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A SELECTION PROPERTY OF THE BOOLEAN ;-CALCULUS
AND SOME OF ITS APPLICATIONS (*)

by André ArnoLp (1)

Abstract. — We prove that every closed Boolean y-term T has the same value as a p-term 7'
obtained by replacing any sum by one of its summand.

1. INTRODUCTION

The p-calculus, that is concerned with monotonic mappings between
complete lattices, plays a central role in the study of the relations between
logics and automata (see, for instance, [4] and [2]).

Depending on the complete lattices under consideration and the basic
monotonic mappings that are used, one can define a lot of different u-
calculi. The most fundamental one, the Boolean p-calculus, is based on the
lattices B, equipped with pointwise Boolean sum and product.

Although this calculus has been used for studying model-checking
algorithms [3, 7, 1], it has not been studied “per se”.

Indeed, it has a fundamental property, that we name ‘“selection property”
that has several interesting consequences. At the end of the paper, we
mention three of these consequences:

* the fact that a McNaughton game with a chain (or parity) condition on
any graph has a memoryless winning strategy [5, 8, 91,

e the fact that any satisfiable formula of the modal p-calculus has a
bounded-branching model [6],

* the Rabin’s regularity theorem for parity automata.

(*) Received February 1997, accepted June 1997.
(') La BRI, Université Bordeaux-I, Unité de Recherche Associée au CNRS, URA 1304.
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372 A. ARNOLD

This property is an extension of the quite trivial property of the Boolean
sum in B: if (b;)ier is any family of Boolean values, then there exists
g in I such that >, ; b; = bj. Now, let us consider f : B — B be
defined as f (z) = } ,c; fi(x). Then there still exists j € I such that
ux . f (x) = px . fi (x). This is because pz . f (z) = f(0) and we apply the
selection property to f (0) = ;< fi (0). Inductively, we can also prove
that there exists 7 € I such that

uw.z/y.ﬂz...z filz,y, z,...) = px.vy.pz..f; (z, 9, z,...).
el

What is far less trivial is that the same holds for vectorial fixed points.
When there is one fixed point operator, say the least one, the selection
property in the vectorial case reads as follows. Let I be a set of indices, let
x be a family of variables indexed by I, and let f (x) be a family, indexed
by I, of monotonic mappings from B to B. For any i in I, let .J; be another
set of indices and assume that f; (x), the component of f of index i, is
equal to 37 ;. fi ;j (x). Then for each 7 there exists an index j; in J; such
that pux . f (x) = px.f’ (x) where f' (x) is the vector whose component of
index ¢ is f; j, (x). In other words, for each component f; of f, we can
select only one summand f; ;, and still have the same least fixed point.

It should be noted that this selection property can be easily obtained as a
straightforward consequence of the determinacy property for games with a
parity condition, mentioned above. However, it might be of some interest to
have a purely Boolean algebraic proof of it.

2. THE BOOLEAN .-CALCULUS

Let B be the classical Boole algebra with two elements, 0 and 1.

For any set I of indices, of arbitrary cardinality B/, is a complete lattice.
We denote respectively by 0 and 1 the minimum and the maximum of
this complete lattice, i.e., the vectors, indexed by I, whose all components
are 0 or 1.

By Knaster-Tarski Theorem, any monotonic mapping f : B/ — B has
a least fixed point, denoted by f#, and a greatest fixed point, denoted by
f”, both elements of BY.

It is well known that these fixed points can be characterized as follows:
1. f* =TI {b € B/|f (b) < b}, f* =S {b e B/|b < f(b)}.

Informatique théorique et Applications/Theoretical Informatics and Applications



THE BOOLEAN u-CALCULUS AND SOME OF ITS APPLICATIONS 373

2. Let (ag)o and (bg)q be the sequences of elements of B, indexed by
ordinal numbers, defined by
ag = 0, bg =1,
agt1 =f(ay), bat1 =f(by), fora+1asuccessorordinal,
ag = Z ay, bg= H by, for 8 alimit ordinal.
a<lf a<lf
Then there is an ordinal v such that f# = a, and f¥ = b,,.

More generally, for any set F, if f(x, y) is any mapping from B! x E
into B! that is monotonic in its first argument, we denote by ux.f (x, y)
(resp. vx .f (x, y)) the mapping from E into B! defined by: for any e € F,
px . f(x, e) (resp. vx.f(x, €)) is the least (resp. greatest) fixed point of
the mapping f (x, e) : B! — BI.

If, moreover, E is an ordered set, and if f(x, y) is monotonic in its
second argument too, then ux .f (x, y) and vx.f (x, y) are also monotonic
with respect to the argument y.

Therefore, if f(x1,..., Xp, y) : (BY)® x E — B! is monotonic with
respect to any X;, 01 Xi...0n X, . £ (X1, ..., Xpn, y), where each 6; is p or v,
is a well-defined mapping from E into BI.

3. THE THEOREM

Let f(x1,..., X,) : (B)® — B’ be monotonic in all its arguments,
where I is a set of indices of arbitrary cardinality. For each i € I let
fi (x1,..., Xp) : (B)™ — B be the component of f of index i.

We assume that for each index i € I there exists a set J; of indices, also
of arbitrary cardinality, such that

Fi (K1, Xn) = D fij (X1, 000; Xn)-
JeJ
A selector is a mapping o that associates, with each ¢ in I, an element
o (i) of J;. Given a selector o, we define f, (x1, ..., X,) : (B)™ — B’ as
the mapping whose the i-th component is f; 5(;y (X1, ..., Xn) (BH"™ — B.

THEOREM 1: Let f be defined as above and let
a=~01x1...0,x, .f(Xl, ey Xn) € BI.

Then there exists a selector o such that a = 01 x1...0,, xp, . f5 (X1, ..., Xn).

vol. 31, n° 4, 1997



374 A. ARNOLD

In order to keep notations simple enough, we first prove this theorem in
the case where each set J; has only two elements (dyadic case). Then we
explain how to extend this proof in the general case where each J; has
any cardinality.

3.1. The dyadic case

Let us assume that each component f; of f is written f; 1 + fi 2. Let y
and z be two families of variables, indexed by I. We consider the mapping

g(y7 Z, X100y Xn) . (BI)H-{-? — f

whose the i-th component is y; . fi 1 + 2; . fi 2. It is clear that
f(x1,...,xn) =g(1, 1, x1,..., Xp).

Moreover, with each selector o we associate the element u, of B! whose
the i-th component is 0 if o (i) = 2, 1 if o(:) = 1. It follows that
f; (x1, ..., Xn) = g (g, Uy, X1, ..., Xn ), Where U, is the complement of u,
in the Boolean algebra B.

Since the correspondence between o and wu, is bijective, the theorem
can be stated:

There exists u € B such that
f1x1..0n%n.g(1, 1, X1,..., Xpn) = 01 X1...0, X . g (U, T, X1, ..., Xp).
To prove this theorem we need a definition.

DerINITION 1: We say that a monotonic mapping f (y, z, x) : B! x B! x
(BIY™ — B! has property S if Yu, v/, v, v/ € B! such that u < v and
u < v/, Ver, e € (BY)™ such that e; < ey, if u+u’ < f(u, U, e;) then
there exist w, w' € B such that

eu<w<vand u <w <V

ceu.u = w.w,

cw+w =f(w,w, e)="f(v,V, e),
where u + u’ and u.u’ are the pointwise extensions to BY of the sum and
product of B.

Lemma 2: If T (y, z, x) is such that f; = y;. fi,1(X) + 2 . fi,2 (x), then
it has property S.

Informatique théorique et Applications/Theoretical Informatics and Applications



THE BOOLEAN u-CALCULUS AND SOME OF ITS APPLICATIONS 375

Proof: 1t is sufficient to show that f(y, z, X) = y.q1 (Xx) + z.92 (x)
has property S in the following restricted sense: Vu, v/, v, v € B such
that w < v and o/ < o/, Ver, ey € (BI)™ such that e < e, if
u+u < f(u, v, er) then there exist w, w' € B such that

cu<w<wvand v <w <,

cu.u = w.u,

cw+w = f(w7 wl) 92) = f(’U, 1)17 e‘2)'

Let us remark that u + v’ < f (u, v/, 1) < f(u, o, €2) < f (v, V', e2).

If u+v =1, we have 1 = f(u, v/, e) = f(v,v,e) = v+
and we take w = u, w = . If f(v,v',e) = O then we have
0=u+v = f(u, v, e) = f(v,?, e2) = v+ v and, again, we take
w=u, w = u.

It remains to consider the case u + v/ = 0 (hence, v = v =
u.v' = 0) and f (v, v, e3) = 1. We cannot have v + v’ = 0, because
f(0,0,e) = 0 for anye. If v.v' = 0 we can take w = v, w' = ¢/
since f(v,v,e) =v+v =1 Ifv.v =1, (je, v =1 = 1), then
fw, v, e)=f(1,1,e)=aq (e2) + g2 (e2) = 1. Thus g; (ez) = 1 for
some ¢ € {1, 2} and we take w = 1, w' = 0 or w = 0, w' = 1 according
to the value of 7. [

LemMa 3: Let us assume that £ (y, z, x, x') : B! xB! x (BD)"+! — B! has
property S. Then 9x .£ (y, z, x, ') : Bl x B! x (B!)™ — B! has property S.
Proof: Let g(y, z, x') = x .f(y, z, x, X'). Let u, u’, v, v/ € B! such
that u < v and v’ < v/, let e, ey € ([E!I)"" such that e; < eg, and let

us assume that u + u’ < g(u, u’, e;). We have to show that there exist
w, w € B! such that

cu<w<vand u <w <V,

cu.u = w.w,

cw+w =g(w, W, e)=g(v, Vv, e).
Leta=g(u,u, e;) and b = g(v, v/, e2). Obviously,

a=f(u,u,a e)<b="Ff(v,Vv, b, e).

We have two different proofs according to § = p or 6 = v.

Case 6 = p. Let us consider the sequence bg of elements of B/, indexed
by ordinal numbers, and defined by by = a, ba1 = (v, v/, by, e2),
bﬁ — ZO((IU ba.

vol. 31, n® 4, 1997



376 A. ARNOLD
This sequence is increasing, since f is monotonic and
bg=a="f(u,u, a e)<f(v, Vv, by, e) =bs.

Moreover, it is easy to see that b = b, = b, for some ordinal -y.

Now, we construct, inductively, two increasing sequences W, and wi,
for 0 < o < v+ 1, that satisfy

*Va<vy+lLu<w, <v,u <w <V,

Va<y+1uu =w,.w,,
*Va:l Sa<ly+1, WO+W£:V :ba < f<w0'vwémba)62)s
*Va S Y ba+1 = f(Wa-i-l) W:y.}.l; bCY) 92)-

The definition is as follows: wo = u, w = u’. Since

wo+wy=u+u <a<b;="f(v,V, by, ep),
and since f has property S, there exists wi and w) such that

/ /
/ / /
w1+ wy = by = f (wy, wi, bp, e2) < f(wy, wy, by, e2).

Similarly, if wo + W, = be < (W, W, by, €2), we can find woy1
and w/,_; such that

/ / !
Watl -Woy] = Wo . W, =U. U,

/ /
bat1 = waq1 + Wa+t1 =f (Wa+17 Watls ba, 9‘2)
/
< f(WCH'l) Wo+1s ba+17 62).

For limit ordinals, we set wg = 3, 5 Wo and Wy = >3, 5 W, Since
wo < wg and w,, < w’ﬁ, we get u.u’' = w,.wh < WI@.W,ﬁ. Assume
that this inequality is strict, that is, for some component i, (u.u'); = 0 and
(wg.wjy); = 1. The last equality implies (wg); = (Wj); = 1, thus there
exists a; and oo such that (wq,); = (w,,); = 1. For a = \/(0a1, a3)
we get (wo); = (w)); = 1, thus (u.u'); = 1, a contradiction. We
also have, for o < 8, by < f(wa,.wg, by, e2) < f(wg, w'ﬁ, bg, e2).
Hence, bs < f (wg, wj, bg, e2). It remains to prove that by = wg + wj.
Again, by, = wo + w,, < wg + w:3, hence bg < wg + W}j. Assume
that this inequality is strict, ie., for some component i, (bg); = 0 and
(wp)i + (wp)i = 1. Since (bg); = 0, for all @ < B, (ba)i = 0, hence,
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THE BOOLEAN p-CALCULUS AND SOME OF ITS APPLICATIONS 377

since bo = Wo + W, (Wa)i + (W )i =0 = (wu)i = (w)). If follows
that (wg); = (w’ﬁ)i = 0, a contradiction.
Now, we have
b=byy1 =f(Wyp1, Wiy, by, €2) = (Wopr, W)y, b, e2).

We take w = w11, w' = w/ ;. Since b = f (w, W/, b, e2), we have

b>pux.f(w,w, x, e)=g(w, W, es).

It remains to prove the reverse inequality.

Let ¢ be any element of B! such that ¢ = f (w, w', c, eg). We prove by
induction that b, < c. Firstly,

by=a=pux.f(u, v, x,e) <px.f(w, w,x e)<c.

If by < cthen boy1 = f(Wa+1, W¢I;1,+1> ba, 32) < f(W, Wla C, e?) =cC
and bg = >, 5 ba < c

Case # = v Since f has property S, there exist wo and wy( such that
u < wp < v and

u <wj <V, wo.wy=u.u, wo+wj=b="F(wy, wj, b, e).

Now, consider the decreasing sequence by, indexed by ordinal numbers,
defined by by = 1,bat1 = (v, V/, by, €2), bg = [[,4 ba-

Then b = b, = b,y for some ordinal .

Since f has property S, for each successor ordinal o + 1 < -y + 1 there
exist W41 and wi,_, such that wg < wa41 < v and

wo < Wop1 SV, Wag1 . Why =wo.wy =u.u,
Wot1 + Woi1 = bay1 = f (Wat1, Woyi, ba, €2).

Let w = [To11<y41 Wat1 and W' =[], 1<, 41 Wi 1. We claim that

lu<w<vandu <w <V

2.w.w = wp.wp = u.u,

3. w4+ w = b,

4. b =vx.f(w, W, x, e).

Since u < wg < Wa41 <v and v’ < wy < wi, ., < Vv, the point 1
above is satisfied.

Since wop < w < Woy1 and wy < w' < w) ;, we have
u.u’:wo.w6 <w.w Swa+1.wg+1 =u.u

and the point 2 above is satisfied.

vol. 31, n°® 4, 1997



378 A. ARNOLD

For the point 3, we have b = wo + w < w4+ w' < w1+ W,y =b.
For the point 4, we have

b = f (wp, wi, b, €2) < f(w, w', b, e3) < f (w41, wfy_'_],,'b, e2)=Db
hence b < vx.f(w, W, x, e2). Let
c=vx.f(w,w, x, e)="f(w,w,ec, e

and let us show, inductively, that ¢ < b, for any a < v + 1. Obviously,
c < by =1. If ¢ < by then

c= f(W, WI7 c, ez) < f(WCY+1> Wloz+1a ba, 62) = ba+1a

and ¢ < bg, for all & < £, implies ¢ < Ha<ﬁ b, = bg.

The proof of the theorem is a direct consequence of the two previous
lemmas. Let h(y, z) = 61x;.02x2...0, X, .g where g has the form
explained at the beginning of this section. Then h has property S. Thus,
0=0+0<h(0,0) <h(1, 1), there exist w and w’ such that 0 = w . w’
and w + w = h(w, w) = h(1,1). But 0 = w.w' implies w' < W,
hence h(1,1) = h(w, w') < h(w,w') < h(1, 1).

3.2. The general case

Here, we assume that the i-th component of f is f; = Zie g, fi,j where
J; is any set of indices. Without loss of generality, we may assume that the
sets J; are disjoint and we set J = | J;c; Ji.

Let us consider Boolean variables y; for j € J and write f; in the form
> jer, Y- fi,j- Now f is a mapping from B’ x (B))" to B! and

g(y)=01x1.02%2..0, %, .f(y, x1, X2..., X,)
is a mapping from B’ to BI.

Then the theorem is equivalent to the following statement:

Let g (y) = 61 %1 .62 X2...00, X, . . Then there exists u = (u;)jc; € B/
such that g (1) = g(u) and for any ¢ € I there is exactly one j in J;
such that u; = 1.

Remark that in the last condition above, we can replace “exactly one”
by “at most one”.

The proof is quite similar to the proof for the dyadic case As above, we
define the property S for f (y, x) : B/ x (B/)™ — B!. The two functions
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THE BOOLEAN 4-CALCULUS AND SOME OF ITS APPLICATIONS 379

u+u' and u.u’ that appear in this definition have to be replaced by the
two monotonic functions S and P from B/ to B/ defined as follows. For
u = (u]‘)je] e B/

the i-th component of S (u) is equal to > ;¢ ;. uj,

* the i-th component of P (u) is equal to O if and only if there is at most
one j in J; such that u; = 1.

Now, f(y, x) has property S if Vu, v € B’ such that u < v, Ve,
ey € (BT)™ such that e; < ey, if S(u) < f{u, e;) then there exist w € B’
such that

eu < w < v,

* P(u) = P(w),

* S(w) = f(w, e2) = f(v, e2),

To prove the basis of the induction, it is enough to prove that

fly,x) =)y -fi(x)
j€J

has property S. Let u < v, e; < ez and S(u) < f(u,er). Then
S(u) < f(u,er) < f(v,e) < S(v). If S(u) =1 or f(v,er) =0,
we can take w = u. If S(u) =0and f(v,e) =1,thenVje J, u; =0
and, since f (v, ez) = 3 ;c; v;.fj(e2) = 1, there exists jo such that
vj, = 1 and f;, (e2) = 1. Then, we take w defined by w; = 1 if and
only if 7 = jp.

To prove the induction step, we proceed exactly like in the dyadic case. The
only difference is that since sum and product are replaced by S and P, we
need, for the case 6 = u, the following property: if (Wq )< is an increasing
sequence of elements of BY such that u < w, and P(u) = P (w,) then
P(u) =P (X acp Wa)and S (3,5 Wa) = D_4<p S (Wa). This property
is proved exactly like the similar one with sum and product.

4. APPLICATIONS

4.1, Games on graphs

A McNaughton’s game [5, 8] is played by two players (Val and Andy) on
a directed graph G = (Vy/, V4, E) where Vir and Vy are two disjoint sets
of vertices and the set of directed edges is a subset £ of Viy x ViU V4 x V5.
Moreover it is assumed that any vertex in G' is the source of an edge.

vol. 31, n® 4, 1997



380 A. ARNOLD

A position is just a vertex. It is a position for Val if this vertex is in
V4, and a position for Andy if it is in V4. In a position v for some player,
a move is performed by that player by choosing a position v’ such that
(v, v') € E, that is a position for the other player. Any sequence of moves
can be extended into an infinite one that is called a play.

To decide which player wins a play, we define a set C of infinite sequences
of V. =V, UVy. A play p is won by Val if and only p is in C. We denote
by Wy, the set of positions where Val has a winning strategy.

Now, we assume that the membership in C of a play p does not depend
on any of its finite prefixes, i.e.,if p € V¥, p' € V*, p" € V*, thenp' p € C
iff p"p € C.

It follows that a vertex v is in Wy if and only if

v € V4 (v is a position for Andy) and all successors of v are in Wy
(whichever move Andy plays, he reaches a position winning for Val),

v € Vy (v is a position for Val) and there is a successor of v that is in
Wy (Val can reach a winning position).

Let us introduce a Boolean value w, for each vertex v such that w, = 1
iff v € Wy . Then the above condition can be translated into:

S we if veW,
(v,v'yeE

I[I w if veVy,
(v,v')EE
or in vectorial form, w = f(w).

VoeV, w, =

Obviously, this equation may have a lot of solutions. An interesting case,
where we can characterize the solution defining Wy, is when the set C is’
defined by a parity condition or chained Rabin condition. Let n be a positive
natural number and r : V — {1,..., n}. With a play p = vov1... € V¥,
we associate the sequence r (vg), 7(v1),... and we say that p is in C if
and only if the least number that appears infinitely often in this sequence

is even. In this case, we associate with each number ¢ in 1, ..., n a family
w; of Boolean variables w; , indéxed by vertices in V. We also consider
f (w1, wa,..., ws) : (BY)® — BY whose the component of index v is
Z 'LUT (v’),v’ lf RS VV,
(v,v')€EE
H wT (,Ul)’vl lf RS VA
(v,v")€E

Informatique théorique et Applications/Theoretical Informatics and Applications



THE BOOLEAN ;-CALCULUS AND SOME OF ITS APPLICATIONS 381

Remark that only some of the variables w; , occur in f.

Then one can show that Wy, seen as an element of BY, is exactly the
following fixed point of f:

uwi.vwy...0w, . £ (w1, wa,..., wi).
By the result above,

uwi . vwy...0 wy £ (wy, wa, ..., wy)

=pwi.vwa. 0wy, .g (Wi, wa,.., Wp)

where the component of index v of g is

Wy (1), v for some v’ such that (v, ') € E, if v € Vy,
Wr (v'), v’ ifv e Vy.
(v,v)EE

That g defines a memoryless winning strategy for Val: When Val is in
a position v € Vi, she moves to the vertex v’ such that the component of
index v of g 1S Wy (y1), vr-

4.2. Modal p-calculus

Let A be a finite alphabet and P a set of proportional symbols. A closed
vectorial modal p-term over A is an expression

T = (91 X1...(9n Xn . f (Xl, cory Xn),

where each x; is a vector of variables of length k and f (xq, ..., X) is a
vector of length k£ whose each component is a propositional symbol p € P
or has one of the following form: z U 2/, 2N 2/, (a) 2, [a] 2, for any a € A,
where z and 2’ are variables belonging to some x;.

Let S = (S, T, Ps) be a labeled transition system where S is a set
of states, T' C S x A x S is a set of transitions, and Ps is a collection
{ps|p € P} of subsets of S. S is said to be bounded-branching if there
exists a natural number d such that for any state s € S and any letter a € A,
there are at most d states s’ such that (s, a, s') € T.

The interpretation [7]s of 7 in § is defined as
91 Xl...gn Xp . [f]S (Xl, cery xn)
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382 A. ARNOLD

where [f]s is the monotonic maping from (P (S)¥)" into P (S)* obtained
by replacing each component p by ps, (a) z by the mapping that associates
with Q@ C S the set {s € S|3s’' € Q : (s, a,s) € T} and [a]z by the
mapping that associates with @ C S the set {s € S|Vs' € S, (s, q, §') €
T = s € Q}. ,

Thus, [7]s belongs to P (S)* and S is said to be a model of T if the first
component of [r]s ts not empty.

In [6], Streett and Emerson have proved that if a u-term has a model then
it has a bounded-branching model. We are going to prove this result as a
consequence of the above theorem.

Because P (S) is obviously isomorphic to B, there is a close connection
between modal p-calculus and Boolean p-calculus that has been used to
study and improve model-checking algorithms for the modal p-calculus
[3, 7, 1]. Let us explicit this connection.

Let 7 and S be as above. For each vector x; of k variables we consider the
vector y; indexed by {1,..., k} x S, i.e., yi is the set {y(, o[z € x;, s € S}.
We associate with the vector f of length k, the vector g indexed by
{1,..., k} x S defined as follows, where f; denotes the i-th component
of f: for any index 7 and any state s, the component g(; 5 of index (i, s)
of g is

. 1 if s € ps,

if ft =Pthen 9(i,s) = {0 if Sgij’

if fi =202 then g oy = Y(z,5) T Yzr,s)s

if fi =2U 2" then 9@, sy = Y(z,s) Y(z',s)»

if fi = (a)z then g(; 5) = X (5 q,s7eT Yz, 5)>

if fi = [a] z then 9(i,s) = H(s,a,s.’)GT Y(z, s
and it is easy to see that s belongs to the i-th component of [7|s if and only if
the component of index (7, s) of 81 y1...0, yn -8 (¥1,..., ¥n) is equal to 1.

By the above theorem,

01 Y1---9n Yn 'g(y17 ey Yn) = 01 Y19n Yn ~h()’17 ey yn)a

where h is obtained by replacing every sum Z(S,u’ syeT Y(z,s') by some
Y(z,s)

Now, let us define the transition system S’ = (S', T', Ps/) by S’ = S,
Ps: = Ps and T" is the set of all (s, a, s') such that Z(s,a,s’)eT Y(z,s) has
been replaced by y. 5. Obviously &’ is bounded-branching: the number of
s' such that (s, a, s’} € T’ is at most equal to the number of components of
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f in the form (a) z. Now, let us consider the Boolean function g’ associated
with f and &', in the sarie way as g is associated with f and S. It is clear
that h < g’. Hence,

01}’1"’071Yn-g(y1;---y)’n) :91y1"’0nYn~h(yly~~-; Yn)

<O1y1-buyn.g (y1,--, ¥n),
and [7]s C [r']s. It follows that if S is a model of 7, the bounded-branching
transition system S’ is also a model of 7.

4.3. The regularity theorem

The regularity theorem states that any tree language recognized by a tree
automaton contains a regular tree.

If a tree automaton over an alphabet A is given with a parity condition,
the set of trees it recognizes can be defined as the first component of some
p-term 7 = 6 x3...0,, X, . £, where each component f; of f has the form

Y i (7,5, 7 5);

J€J;
this u-term being interpreted in the powerset P (74), the powerset of all
trees over A.

Let us consider one letter ¢ in A and let us substitute o for any letter
in 7. We get the p-term 7' = 601 x1...0, x,, . ', where each component f]
of f has the form 3>, ; a(z,;, 2 ;)-

It is clear that the ¢-th component of 7 is not empty iff the ¢-th component
of 7/, interpreted in P (T{a}), is not empty. But T¢,} has only one element,
so that P (T{a}) can be identified with the Boolean algebra B. The union
becomes the Boolean sum, and since a (Z, Z') is empty iff Z is empty or Z’
is empty, the operation a (z, z') can be identified with the Boolean product.

It follows that the Boolean u-term 7" = 6 x1...0, X, . g, where each
component g; of g has the form }_ ¢ ; i, 7 ;, has the same value as the
characteristic function (for emptyness) of ~.

-
Z?J’

Applying the selection property, we get that 7’ has the same value as
01 x1...0n Xn, . g, where each component g} of g’ has the form z;_j, z; g

It follows. that 7 has the same characteristic function as 61 xy...0, X, . h,
where each component h; of h has the form a; ;, (%, j,, z}, js ).

If the first component of 7 is not empty, the first component of this
last p-terms defines a unique tree, that is regular and belongs to the first
component of 7.

vol. 31, n° 4, 1997



384 A. ARNOLD
ACKNOWLEDGEMENTS

The result presented in this note as well as its proof came out from
long and fruitful discussions with W. Zielonka and I. Walukiewicz about
McNaughton’s games on infinite graphs.

REFERENCES

1. H. R. ANDERSEN, Model’check_ing and boolean graphs. Theor. Comp. Sci., 1994, 126,

~ pp. 3-30.

2. A. ArnoLDp, An initial semantics for the p-calculus on trees and Rabin’s
complementation lemma. Theor. Comp. Sci., 1995, 148, pp. 121-132.

3. A. ArvoLp and P. CrusiLLg, A linear algorithm to solve fixed-point equations on
transition systems. Information Processing Letters, 1988, 29, pp. 57-66.

4. A. Arnowp and D. Niwixski, Fixed point characterization of weak monadic logic
definable sets of trees. In M. Nivat and A. Podelski, editors, Tree Automata and
Languages, 1992, pp. 159-188, Elsevier.

5. R. McNaucnron, Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 1993, 65, pp. 149-184.

6. R. S. Streert and E. A. Emerson, An automata theoretic decision procedure for the
propositional mu-calculus. Information and Computation, 1989, 81, pp. 249-264.

7. B. Vercauwen and J. Lewi, A linear algorithm for solving fixed-point equations on
transition systems. In J.-C. Raoult, editor, CAAP’92, p. 321-341. Lect. Notes Comput.
Sci., 1992, 581.

8. I. WaLukiewicz, Monadic second order logic on tree-like structures. In STACS’96,
p. 401-414. Lect. Notes Comput. Sci., 1996, 1046.

9. W. ZieLonka, Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Technical Report 1091-95, LaBRI, Universit€é Bordeaux I, 1995.

Informatique théorique et Applications/Theoretical Informatics and Applications



