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FINITE IDEMPOTENT GROUPOIDS
AND REGULAR LANGUAGES (*)

by M. BEAUDRY (l)

Communicated by J. E. PIN

Abstract. - We investigate the language-recognizing power of îhose finite groupoids whose
multiplication monoid belongs to the variety Ai of the idempotent monoids. We find that they
recognize a strict subset of the star-free languages. We also consider groupoids which always
contain an identity (quasimonoids); within this restriction, we show the existence of a chain of
strict inclusions between the languages classes defined by specijying that the multiplication monoid
belongs to varieties J i , Ri , and Ai. © Elsevier Paris

Résumé. - On s'intéresse ici aux langages que peuvent reconnaître les groupoïdes dont le
monoïde multiplicatif appartient à la variété Ai des monoïdes idempotents. On démontre que ceux-
ci reconnaissent un sous-ensemble strict de la classe des langages sans étoile. On étudie ensuite
les groupoïdes contenant une identité (quasimonoïdes); on montre alors des relations d'inclusion
stricte entre les classes de langages définies en spécifiant que le monoïde multiplicatif appartient
aux variétés J i , R i et A\. © Elsevier Paris

1. INTRODUCTION

The deep correspondence between the classifications of finite semigroups
and monoids, of regular word languages and of word congruences of
finite index has been extensively investigated, with considérable success
(see [9, 15]). An analogous correspondence between finite algebras, classes
of regular tree languages, and of tree congruences of finite index has also
been studied (see [17, 16, 18]). In both cases, classifications in terms of
varieties were developed and the varieties lattices of algebras, of languages,
and of congruences were proved to be isomorphic.

Binary algebras, also called groupoids, also find applications in the study of
word languages: indeed the finite groupoids recognize exactly the class of the

(*) Received March 1997; acceptée September 1997; final version June 1998.
(^Département de Mathématiques et d'Informatique, Université de Sherbrooke, Sherbrooke,

Québec, J1K 2R1 Canada.
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128 M. BEAUDRY

context-free languages (a resuit found independently in [10] and [3]) under
the following convention. A language L Ç A* is recognized by groupoid G
iff there exist a monoid homomorphism <f> : A* —> G* and a subset F C G,
such that w G L if, and only if w</> can evaluate to an element in F . When
the opération is nonassociative, the outcome of the évaluation of w(f> varies
depending on the way this word of G* is parenthesized, and the question
consists in asking whether there exists a "successful" parenthetization for w</>.

This can be regarded as but another way of saying that the context-free
languages are exactly those generated by invertible context-free grammars
in Chomsky normal form. Finite groupoids have also been shown, under
a different name, to be the syntactic algebras of regular tree languages (a
generalization of the parenthesis languages [13]), in the special case where
the trees are binary and the interior nodes are labeled with the groupoid's
opération; the words in a context-free language are exactly those obtained
by taking the frontier (the ordered séquence of leaf labels) of the éléments
of an appropriately defined regular tree language.

Note that the notion of a syntactic groupoid does not exist for context-free
languages. In fact, there exist "universal" groupoids, able to recognize ail
CFL's (this is a rewording of a resuit of Greibach [11]). Nevertheless, links
can be established between classes of groupoids and classes of languages, and
research has been done in this direction. In a first approach, ad hoc examples
of groupoids whose récognition power coincides with several significant
subclasses of CFL's were presented in [3, 14], Another approach was
initiated and partially explored in [8, 2]; it consists in classifying groupoids
in terms of the properties of their multiplication monoid (denoted A4 (G);
for définition see Subsection 2.3), and to look at the languages recognized
by the groupoids in a given class. An obvious case is the quasigroups, which
are those groupoids such that M (G) is a group: it was shown recently
that they recognize exactly the open regular languages [8, 4]. The study
of the aperiodic groupoids, namely those for which M (G) is a group-free
monoid, began when it was observed that there exist aperiodic universal
groupoids [6]; it was then shown in [2] that groupoids such that M{G)
is JT-trivial with threshold 2 are powerful enough to recognize the regular
languages and only them, that this property extends to ail groupoids with
M (G) G DA, and that as soon as one looks beyond DA (i.e., into varieties
containing the Perkins monoid BA2 ), there exist groupoids which recognize
non-regular languages, and even an "almost hardest" context-free language:
"hardest" under nonerasing homomorphism réduction, "almost" in the sensé
that the language does not contain the empty word. The question whether
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IDEMPOTENT GROUPOIDS AND REGULAR LANGU AGES 129

the monoid variety generated by BA2 contains the multiplication monoid of
a universal groupoid is still open.

In this article, we investigate further the case where Ai(G) is aperiodic.
More precisely, we extend the study to the idempotent groupoids, namely
those for which JA(G) is aperiodic of threshold one. (Note: An alternate
définition would consist in deciding that a groupoid is idempotent iff its
opération is idempotent. We prefer the définition in terms of the multiplication
monoid in order to stay consistent with the choice made in [7, 2] for the more
gênerai class of the aperiodic groupoids.) We show that they recognize
a strict subset of the star-free languages. Concentrating next on special
cases, we investigate classes of idempotent groupoids defined in terms of
subvarieties of Ai and we look at classes defined in terms of idempotent
quasimonoids, which are idempotent groupoids containing an identity. Our
results are summarized in Figure 2, at the end of Section 4.

2. PRELIMINAIRES

A groupoid is a binary algebra; we dénote both the set and the algebra
by G, and the opération either by "•" or by concaténation of the arguments.
In this paper, all groupoids are finite. An element 1 is an identity in the
groupoid if for all x, lx — xl = x. An element ± is absorbing if for
all x, _L x — x _L=_L We call quasimonoid a groupoid containing an
identity; monoids are associative quasimonoids. We work within the usual
classification of finite algebras into varieties 1, classes closed under division
and finite direct product.

A groupoid can be used as a language-recognizing device. If G is
nonassociative, a word x G G+ can yield different values depending on
the order in which it is evaluated (its parenthetization); given x,y G G*,
we dénote by x ^> y the statement that x can evaluate to y (partial
évaluation when y has length 2 or more). Further, for t e G, let
L{G\ t) = {w G G*\w ~+ t}. A language L Ç A* is recognized by G
if there exist a monoid homomorphism <f> from A* to G* and a subset F of
G, such that a word w G A* belongs to L if, and only if w<f> ^ ƒ for at
least one ƒ G F. In other words, L is recognized by G iff there exist F Ç G
and cf> : A* -> G* such that L = [{JfeF L(G; f)]<f>~1.

(]) Also commonly referred to as pseudovarieties.
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130 M. BEAUDRY

Given tu G G* and f E G such that w ^ ƒ, the corresponding
parenthetization of w can be represented as a binary tree (an évaluation
tree) where each node is labeled with a value from G: the leaves with the
letters of w, the root with ƒ, and each interior node with the outcome of the
évaluation of the subtree rooted at this node.

The varieties of monoids we work with in this article lie within the variety
A of the aperiodic monoids. We will mention or work with the following:

• the variety A i of all idempotent monoids, namely those which satisfy
the identity xx — x\

• the variety Ri c A i of ail monoids which satisfy the identity xyx = xy\

• the variety Li = Rj defined by the identity xyx = yx\

• the variety J i = Ri A Li of the JT-trivial idempotent monoids;

• the variety ACom of the aperiodic and commutative monoids;

• the variety J A A2 of the <7-trivial monoids of threshold 2.

Relationships of inclusion between these varieties are depicted in Figure 1.

Figure 1. - Varieties of aperiodic monoids.

With a groupoid G we associate the set A(G) = {i2(a), L(a)\a G G}
of functions from G to itself, where bR(a) — ba (resp. bL{a) — ab) is
the multiplication to the right by a (resp. to the left) in the groupoid (see
[5]). This defines an automaton Q(G) with G as set of states, A(G) as
alphabet of input symbols, and transitions defined by bL(a) = aR(b) = c if
c = ab. The multiplication semigroup S (G) is the transformation semigroup
of Q{G)\ the multiplication monoid M{G) is S (G) plus the identity function.
Define also the submonoids 1Z(G) generated by R(G) = {R(g)\g G G} and

Informatique théorique et Applications/Theoretical Informaties and Applications



ÏDEMPOTENT GROUPOIDS AND REGULAR LANGUAGES 1 3 1

£(G) generated by L(G) — {L(g)\g G G}. A groupoid is aperiodic (resp.
idempotent) iff its multiplication monoid is group-free (resp. idempotent).

Given a variety V of monoids, we dénote by £(V) the class of the
(regular) languages recognized by monoids belonging to V, by ö(V) the
class of all groupoids whose multiplication monoid belongs to V and by
L(V) (resp. L(l.V)) the class of all languages recognized by groupoids
(resp. quasimonoids) of £(V). For any given variety V of monoids, it is not
hard to see that the corresponding class G(V) of groupoids is a variety of
groupoids; also, for any two groupoids H\ and H2, AA(H\ x H2) divides
A4(H\) x A4(#2). For a variety V of monoids, the class of languages L(V)
is readily seen to be closed under finite union and inverse homomorphic
image; whether it is also closed under other opérations may depend on V.
We now quote a basic property of the multiplication monoid of a monoid.

PROPOSITION 2.1: For any monoid M, we have TL(M) = M, £(M) = M r ,
where Mr dénotes the reverse ofM. Furthermore, ab = ba for any a G TZ(M)
and b G £(M), hence M(M) = TZ(M)£(M).

Proof: Since M is associative, we have nR(p)L(m) — mnp =
nL(m)R(p) for any m,n,p G M. Further, associativity implies
mR(n)R(p) = mnp = mR(np), so that 1Z(M) = R(M), and the same
holds for £{M) and L{M). It is not hard to verify that the monoids M and
n(M) (resp. Mr and £{M)) are isomorphic. D

As a conséquence, it is not true that for any monoid M and variety V,
M G V =>> A4 (M) G V. For example, consider the monoid R\ — {1, a, 6}
with aa = ab — a and ba — bb = b, which belongs to variety R i . A simple
calculation vérifies that A4 (Ri) is in variety Ri V Li , outside of R i .

We conclude this section with a short digression on the properties of
groupoids having a commutative multiplication monoid. AH such groupoids
are associative: f(gh) = gR(h)L(f) — gL(f)R(h) — (fg)h, for any
ƒ, g, h. They are not necessarily commutative: consider for example the
set N — {a, 6, c, _L} with opération defined by ab — c and xy =_L for
ail other x,y; this is the syntactic semigroup of the language {ab}. Note
however that in these semigroups, ail expressions of length at least 3 are
commutative, which follows from abc = aR(b)R(c) = aR(c)R(b) — acb
and abc = cL(b)L(a) = cL(a)L(b) = cab. Some conséquences of this are:
that ail quasimonoids of ö(ACom) are themselves commutative monoids;
that ail semigroups of Ç(ACom) are idempotent central (that is, such that
for ail éléments e.m, if e = e2, then em — me); and finally that any
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132 M. BEAUDRY

language in L(ACom) is the union of a language of £(ACom) consisting
of words of length at least 3, with an arbitrary set of words of length < 2.

3. ARBITRARY IDEMPOTENT GROUPOIDS

We are able to prove some basic properties of the languages recognizable
by idempotent groupoids; we summarize the main ones as follows.

THEOREM 3.1: £ (Ai ) C L ( l , A i ) C L(Ai) C £(A).

Proof: That ail regular languages recognizable by an idempotent monoid
belong to L(l, Ai) is a direct conséquence of Proposition 2.1: if monoid M
is idempotent, then so are TZ(M) = M and £(M) = M r ; hence for any
m, n, p G M,

m[R(n)L(p)][R(n)L(p)} = mR(n)R(n)L(p)L(p) = mR(n)L(p).

The class L(l , Ai) also contains languages outside of £(Ai) , which will
be proved in the next section (Propositions 4.5 and 4.7).

An element e in a groupoid is idempotent iff e = ee. Let G be an
idempotent quasimonoid; having 1 G G and, g — 1 • g for any g G G, we can
write g — lR(g) = lR(g)R(g) = (1 • g) * g — g • g; therefore ail éléments of
an idempotent quasimonoid are idempotent. If 1 £ G, then G may contain
nonidempotent éléments; however a product hk is always idempotent. To
see this, observe that hk — g implies hR(g) — hg — h(hk) = kL(h)L(h) =
kL(h) ~ hk = g\ then gg = ##(#) = hR{g)R{g) — hR(g) = ^. Therefore
G = Jï U I with H = {g <E G\gg ̂  g} and / = { ^ G G|## = g}, and a
language L recognized by G is expressible as L — LH U LJ , where L^ is a
set of one-character words, while by [2] Lj is a regular set recognized by G
with an accepting subset consisting exclusively of idempotent éléments; L/
is infinité, empty, or equal to {À}, where À is the empty word. Hence the
singleton {a} is an example of a language in L(Ai) - L(l, Ai) .

We prove in Lemma 3.3 the inclusion L(Ai) Ç £(A). This inclusion
is strict: observe for example that a groupoid of ö(Ai) cannot recognize
the language {ab} (which belongs to L(ACom), see Section 2) under any
homomorphism 0, for having {ab)<j> ~* g for some accepting g would imply
that g is idempotent, hence that (ab)k(f) ~+ g for any k > 1 D
Consider a language L G L(Ai), decomposed as above into L = LH U Lj.
A necessary condition on Lj can be deduced from the idempotency of the
accepting éléments: in the syntactic monoid of Lj the accepting subset P
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IDEMPOTENT GROUPOIDS AND REGULAR LANGU AGES 133

must satisfy m G P ^ mk G P, VA; > 1. Proposition 3.2 states a more
powerful condition.

PROPOSITION 3.2: Let K G L(Ai); thenfor any word z oflength at least 2,
for any décomposition of z € K into z — xy and for any j , k > 0, it holds
that x3+2 yk+2 G K.

Proof: Assume that K is recognized by an idempotent groupoid G through
some homomorphism ip. Let ƒ G G be an accepting value for K, Consider
a word g\ . . . gr = zip, r > 2, such that ZI/J ̂ > ƒ. In the évaluation tree for
an accepting computation of zip into ƒ, the computations done along a path
starting from the leaf labelled with gi (for some 1 < i < r) and leading
to the root (which is labelled with the output value ƒ) can be described
with the expression

7[ao6iai '--bsas] - ƒ,

where 7 = g% for some 1 < i < r, each a& G 7Z(G) cornes from the
évaluation of éléments to the right of 7 (from the values gtj t > i) and
each bj G £(G) cornes from the évaluation of éléments to the left of 7,
Le. from the values gti t < i.

By idempotency of M (G), h — gm => hm = h for any g, h G G
and m G M(G). Then, 5/1 = hL(g) — hL(g)L(g) — g{gh), and therefore
gh = gR(gh). Consider now the case where ao is nonempty, i.e. the path
begins by taking the output a G G of a nonempty right subtree; then we
have ao — R(a)af

0, where a!0 G M(G); from the above we obtain

<y[R(ja)aöbiai • • • bsas] = ƒ = ƒ[R^ya)af
Qbiai • • • bsas],

and therefore

7[ao6iai - • • bsas}[R(<ya)aobiai * • • bsas] = ƒ,

which implies [#1 • • • gi-i]2[gi • • • ̂ r]2 ^ ƒ- Now we use a property derived
from the inclusion of Ai in DA and [15, chapter 3, exercise 5.9]: for any
éléments ai,... ,at in an idempotent monoid and any w G {ai,...a*}*, we
have ai • • • at = ai • • • atwa\ • • • at. With j , fc > 0, this gives

• • bsas) [61 • • • 6S]J [iZ(7a;)a/
oai • • • asf

x [iî(7a)a06iai * • • bsas),
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134 M. BEAUDRY

which leads to

--bsas}[bi • • • bs]
3[R{>ya)a!0ai --as]

k

x [R(ja)af
Qbiai --bsas]

= ƒ [61 '"bsy[R(^a)af
oai • • • as]

k[R(-fa)af
obiax • • • bsas]

= 7[aofciai • • • bsas][bi • • • bs]
J[R(ja)a'oai • • • as]

k

x [i2(7a)a()6iai • - - bsas] = ƒ,

which implies [51 • • • gi-i]3+2[gi * * 'Sr]fc+2 ~* ƒ. When gi - - gi-i = ^
for some prefix x of 2, this leads to x^2yk+2ip ^> ƒ. In the other case
where ao is empty, i.e. the path can be described as 7(6101 • • -bsas] — ƒ,
let 61 = L(f3)b[ and observe that

= (07)7 =

from this a reasoning analogous to the above can be developed. D

LEMMA 3.3: The languages ofL(A\) are star-free

Proof: Let L C A* belong to L(Ai); from [2] we know that it is a
regular language, so let h : A* —> M be its syntactic morphism. Then it
suffices to show that M contains no nontrivial group. Let {1, s1,...,5p~1}
be the largest group contained in M and consider a word w E A* such that
wh — s. Then Proposition 3.2 applied to the preimage of 5 by h and to
wp = wwp~l E K leads to a contradiction unless p = 1 and the group is
trivial. D

4. SUBCLASSES OF L(Ai)

Obvious special cases of idempotent monoids are the three smallest
varieties of nontrivial idempotent monoids, namely J i , Ri and Li . We
are able to separate the class L(Ji) from L(RX) and L(Li); however the
relationship of L(Ri) and L(Li) between themselves and with L(Ai)
remains unresolved. Next we concentrate on the special case of the
quasimonoids, for which we can obtain more substantial information on
the corresponding classes of languages. We state our results in Theorems 4.1
and 4.2. We also give two significant examples of languages recognized by
quasimonoids of <?(Ri), Propositions 4.5 and 4.7.

THEOREM 4.1: L(Ji) C L(Ri) n L(Li).

Informatique théorique et Applications/Theoretical Informaties and Applications



IDEMPOTENT GROUPOIDS AND REGULAR LANGUAGES 135

Proof: We know from Section 2 that the groupoids of Q( J i ) are associative.
We now show that they are also commutative. Indeed, for any two éléments

a, b:

ab = aR(b) = aR(b)R(b) = (ab)b = a(bb) = bL(b)L(a) = bL{a)L(b) = bab,

and

6a = aL(b) = aL(b)L(b) = b{ba) - {bb)a = bR(b)R(a) = bR{a)R{b) = bab.

It is easily verified that Q(Ji) consists of the variety J i of the commutative
idempotent monoids, plus those threshold-two commutative semigroups not
containing an identity (consider for example the syntactic semigroup of the
language {a}).

The inclusion L(Ji) C L(Ri) n L(Li) can thus be proved by
showing that the language K = b{a, b}*a{a,b}*, not recognizable by a
commutative semigroup, belongs to L(Ri) Pi L(Li). The tables below
describe a groupoid GR e Q(RI) which recognizes K with accepting
subset {ƒ} and homomorphism defined by a h-> a, b H-> b, and another
groupoid GL G ö(Li) which recognizes K with accepting subset {d} and
homomorphism defined by a H-» a, b H-> b. We leave it to the reader to verify
both assertions. •

Table 1

a
b

ƒ
X

a

±
ƒ
ƒ

b

±
X

ƒ
X

ƒ

X

ƒ
ƒ
X

X

X
X
X
X

a
b
c
d

a

a
d
c
d

b

c
b

c
d

c

c
d
c
d

d

c
d
c
d

The table of GR The table of GL

We move to the special case of quasimonoids, for which we are able to
prove the following.

THEOREM 4.2: £ (J i ) = L(1,LX) c L ( l , R i ) C L(l , Ai ) .
We prove L( l ,L i ) Ç £(JX) (Lemma 4.3) and L ( l , R i ) ^ L ( l , A i )

(Lemma 4.4); all other inclusions are trivial.

LEMMA 4.3: L(1,LX) C £( J i ) .
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136 M. BEAUDRY

Proof: We show that the quasimonoids of G(Li) are commutative,
idempotent and associative, hence belong to J i . Consider two éléments a, b of
a quasimonoid belonging to <7(Li). Then a{ab) — bL(a)L(a) — bL(à) — ab\
meanwhile, (ab)a = lR(a)R(b)R(a) = lR(b)R(a) = ba by the identity
xyx = yx which defines Li . Analogous reasonings prove (ba)a — 6a and
a(6a) = ab. Now, by xyx = yx,

ba — (ba)a — (ba)(a(ba)) = (ba)(ab) — ((ab)a)(ab) = a(ab) — aè,

therefore the groupoid is commutative. In other words, R(x) — L{x) for ail x.
Next, let a, b, c be three groupoid éléments, and let g — (ab)c and h — a(bc)\
observe that aR(g) = ag = a((afc)c) = ((a6)c)a = lR(a)R(b)R(c)R(a) =
lR(b)R(c)R(a) - (6c)a = /i.
Meanwhile,

/i = ai2(5) = aR(g)R(g) = /ii2(^) = % = p/i.

Now, since /i = (cb)a and ^ = c(ba), a similar reasoning leads to
cR(h) — g and ^ — cR(h) — gh — hg, hence g — /i; therefore the groupoid
is associative. D

Given a language L Ç A*, define the set £(L) = {JiüeL{a ^ ^ 1 ^ G

A*aA*}. We say that language L is a zero iïï L = E(L)*LE(L)*. If
L Ç A* is a zero, then for any monoid homomorphism - 0 : 5 * —> A*9 the
language L ^ " 1 is also a zero.

LEMMA 4.4: L ( l , R i ) C L(1,AO.

Proof: Consider a groupoid G E Ç(R-i), hence such that M(G) satisfies
the identity xyx — xy, which defines Ri . Let gi, ...,p r, ƒ E G be such that
Si • • 'Sr ~» ƒ; for each ^ , 1 < i < r, g% - giR{gï) = ^ i ( ^ ) because G is
a quasimonoid (see the proof of Theorem 3.1), and there exists m E M (G)
such that ^ m = ƒ. Therefore, ƒ = glR(gi)m = giR(gi)mR{gi) =
gimR(gi) = fR(gi), and similarly ƒ = fL(gi). If G recognizes a language
L C A* with accepting value ƒ under homomorphism <£, then for any word
w such that w<j> -^ ƒ and letter a in ^ , let a<p = /ii • • • %: it holds that
ƒ — fR{h\) — • * - = fR{hk) and therefore (wa)<f> -^ ƒ and {aw)4> -^ ƒ.
Hence the subset {w E A*|u></> ^ ƒ} of L is a zero, and all languages of
L(l,Rj.) are finite unions of zéros. Now consider the language a{a, &}*: it
is not a union of zéros, but it is recognized by the idempotent monoid R\
(see Section 2), and thus belongs to L(l, Ai) . D
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IDEMPOTENT GROUPOIDS AND REGULAR LANGU AGES 137

It is neither true that all star-free zéros belong to L ( l , R i ) , nor that the
languages of L ( l , R i ) are all recognizable by idempotent monoids. We
substanciate this statement with two examples, Propositions 4.5 and 4.7.

PROPOSITION 4.5: The language Laa = {&, b}*{aa,bb}{a, 6}* belongs to

Proof: Define G — {I,ai>a2, 6j, 62, ƒ, JL} with opération given by the
"mies"

• 0,2 • ai = 6 2 - 6 1 — ƒ;
• x • ƒ — ƒ • x — ƒ for all x ^ ± ;

• everything not specified above évaluâtes to ±.

Verify that G recognizes Laa with accepting subset {ƒ} under the
homomorphism: a 1—> a\a<i, b >—» b\b<i, and that M(G) G R i . D

Since Laa 0 £ ( J i ) (its syntactic monoid is actually the Perkins monoid
BA2), this proposition implies L( l ,L i ) C L ( l , R i ) . It may also suggest
that for every w G A* the star-free zero A*wA* belongs to L ( l , R i ) , but
this is not true: a counter-example is the language {a,b}*baab{a,b}*. That
it is not recognizable by a quasimonoid of Q(Ri) is verified by applying
on the word baab the following "pumping" property, which we prove for
arbitrary groupoids in G(Ri) U G (Li).

PROPOSITION 4.6: Consider a language L Ç A*, recognizedby agroupoidof
Ç(Ri)UÇ(Li);foranyx,yyz G A* andk > 2, ifxy2z G L9 thenxykz G L.

Proof: Let L be recognized by G under homomorphism (j>\ let ƒ be an
accepting element and xyyz<f> ^> ƒ. We assume that \y\ > 2, since otherwise
the statement is obvious. Observe now that in any évaluation tree of xyyzcf),
there is at least one subtree whose frontier has a prefix or suffix of length
\y<p\ which is a factor of yy<\>. Dénote by w the factor found in this way
and observe that it is a cyclic permutation of y<f>. Assume w.l.o.g. that w
is a suffix: let g\ • • • gr be the frontier of the subtree, let gi * - • gr — w for
i = r — \yc/)\ + 1, and let h be the value the subtree's output. If i = 1, then
hh — h implies that ww ~+ h\ therefore an extra factor w can be inserted
at the appropriate place in xyyz<j>, so that xy^zcj) ~> ƒ; the case k — 2
implies the claim for k > 3. Else i > 1; consider then in the subtree the
leaf-root path starting at the leaf carrying value ^ - î . Evaluation along this
path can be described as
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where b\,..., bs G T^(G) corne from the évaluation of gi- • • gr

and ao,..-, as G £ (G) from the évaluation of g\ • * • <#_i. If
wM(G) G R i , then [ao&iai * • • 65a5] = [ao&iai • • • bsas\b\ • • • bs and
^_i[ao&iai • • • bsas]b\ • • -b$ = h, which can be interpreted as the insertion
of an extra factor w, correctly "attached" at the root of the subtree. Else
if M(G) G Li , then [aohai • • • bsas] = h • * • bs[aohai • * • bsas] and
gi-ibi • • • bs[aobiai - • • bsas] = h, which can be seen as the insertion of an
extra factor w, this time immediately at the right of g%~\. In both cases, if
xyyzcj) **+ ƒ, then xy3z<f> ̂ > ƒ. D

PROPOSITION 4.7: For any alphabet A and characters 61,..., bp G A, the
language L = A*6iA* • • • A*6PA* belongs to L ( l ,R i ) .

Proof: We proceed by induction on p. For the basis, observe that the
language A*bA* belongs to £ ( J i ) . Next, assume that two subsets L\ and L2
of A* are recognized respectively by G\ and G2 through the homomorphisms
<f>\ and </>2, with accepting subsets F\ and F2. Assume that the G^'s both
belong to S (Ri). Now define a new groupoid G whose set of values is
Gi x G2, with éléments denoted by (#1,02)» plus three new éléments, 1, ƒ,
and ±. Define the opération on G as follows:

• element 1 is the identity and _L is absorbing;

• for all gi G G\ and #2 E G2 such that at least one of g\ and #2 is not
accepting, for any h and k, (gi,h){k:g2) = {gik,hg2);

• for all <7i G Gi and #2 E G2 such that both g\ and #2 are accepting,
for any h and fc, {gi,h)(k,g2) = ƒ;

• for all u e Gi x G2, uf = fu — f;

• ƒ / = ƒ•
Define tp : A* -> G as the homomorphism which satisfies â ? =

(a<^i,a^2). Thus, if a word belongs to A*LiL,2A*, then there exists a
way to evaluate the image by <p of its appropriate factor into either ƒ or
an element of the form (#1, h)\ similarly, there is another factor to its right
which can evaluate to ƒ or to {£,#2), where #1 G F\ and #2 E F2. Since
both Li and L2 are zéros by the induction hypothesis, then these two factors
of w can be taken to be contiguous, and thus wip évaluâtes to ƒ. In the
other direction, the groupoid is custom-made so that wip cannot evaluate to
ƒ unless it has a factor in Li followed later by a factor in L2.

These remains to show that M(G) G R I . A simple calculation [1] shows
that it suffices to verify the condition xyx — xy on the monoid's generators.
Since M(G\ x G2) divides M{G\) x M(G2)9 and since 1 and J_ behave
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lL( l ,LO=£(J l )

1
ïïXTx)

1
ïï,(Ar!nm)

— - 1L(1,RO' — * " 1L(1,AX)

1

\
JC(A) = star-free

1L(J A A 2 ) = IL(DA) = R e g IL(A) = C F L

Figure 2. - Relationships between language classes

trivially, we concentrate on R(f) and L(f) and their interaction with the
other generators. We verify that for any g G G other than J_, any a; other than
iî(JL) and L(±), and any y in {#(ƒ),£(ƒ)}, it holds that prcyx = pxy = ƒ
and pyxy = gyx = ƒ. ' D

The star-free zéros discussed in Proposition 4.7 actually are piecewise-
testable, but ail piecewise-testable zéros do not belong to L( l , R i ) . Consider
for instance

S*6(A UaUaaU aaaa+)bB* U B*ba*baB+y

with B ~ {a, 6}; verify that since baab is in the language, then so must
baaab by Proposition 4.6.

5. COMMENTS

In this article, we have extended the results obtained in [2], which
described two steps in a hierarchy of classes of languages recognized by
aperiodic groupoids. We have investigated the language-recognizing power
of those groupoids whose multiplication monoid is idempotent; the inclusion
relationships we have obtained are summarized in Figure 2. Our main resuit
is that the regular languages they recognize are a strict subset of the star-free
languages. We also investigated some subcases of idempotent groupoids and
thereby identified strict subclasses of L(Ai).

Our results leave many questions open. For instance, it is still unresolved
whether the classes L(Ri) and L(Li) are strict subsets of L(Ai); in
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particular, ail languages of L(Ai) known so far to the author satisfy
Proposition 4.6. If these classes are different, then there may well exist
an infinité chain of classes L(V), one for each variety R i C V C Ai of
idempotent monoids. Also, except for the simpler cases of L(ACom)
and L(J i ) , the language classes discussed hère still lack a précise
characterization; questions pertaining to the closure properties they satisfy,
and to possible combinatorial descriptions independent of any référence to
groupoids, remain open.

The author thanks an anonymous référée for improvements to the proof of
Proposition 4.7. Work reported on in this article was supported by NSERC
grant OGP0089786 and FCAR grant 91-ER-0642.
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