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LANGUAGES OBTAINED FROM INFINITE WORDS (*)

by T. Harw (1) and L. Tue (% 2 1)

Abstract. — We prove that it is decidable whether or not a regular language can be written as the
set of all finite factors of an infinite word. The result holds for both right-infinite and bi-infinite words.

Résumé. — Nous démontrons qu’il est indécidable de savoir si un language rationnel peut étre
décrit comme ’ensemble des facteurs d’un mot infini. Le résultat vaut aussi bien pour les mots
infinis a droite que pour les mots infinis & gauche et a droite.

1. INTRODUCTION AND BASIC DEFINITIONS

There are several classical ways to associate a set of finite words to an
infinite word «. One can take the set of all finite prefixes or finite factors
of «, Pref (a), or Fact («), respectively, [MaPal], [MaPa2], or the set of all
finite words which are not prefixes of a, Copref (o), [AuGal, [AFG], [Ber].
Conversely, for a language of finite words, one can associate infinite words
considering the notions of limit [Ei] or adherence [BoNi].

This paper is devoted to the study of languages obtained from infinite
words by taking the set of all finite factors. More precisely, we prove that it
is decidable whether or not a regular language can be written as the set of all
finite factors of a right-infinite word, answering an open problem in [MaPal],
[MaPa2], and, then, we show that the same holds for bi-infinite words. We
mention that [Beal], [Bea2], and [BeaN] deal with related problems.

For an alphabet ¥, we denote by 3* the set of all finite words over ¥
and by X“ the set of all {one-sided) infinite words over 3J; A denotes the
empty word and 7 = $* — {)}. For a finite word w € £*, we denote by
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|w| the length of w. For a finite (non-empty) word w € X1, we denote by
w* the infinite word w* = www ... For all formal language theory notions
and results we refer to [HoUl] and [Sa].

For an infinite word o € ¥, we denote by Fact («) the set of all finite
factors of «. For a language L C ¥*, Fact (L) is the set of all factors of
words in L. Also, we denote by Fy. the family of languages of the form
Fact (o), for an arbitrary infinite word «, that is,

Fract = {L| there are ¥ and o € £ such that L = Fact (a)}.

2. FACTORS OF INFINITE WORDS

In [MaPal] it is proved that it is undecidable whether an arbitrarily given
context-free language is in the family Ff, or not. The same problem for
regular languages is left open. In the following, we solve this problem in
the affirmative.

For a regular language R C X*, a finite automaton A = (Q, X, 6, I, F)
recognizing R and having a deterministic transition function § : @ X ¥ — Q
is called strongly minimal if and only if no state or transition in A4 is useless
or redundant. That is, if we eliminate any state or transition in A, the
obtained automaton recognizes a language strictly contained in .

LemMma 2.1: Any regular language R C X* closed under taking factors is
recognized by a strongly minimal automaton A = (Q, %, 6, Q, Q) in which
all states are both initial and final.

Proof- Let A" = (Q', 2, 8,1, T) be the minimal deterministic finite
automaton recognizing R. Consider the automaton A" = (Q', %, &', @', Q).
Since R closed under taking factors, R = L (A”). Because the equivalence
problem is decidable for finite automata, we can now iteratively eliminate
from A" all states and transitions which are either useless or redundant. That
is, if s € Q' (or § (s,a) = ¢, for 5, s € Q, a € X) and the language
recognized by the finite automaton 13 obtained from A" by removing the state
s together with all transitions containing it (or removing the transition by a
from s to s', respectively) is R, then take B instead of A" and continue the
reduction. Obviously, after a finite number of steps, the automaton A asked
for in the claim of our lemma is obtained. (Note that A is not necessarily
unique, but this will not cause troubles later.) W
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For a finite automaton A = (Q, £, 6, I, F'), denote by G (A) the graph
associated to A and define the relation —-C @Q X @ by

p — qif and only if there is a path from p to ¢ in G (A).

The relation =C @Q x @Q defined by p = ¢ if and only if p — ¢ and
g — p 1S an equivalence relation which induces an acyclic structure on
Q/=, ie., the graph G = (Q/=, E) with Q/= as the set of vertices and
with the set of edges

E = (i8], [@)ip], [a) € Q/= andp — ¢}

is acyclic. (We have denoted the equivalence class of p € ) with respect
to = by [pl)

The automaton A is called diconnected if and only if there is a state
g € @ such that @ = [q]. (For instance, the restriction of any automaton
to an equivalence class with respect to the relation = is a diconnected
automaton.) :

An equivalence class [p] € Q/= is called trivial if and only if [p] is a
singleton ([p] = {p}) and there is no transition p % p, for any a € .

A finite automaton A = (Q, %, 6, I, F) is called ultimately periodic if
and only if there is a state ¢ € @ such that

Q—[Q]={51,82,--.,sk}, for some £ > 1,

g ={a1=q, @, ..., @}, forsomel>1,

and all transitions in A are

6(si, ai) =siy1, 1 <1< k-1, forsomeay, a2,...,ar_1 €%,
6 (s, ar) = g, for some a;, € %,

5((]]', bj) =gj+1, 1 <j<l-1, forsomeby, by,...,b_1€X,
6(qi, ) =¢q, for some b; € T.

Informally speaking, a finite automaton .4 is ultimately periodic if and
only if G (A) has the form in Figure 1 (using the notations in the definition).
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Figure 1.

(Note that if A is ultimately periodic, then A is not diconnected. Moreover,
for any p € Q — [q], [p] is trivial.)

An equivalence class [p] € Q/= is called a source if and only if there is
no [¢] € Q/= — [p] such that ¢ — p.

Lemma 2.2: For a regular language R C X* such that R € Fyoc, let
A =(Q, %, 4, Q, Q) be a strongly minimal automaton constructed using
Lemma 2.1 for R. If A is not diconnected, then there is a unique equivalence
class [p| € Q/= which is a source. Moreover, [p| is trivial and there is
exactly one transition leaving p in A.

Proof: The existence of a source is guaranteed by the fact that the graph
G = (Q/=, F) is acyclic.

Let us show that any source is trivial. For, take a source [p] € Q/= and
consider the subautomata

APl = (p), =, 6|y, [], [p1)

and

AQ—[P] = (Q - [p]v 27 6‘Q—[p]a Q - [p]1 Q - [p])
of A.

Suppose, contrary to the claim, that [p] is not trivial. Take p1, p2 € [p]
such that if card ([p]) > 2, then p; # py, otherwise p1 = p2 = p. f p1 # p2,
then, as AP is diconnected, there must be in AP a path from p; to p2, say
”M EN P2, Yy € ¥t and another one from p2 to p1, say pa 5 P, 2 € »+.

If p1 = po, as [p] is not trivial, there must be a transition p A p, for some
a € X, and we can take y = z = a. So, in what follows, it will not be
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important whether p; # py or not. What is important is the fact that, in both
cases, the word yz is not empty.

As, clearly, G (A) is connected and the sets of states of APl ang AQ-P])
respectively, are non-empty (p is in AP and, if A9} s empty, then
A = APl hence diconnected, a contradiction), there must be a path from a
state in AP} to one in A9~[P} and we can find p3 € pl, @1 € Q — [p], and
a transition ps N q1, a € &, in A. Since A is strongly minimal, there is
a word w € ¥* which contains ¢ and is accepted by the automaton A but
not accepted by the automaton obtained from .A by removing the transition
p3 — q1. (That is, when A accepts w, then it must read a from p3 to ¢1.)
It follows that we can find the states py € [p], ¢2 € Q — [p] and the words
w1, wy € 2* such that w = wiawsy and there are paths p4 ot p3 in AlPl and
a3 g in AQ-D] Using again the fact that APl is diconnected, we get a
path from p; to ps in A[p], say pi LA p4, U € X*, see Figure 2 below.

Al AQ-0r]
B P o -l o
f Pae w2
peee—y 2Pl
Figure 2.

Then (yz)*uwiaws C R. Assume R = Fact (o) for some infinite word
o € X¥ (there is such an a by hypothesis). As the language (yz)* contains
arbitrarily long words, there must be-an n > 0 such that-an occurence of
(yz)"uw appears in o after an occurrence of w (“after” meaning at a larger
distance from the beginning of «). Supposing that we have

w v (y2)" U w

[ I 3 3 + 1 I t -
ao T 1 L T T ¥ T

for some v € *, « has a factor wv (yz)"uw. But now wv (yz)"uw € R.
Because, when accepting w, A must read ¢ from p3 to ¢1, using the fact
that [p] is a source, we obtain that the word v (yz)"uw is accepted by A
without reading p3 > ¢y. In particular, w is accepted by .4 without reading
p3 — q1, a contradiction. If follows that [p] is trivial.
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Let us prove now that there is exactly one source in \A. For this, suppose
that [p] and [q] are two different sources. As shown above, [p] = {p} and
[q] = {q}. As A is strongly minimal, there must be transitions starting from
p and ¢ labeled by a € ¥ and b € %, respectively. Moreover, there are
some words azi, bzy € L (A) such that A must read the transition which
leaves p(g) and is labeled by a(b) in order to accept the word azi (bzs,
respectively). It follows that the word az cannot be prolonged to the left in
R, that is, there is no word w € 7 such that waz1 € R. As R = Fact (o),
a € XY, o must begin with az;. Since the same resoning can be done for
bz, we get that of az; and bzg one is a prefix of the other. Suppose that
axy is a prefix of bxy. In this case, ax; is accepted by the automaton .4
without reading the transition labeled o leaving p, a contradiction.

A similar reasoning shows that for a source [p] the number of transitions
leaving p is exactly one. Indeed, it is at least one and if there are two
transitions labeled a and b, then a # b, because A is deterministic, and then
o must start with both ¢ and b, a contradiction. W

Lemma 2.3: For an infinite regular language R C X*, R € Fpqe if and
only if an automaton A constructed for R in Lemma 2.1 is either diconnected
or ultimately periodic.

Proof: Suppose first that A = (Q, X, §, Q, Q) is diconnected and take an
arbitrary ¢ € Q. As R is infinite, there must be at least one cycle ¢ — ¢ in
G (A) hence there are infinitely many such cycles, the set of them being

C(q) ={weXq A q} = {wi, wa, w3 ...}.
Define

o= WIWW3 . ..

We have L (A) = Fact (o). The inclusion Fact(a) C L(A) is trivial.
To prove the other one, take w € L (A). There are p1, p2 € @ such that
w . . . w (0
p1 — p2. Since A is diconnected, we have also ¢ — p1, p2 — g, for
some u, v € L*. If follows that there is an 7 > 1 such that w; = wwwv,
so w € Fact ().

If A is ultimately periodic then G (A) has the form in Figure 1. Hence
(using the notations there)

L (A) = Fact (a1a2 R 78 (blbz - bl)w).
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Conversely, take a regular language R C ¥* such that R € Fpqye and
construct A as in Lemma 2.1. If A is diconnected, then we are done.
Otherwise, by Lemma 2.2, there is exactly one source, say [p1], in A.
Morevoer, {p1] is trivial and there is exactly one transition in A starting
from p;, say p1 = po, for some py € Q — {p1} and a7 € X. If a € &
with R = Fact (c), then from the proof of Lemma 2.2, o has the form
o =aco, o € ¥,

Denote the automaton obtained from A by removing p; and the transition
leaving p; (labeled aj) by

A= (Q —{p1}, T, 8lg—(p,}, @ — {m}, @ — {m}).

If A; is not diconnected, then the only source in A; is [p2] = {p2}.
Suppose that the only transition from py is p2 =3 p3, p3 € Q — {p1, P2},
az € X and put

Az = (Q — {p1, P2}, =, 8lg—{p1,pa}» @ — {P1, P2}, @ — {p1 p2})-

If A3 is not diconnected, then we continue our procedure. Obviously, after
a finite number of steps, say k > 1, we get a diconnected .A;. Moreover,
L (A;) is infinite since R is. It remains to show that G (Ag) is a cycle.
G (Ay) contains at least one cycle; suppose that there are two distinct cycles
(meaning that none of them is contained in the other), the second one being
i -5 pr. As mentioned, o must start with aias...ap_1. We have that
a1ay ... 0p_1 Wk, @142 ... ap—1ur € Fact (). As a1a2. 4,_, appears only
at the beginning of «, it follows that wy is a prefix of uy or conversely,
a contradiction. W

Because, given a regular language R, a strongly minimal automaton for R
is effectively constructable by Lemma 2.1 and it is decidable whether or not
an arbitrary finite automaton is diconnected as well as ultimately periodic,
we obtain as a consequence of Lemma 2.3 the main result of this section.

THEOREM 2.4: It is decidable whether or not an arbitrary regular language
is in the family Ffqct.

3. THE CASE OF BI-INFINITE WORDS

A bi-infinite (or two-sided) word is an infinite word without any end.
(Usually, an one-sided infinite word is viewed as a function o : N — X, ¥
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being an alphabet. We can define a bi-infinite word as a function a : Z — X
or, in fact, as an equivalence class of the set ©Z with respect to the
equivalence relation defined for a, 3 € X% by a ~ 3 if and only if there is
an integer & such that for any n € Z, a(n) = 8(n + k).)

We denote by “%“ the set of all bi-infinite words over ¥. For a finite
(non-empty) word w € T, we denote by “w the infinite (to the left) word
“w = ... www.

Also, we denote by .7-"fbfz . the family of languages of the form Fact (o),
for an arbitrary bi-infinite word «, that is,

F}’fmt = {L|there are ¥ and o € “L“ with L = Fact (o) }.

As in the case of one-sided infinite words, it is very easy to prove that it is
undecidable whether or not an arbitrary context-free language L C X* is in
the family ]—"?2 « Or not (the proof uses the undecidability of the problem of
whether L = X* or not and is similar to the one of Theorem 6 in [MaPal}l).

In what concerns regular languages, we show in this section that the above
problem is decidable.

First, notice that things are different from the case of one-sided infinite
words; for instance, we can find a regular language R € f%ct such that
its automaton A constructed using Lemma 2.1 has a non-trivial source (see
the picture below)

(source)

Obviously,
R = Fact ((aba)*c (bab)*) = Fact (a) for o = “(aba) c (bab)®.

Lemmva 3.1: For a regular language R C ¥*, R € }'}’th, let A=
(@, %, 6, Q, Q) be the strongly minimal automaton constructed using
Lemma 2.1 for R. Then there is a unique equivalence class [p] € Q/=
which is a source. Moreover, [p] is not trivial.

Proof: Take o € “E* such that R = Fact ().

Suppose that [p] € Q/= is a source. Then, we have a transition p — g,
a €, g€ Q—[p],and a word w = w'aw” € R such that A must read p % ¢
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in order to accept w. Since « is bi-infinite, w can be prolonged arbitrarily
long to the left in R, hence the language accepted by the subautomaton

APl = (Ip], B, 6y, (7], [p))
must be infinite. It follows that [p] is not trivial.

Suppose now that there are two different sources [p1], [p2] € Q/= and the
respective transitions and words as above are:

S a,a €S a€Q-(p]Ulp)), w1 =wiaw! €R,
a

P2 @, 02 €Y, 2 €Q—([p]U[p), wa = wharwy € R.

(So, for s = 1,2, .A must read p; =5 ¢; in order to accept w;.)

Since w and w appear as factors of o and [p1] and [p2] are sources, the
occurrences of wja1 and agw} are not overlapped and so are the occurrences
of whas and ajwf. Consequently, the occurrences of w; and w; in « are not
overlapped and we can find, for instance, wjvws € Fact(a) = R, v € £*.
But now wy can be accepted by A without reading p; =3 go, a contradiction.
The lemma is proved. W

Lemma 3.2: For a regular language R C X%, consider a strongly minimal
automation A = (Q, L, 6, Q, Q) accepting R. Then R € .7-";2 if and only if

act
either A is diconnected or there are u, v, w € ¥* such that G (A) has the form

Proof: If A is diconnected, then we can prove as in Lemuma 2.3 that
R e Fl,

If G(A) has the form in the statement, then R = Fact(a) for
o = YywrY € YX¥.

Conversely, suppose that R € ]—"}’f, - If A is not diconnected, then, by
Lemma 3.1, we get a p € @ such that [p] is the only source in A and [p]
is not trivial. If

Al — (In], 2, Opp}s (], [p)),
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then, as in the proof of Lemma 2.3, one can show that
i G (AL”]) is a cycle (u in the figure above),
(ii) G (AQ~I]) is either of the form in Figure 1 or a cycle.

In both cases, the form of A in the statement of our lemma is obtained. W

The main theorem of this section is a consequence of Lemma 3.2.

Tueorem 3.3: It is decidable whether or not an arbitrary regular language
is in the family .7-'% ct*

Let us further remark that the same result as in Theorem 2.4 holds for
left-infinite words as well. Therefore, using also Theorem 3.3, we obtain
that it is decidable whether or not an arbitrary regular language is the set of
factors of a left-, right-, or bi-infinite word.
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