

Assume that & = 1. Observe that from the definition of a formal
description, it follows that ¢; = (ru)¥. By definition of 75 and Claim B
we conclude that < ty,%2,...,tn,rt1,ut1 >71,. Assume by induction
that< t1,t2,...,tn, 7t1, ut1, 7t2, uty, ..., Ttg—_1, utg—1 >7,. If tg = (ru)%,
then the conclusion follows as in the case k = 1. Now, assume that
tr = Oi(tp,ty) for some 1 < ¢ < 4,1 < p,g < k and we show that
the trajectory rt; has a formal description with respect to 7. Consider all
possible situations:

If © = 1, that is t; = $1(¢p,ty), then note that
rtr = p1((z* Lilye, y*) Llpe, 2) = O1(uty, rtg).
Assume that ¢ = 2. Hence ¢, = $2(tp,tq), and note that
Tt = p2((z% Wire, y*) Wpe, 29) = Oa(rtp, ty).
Consider now that ¢ = 3. Thus £ = $3(tp,t,), and observe that
rtr = pa((8® L, §°) L, 2°) = O3(rtp,ty).
If + = 4 and therefore ¢t = {4(tp,tq), then note that
rte = pa((2 Wipe, y*) Wy, 2) = Qa(rtp, tg).

Finally, we prove how the trajectory wut; can be obtained. Again, we
consider all possible situations.
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Assume that ¢ = 1 and ¢ = $1(tp,tg). Observe that
ute = p1((x™ Wy, 3) W, 27) = O1(tp, uty).
If ¢ = 2, and thus t; = $2(tp,te), then note that
ut, = p2((2 W, y*) Wy, 2°) = Oo(tp, uty).
Consider that ¢ = 3. Hence ¢, = ¢3(tp,t4) and notice that
uty, = p3((2% Wlye, ¥) Lyt 2¥) = $3(uty, rtg)-
If i = 4, that is ¢, = {a(tp,ty), then note that
uty = pa((z¥ What, ¥*) Wy, 2°) = Oa(uty, uty).
Next two claims assert that certain trajectories are in the associative

closure of the setTh = {(ru)“,r(ru)“}.

Claim D: 1If t is a periodic trajectory, t € V{, then the trajectories rt
and wut are in 1.

Proof of Claim D: Let t be a periodic trajectory, t € V. Observe
that from Theorem 4.1 and from the definition of the formal description,
there exists a formal description of ¢ with respect to Tp = {(ru)“}, say
< t1,t2,...,1n,t >1,. From Claim B it follows that

< t1,t2,...,tn, trtr, uty, . .., Ty, Uy, T, Ut >T, .

Hence, we conclude Claim D.

Claim E: The trajectories 72(ru)* and uwr(ru)” are in Tj.

Proof of Claim E: Observe that: 2(ru)* = pa(z® L, (y* L, 2°),
where t1 = (ru®)* and t; = r(ru?)®. Moreover, ur(ru)® =
p1((z® Wy, y*) Ly, 2%), where t3 = u(ur)® and ty = (ur?)®.

Note that as a consequence of Theorem 4.1 and of Claim D, ;,1 <7< 4
are in T».

From the above Claim E, we deduce that there are the following formal
descriptions:

2
< Z1,%2,---, % T (,,,u)w >T, and < wy1,y2,-- ',ijur(‘ru)w >T, -
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Using these notations we assert:
Claim F: If < t1,t3,...,ts >T,, then

< (ru)’,z, ...,wi,’rz(ru)“’,yl, Y ur(ru)”,

t1, . tn, T, uty, ., T, uty >,

Proof of Claim F: We show that for all 1 < & < n, the trajectories rt; and
uty, are in T;. Assume k = 1 and note that ¢; = (ru)* or t; = r(ru)*. Thus
rt1 and ut; are among the following trajectories: 7(ru)“, u(ru)®, r?(ru),
ur(ru)¥. Using Claims B and E we obtain that in each case they are in 7.
Assume that k > 1. If £ is in T, then the claim follows as in case k = 1.
If 3, is obtained by using an operation {;, 1 <7 < 4, ie., tx = $i(tp, tq),
for some 1 < i < 4,1 < p,q <k, then a similar proof as for Claim C
shows that ¢, and uty are in Tb.

Now we end the proof of Theorem 4.2.

Let t = a2 be a ultimately periodic w-word, ¢ € V{. Let n be the length
of o, ie., |a|. If n = 0, then ¢ is a periodic w word and from Theorem 4.1
we conclude that t € Ty. If n > 1, then using n times Claim F we obtain a
formal description of ¢ with respect to 75. Hence, from the definition of the
formal description it follows that ¢ € T5. Since, by Claim A, T, = T3, the
proof is complete. O

Next theorem shows a remarkable property of the most famous infinite
Sturmian word, known as the Fibonacci word. An infinite Sturmian word is
an w-word ¢ over V such that the subword complexity of ¢ is defined by the
function ¢;(n) = n + 1, i.e., for any n > 1, the number of subwords of ¢
of length n is exactly n + 1. See [1], [7] for other equivalent definitions of
infinite Sturmian words as well as for a number of properties of these words.

The Fibonacci word f is defined as the limit of the sequence of words
(fn)n>0, where:

fo=7fi=4u, fat1 = fafa—1,n>0.
Note that f is an infinite word which has an initial prefix as follows:
f = uruururvuruururuururu . ..

Remark 4.1: Note that for each n, |f,| is equal with the n-th term of
the Fibonacci numerical sequence: 1,1,2,3,5,8,13.... Moreover, |fn|r =
|fr—1] and |fnlu = |fa—2l. 0
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We recall some properties of the operation of shuffle on finite trajectories,
see Remark 2.1. For more details on this topic the reader is referred to [9].

DEFINITION 4.2: Let W be the alphabet W = {z,y,z} and consider the
following four morphisms, pl, 1 < 1 < 4, where p, : W—V*, 1< < 4,
and

Ale) =X py) =7 rz) =,

pa(z) =71, py(y) =u ph(2) =,
p3(z) =71, p3(y)=u p3(z) = A,
pa(z) =71, pyly) =7 py(z) =u. U

DEeFINITION 4.3: Let ), 1 < i < 4 be the following partial operations on V*.
Sl V*xV*—s V¥, 1<i<4,

Let t,t' be in V* and assume that |t| = n, |t|; = p,
e =7, [t = 4,
1. ifn = ¢, then O\(t, ') = pr1((x? Ly y9) Wiy 27)), else, O} (t,t)
is undefined.
2. ifn = yp, then OY(t,t") = pa((xP Ly y?) Wy 29)), else, Oh(t,t')
is undefined.
3. ifn = ¢, then O4(t',t) = p3(aP’ Wiy (yP( Ly 29)), else, O4(t, )
is undefined.
4. ifn =q, then O4(t',t) = pa(z? LWy (yP( W 29)), else, OY(t, ') is
undefined. O

thy = g || =7,

Note that the morphisms p’l, 1 < 7 < 4, as well as the operations <>'Z,
1 < ¢ < 4, are the versions of the morphisms p,, 1 < 7 < 4, and respectively
of the operations <¢,, 1 < ¢ < 4, for the case of finite trajectories. In the
sequel p'z is denoted by p, and 0; is denoted by ¢,, 1 < ¢ < 4. Notice that
this simplification does not produce any ambiguity.

Now we are in position to state our result:

THeOREM 4.3: The associative closure of the Fibonacci word, f, contains
all periodic trajectories and the containment is strict.

Proof: We start by proving the following equality:

O£, 03(f ) = (rw)*. (I
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Let (en)n>0 be the Fibonacci numerical sequence 1,1,2,3,5,8,13. ... Note
that e,, = |fn| for every n > 0. Consider the notation ¢ = {1(f, O3(f, f))-
We show that each prefix of ¢ of length 2e, is of the form (ru)®~. The
proof is by induction on n.

Let ay, be the value of $3(frt1, fn), i€,
an = p3(z =t Wy, (¥ 2 Wy, 2%7)).
Therefore, we prove by induction on n that:
O1(fr-1,00) = (ru)®-2.  (II)
That is:
(%2 Wy, | y®2) Wy, 2°% = (ru)®2.

The base of induction: n = 3.
Notice that:

a3 = P3($2 L yrner (y Ly 22)) = ,03(1:2 Ly uur zyZ) = p3(z$yzx) = Tur.

It follows that:
Q1(f2,a3) = pr(ur,rur) = p1((z Wlyr y) Lilpyr 2) =

= p1(yz Wy 2) = p1(yzz) = ru = (ru)®.

Hence, for n = 3 the equality (1) is true.
The inductive step: n + n+1
We start by computing the value of ay41:

ant1 = p3(zcr L (y*r= g, z)) =

= pa(a® Wy, ., (yon2tems Lp g | 2mten-2)) =
= p3(z® Wy, ,, (¥°77 W, 25) - (y*=° Wiy, 2%72)) =
= pa(a® 12 g (YO Wp, 25 - (¥ Wy, 2%2)) =
= p3((z* Wig, ,, (¥ LWg, 2°))-(2%2 Wy, (y*° Wy, _, 2°72)) =

= QpOn_1.
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Therefore, we proved that:
Qp41 = OnQn—1.

Using the above relation, the inductive hypothesis, the well-known properties
of the numerical Fibonacci sequence and the properties of the Fibonacci
sequence f, it follows that:

O1(fn, an41) = p1((z°72 Wy, 9°7) Wa,,, 27 =

= pr((& ¥ Wy Ly, YOO W, 20 =
= (@ Wy, 9%72) - (@ Wy, 9°7°) Waga,, 277770 =
= p1(((z* Wy, , y*72) Wa, 25072)- (2% LWg,, y*~°) Llday,, 2°7°)) =
O1(fn-1,0m)01(fr2, @n1) = (ru)®=* (ru)®=* = (ru)®1 2 = (ru)®.

Hence, equality (I7), and consequently equality (I) are true.

Using Theorem 4.1, we deduce that all periodic w-words from V' are
contained in the associative closure of the Fibonacci sequence, f.

Since the Fibonacci sequence is not a periodic w-word, by Proposition 4.1,
we conclude that the above containment is strict. O

5. CONCLUSION

The shuffle-like operations considered in this paper provide a new tool for
investigating properties of w-words. Recently, a characterization of w-words
that are ultimately periodic has been obtained in [10]. This characterization
is based on a different approach. Interrelations between this characterization
and the characterization from the present paper are subject of further research.

Many other problems remain to be investigated. For instance: does exist a
proper ultimately periodic w-word in the associative closure of the Fibonacci
w-word f? What can be said about the associative closure of some other
Sturmian w-words?
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