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A HIERARCHY OF CYCLIC LANGUAGES (*)

b y O . C A R T O N (l)

Abstract. - We introducé a hierarchy of cyclic languages. The kth level of this hierarchy consists
o f ail cyclic languages which are equal to some boolean combination of size k of strongly cyclic
languages. We then show how this hierarchy can be characterized by chains of idempotents in
monoids. Finally, we give a method to compute an optimal (in the number of ternis) décomposition
of a cyclic language into strongly cyclic languages.

Résumé. — Nous introduisons une hiérarchie des langages cycliques. Le k-ième niveau de cette
hiérarchie comprend les langages cycliques qui sont égaux à une combinaison booléenne de taille
k de langages fortement cycliques. Nous montrons ensuite comment cette hiérarchie peut être
caractérisée par des chaînes d'idempotents dans des monoïdes. Finalement, nous donnons une
méthode pour calculer une décomposition optimale (en nombre de termes) d'un langage cyclique
en des langages fortement cycliques.

1. INTRODUCTION

Cyclic languages and strongly cyclic languages are two classes of
languages of finite words over a finite alphabet. A cyclic language is
conjugation-closed and for any two words having a power in common,
if one of them is in the language, then so is the other. A strongly cyclic
languages is the set of words stabilizing a subset of the set of states of a
finite deterministic automaton, the stabilized subset depending on the word
stabilizing it. Every strongly cyclic language is rational.

It has been proved in [BCR96] that any rational cyclic language is a
boolean combination of strongly cyclic languages. This resuit allows us to
extend the computation of the zêta fonctions of strongiy cyclic languages
described in [Béa95] to rational cyclic languages. The connections of cyclic
languages with algebraic geometry and symbolic dynamics are also discussed
in [BR90J. We introducé in this paper a hierarchy among cyclic languages.
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3 5 6 O. CARTON

This hierarchy measures the number of strongly cyclic languages needed to
express a given cyclic language as a boolean combination of strongly cyclic
languages. We prove that this hierarchy can be characterized by chains of
idempotents in monoids. The Ie vel of the hierarchy to which a given cyclic
language belongs can be computed in a monoid recognizing this language.
In particular, it can be done in the syntactic monoid of the language.

In section 6, we prove that for any cyclic language L, there is a smallest
strongly cyclic language containing L which is called the closure of L. We
show that the closure can be computed in the syntactic monoid of L. This
result is used in section 7 to give a procedure to décompose L as a boolean
combination of strongly cyclic languages which uses less strongly cyclic
languages than any other boolean combination of strongly cyclic languages
equal to L.

We assume that the reader is familiar with the basic notions of automata and
monoid theory. For example notions like syntactic monoid, Green relations,
regular P-classes are supposed to be known. We refer to [Lal79] and [Pin86]
for a présentation of this subject.

The paper is organized as follows. Section 2 and 3 give the basic properties
of cyclic languages and strongly cyclic languages. The chains of strongly
cyclic languages and the hierarchy of cyclic languages are introduced in
section 4. In section 5, we define chains of idempotents in monoids which
characterize the classes of the hierarchy. In section 6, we define the closure of
a cyclic language. This notion gives a method to décompose a cyclic language
into strongly cyclic languages. This method is described in section 7.

2. CYCLIC LANGUAGES

In this section, we introducé cyclic languages and give some basic
properties. In the following, we dénote by A a finite alphabet. In a finite
monoid M, every element s of M has a power which is an idempotent. We
dénote by s" this idempotent.

DÉFINITION 1: A language L of A* is said to be cyclic if it satisfies

V u e A * , V n > 0 « e L ü un E L

\/uy v E A* uv G L <̂> vu E L.

A language is cyclic if it is closed under conjugation, power and root. By
définition, the class of cyclic languages is closed under boolean opérations.

Informatique théorique et Applications/Theoretical Informaties and Applications



A HIERARCHY OF CYCLIC LANGUAGES 3 5 7

EXAMPLE 1: If A = {a, 6}, the language L = A*aA* = A* - 6* w cyc/ic.

Cyclic languages have the following straightforward characterization in
terms of monoids.

PROPOSITION 1: Let L C A* be a rational language. Let cp : A* -» M
be a morphism from A* onto a monoid M such that L — ip"1(P) for some
P C M. The language L is cyclic if and only if

Vs G M, Vn > 0 seP <=> sn G P

Vs, t e M st e P o t s G P.

It is straightforward to verify that if those conditions are satisfied, the
language L is cyclic, and that there are necessary since the morphism is
onto.

3. STRONGLY CYCLIC LANGUAGES

We now define the notion of a strongly language. The transitions of a
deterministic automaton A = (Q,A,£) define a partial left action of A*
on the set Q of states. If q A qf is a path in the automaton labeled by a
word w, we write q1 = q • w. For any state g, we have g • e — q where
s dénotes the empty word. This action is extended to subsets by setting
P • w — {q - w\q G P} for any subset P of Q.

DÉFINITION 2: Let A = (Q, A, E) be a deterministic automaton where Q is
the set of states and E the set of transitions. We say that a word w stabilizes
a nonempty subset P C Q of states ifwe have P • w = P. This means

\/p G P p-w E P

Vp' e P 3p G P p-w = p'.

We dénote by Stab(A) the set of the words w such that w stabilizes a
nonempty subset P of states in the automaton A. It should be noticed that in
this définition the subset P of states stabilized by w may depend on w and
that a word w may stabilize several subset of Q. We say that a language L is
strongly cyclic if there is automaton A such that L — Stab(^4). In this case,
we say that the language L stabilizes the automaton A. The empty language
0 is trongly cyclic since it stabilizes the empty automaton. The full language
A* is also strongly cyclic since it stabilizes any complete automaton. Since
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a

a
Figure 1. - Automaton Ai.

the empty word stabilizes every subset of states, every nonempty strongly
cyclic language contains the empty word.

EXAMPLE 2: The language (b + aa)* + (ab*a)* + a* is the strongly cyclic
language associated with the automaton A\ of Figure 1. The subsets {1}, {2}
and {1/2} are respectively stabilized by the words of {b + aa)*. (ab*a)*
and a*.

The following resuit gives a characterization of the words w stabilizing
a subset of states in an automaton. The proof of this proposition can be
found in [BCR96].

PROPOSITION 2: Let A = (Q}A,E) be a deterministic automaton. A word
w belongs to Stab(yl) if and only ifthere is some state q o f A such thaï for
every integer n, the transition q - wn exists.

Proposition 2 immediately implies that a strongly cyclic language is closed
under power and root. It may also be directly verified that if a word uv
stabilizes a subset P of states of an automaton, the word vu stabilizes
the set P • u of states. A strongly cyclic language is thus closed under
conjugation. Putting together those two remarks, one obtains that a strongly
cyclic language is cyclic and the terminology is justified.

Using Proposition 2, it may be easily verified that if L\ and L2 are two
strongly cyclic languages stabilizing respectively automata Ai and Ai, the
union L\ + L2 stabilizes the disjoint union Ai + A2 and that the intersection
Li H L2 stabilizes the direct product Ai x A2. Thus, the class of strongly
cyclic languages is closed under union and intersection.

We now give some basic results. We first recall a characterization of
strongly cyclic language and we state another characterization of these
languages among rational cyclic languages. These results will be useful in
the sequel.

The following theorem gives a characterization of the strongly cyclic
languages. The proof of this theorem can be gound in [BCR96],

Informatique théorique et AppIicatÎGns/Theoretical Informaties and Applications



A HIERARCHY OF CYCLIC LANGUAGES 359

THEOREM 1: Let L be a rational language different from A*. The following
conditions are equivalent.

L The language L is strongly cyclic.

2. There is a morphism (p from A* onto a monoid M having a zero such
that L = ip^iis e M|sw / 0}).

3. The syntactic monoid M(L) of L has a zero and the image of L in
M(L) is {s e M(L)|sw / 0}.

Using Proposition 2, it can be shown that the transition monoid of an
automaton stabilized by a strongly cyclic language L has a zero which is
the empty relation and that a relation s of this monoid belongs to the image
of L if and only if sw ^ 0. Conversely, the right représentation of the
syntactic monoid L gives an automaton. The states are the éléments of this
monoids except 0 and the transitions are defined by the right action of the
monoid on itself.

The following theorem characterizes strongly cyclic languages among
cyclic languages. The proof of this theorem is based on the former one.

THEOREM 2: Let L be a rational cyclic language. Let ip : A* ->• M be
a morphism from A* onto a finite monoid M and such that L = fip~1(P)
for some P C M. The language L is strongly cyclic if and only if for any
idempotents e and ƒ of M,

« < , ƒ . • ' " ( 1 )

Proof: We prove first that the Property (1) implies that the language L
is strongly cyclic. Let J be the set of idempotents of M not belonging to
the image P of L and let I be the ideal of M generated by J. We have
J = E(M) — P and / = MJM where E(M) dénotes the set of idempotents
of the monoid M. We first prove that Î n P = 0. Let s G M be a element
of / . The element 5 can be written s = x ƒ y where ƒ is an idempotent of J
and x, y E M. The idempotent e = s^ satisfies e < j f. Since ƒ ^ P, we
have e ^ P by Property (1). Since the language L is cyclic, we also have
s £ P. Since / n P — 0 , the language L is then recognized by the Rees
quotient M/I. The language L is then recognized by a monoid having a
zero and" this zero is the only idempotent not belonging to the image of L.
By Theorem 1., the language L is strongly cyclic.

Suppose now that the language L is strongly cyclic. Let M(L) be the
syntactic monoid of L and tp the canonical morphism from A* onto M{L).

vol. 31, n° 4, 1997
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Since the morphism tp is onto, the syntactic monoid M(L) is a quotient
of M: there is a morphism ?r : M -» M(L) from M onto M(L) such
that 7T o ip — (p. Let e, ƒ be two idempotents of M satisfying e E P and
e <j f- The images ?r(e) and TT(ƒ) are two idempotents of M(L) satisfying
TT (e) G TT(P) and 7r(e) < jft(f) because ir o ip = tp. Both idempotents
7r(e) and ?r(/) are then different from the zero of M(L). We have then
7r(/) G TT(P) by Theorem 1 and f e P. This finishes the proof of the
theorem. D

4. CHAINS OF STRONGLY CYCLIC LANGUAGES

In this section, we introducé the notion of a chain of sets. We first define
this notion in a gênerai framework and we use it to define a hierarchy
among cyclic languages. This hierarchy is based on the fact that every cyclic
language can be decomposed as a chain of strongly cyclic languages. We
show then that this hierarchy can be characterized by chains of idempotents in
monoids. Indeed, the level of the hierarchy to which a given cyclic language
belongs is completely determined by the length of chains of idempotents in
a monoid recognizing the language.

4.1. Sum of différences and chains

For two subsets X and F of a set E, the union and the différence of
X and Y are respectively denoted by X + Y and X - Y, The symmetrie
différence is denoted by XAY = (X - Y) + (Y - X),

Let T be a family of sets closed under union and intersection but not
. necessarily under complement. Every set X of the boolean closure of T is
equal to a finite union of différences of sets of T'.

A sum of différences of length m is an expression

X - (Xx - X2) + (Xs - X4) + . . . + (Xm-i ~ Xm) if m is even

X - (X1 - X2) + (X3 - X4) + . . . + Xm if rn is odd.

Every set X of the boolean closure of T is then equal to some sum of
différences X — {X\ -X2) + (X3 — X±)-\ where the sets Xt belong to T,

A chain of différences (or simply a chain) is a sum of différences
where the séquence of subsets Xi,... ,X m satisfies the additional condition
X\ D . . . D Xm- In this case, we write

X = X\ — X2 + X% — . . . ± Xm

where the sign ± in front of Xm dépends on the parity of m.

Informatique théorique et Application s/Theo retical Informaties and Applications
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Chains of différences and sums of différences are related by the following
resuit due to F. Hausdorff [Hau57, p. 92],

PROPOSITION 3: Ifthefamily T is closed under union and intersection, every
surn of différences is equal to a chain of différences of the same length.

The proof of this resuit is based of the following property of chains. If
the subsets X and Y are respectively equal to chains length m and n, the
sets X + Y and X n Y are equal to chains of length at most m + n. For a
new proof of this resuit, see [Car93].

4.2. The hierarchy of cyclic languages

We can now define the hierarchy of cyclic languages over an alphabet A.
Let S be the class of strongly cyclic languages. The boolean closure of S is
the class C of cyclic languages. We define the class Cm of cyclic languages
in the following way. For m = 0. we set CQ — {0} and for m > 1. we
dénote by Cm the class of cyclic languages X that are equal to a chain of
length at most m of strongly cyclic languages, i.e.,

X = Xi - X2 + X3 - . . . ± Xm where Xt E 5 .

For m = 1, the class C\ — S is the class of strongly cyclic languages.
For m! < m, we have Cm* C Cm. Since every cyclic language can be
written as a boolean combination of strongly cyclic languages, we have the
equality C = \Jm>0Cm.

This hierarchy classifies the cyclic languages according to their complexity.
The strongly cyclic languages are simple languages. The level of the hierarchy
to which a cyclic language belongs is the minimal number of strongly cyclic
languages needed to express it as a boolean combination.

The results about chains of subsets (see [Hau57, Car93]) imply the
following properties of the hierarchy introduced above.

PROPOSITION 4: If X E Cm and Y E Cn, we have then

{ Cm-\-n-2 if ra and n even

Cm+n_i otherwise

{ Cm+n-i if m and n odd

Cm+n otherwise
vol. 31, n° 4, 1997
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5. CHAINS OF IDEMPOTENTS

In this section we define the chains of idempotents. This notion allows to
characterize the classes of cyclic languages introduced above.

DÉFINITION 3: Let M be a monoid and P a subset of M. A chain of
idempotents of length m is a séquence eo, . . . em of idempotents of M
satîsfying the following two conditions:
( i ) e o < j e i < j . . . < j em.

(ii) eo e P and e% G P <£> ez+i £ P.

The first condition means that the séquence eo,.. . . ,em is a increasing
séquence for the jT-order. The second one means that the idempotents e;
are alternately in P and out of P and that the first idempotent eo of the
séquence is in P .

We dénote by m(S. P) the maximal length of a chains. We set
rri(Sy P) = +oo if the length of the chains is not bounded.

The following theorem states that the maximal length of the chains is
a syntactic invariant. The integer m(5, P). does not depend of the monoid
considered, it just dépends on the language recognized.

THEOREM 3: Let L be a rational language. Let tp : A* -» M and
ip' : A* -» N be two morphïsms from A* ontofinite monoids M and N such
that L = tp^iP) and L = ^(Q). We have then m(M, P) = m(N, Q).

Proof: It is sufficient to prove the resuit when M is the syntactic monoid
M(L) of L. We suppose then that M is the syntactic monoid of L and that
(f is the canonical morphism from A* onto M. Since the morphism ip is
onto, the monoid M is a quotient of N: there is a morphism n : N ^» M
from N to M such that ir o vp = ip. Since ir o ip — cp, we have ir(Q) = P.
We show that we can associate to any chain of idempotents of length m in
TV, a chain of idempotents of the same length in M and conversely.

Let eo,...•., em be a chain of idempotents in N. The séquence
7r(eo),.. • ,vr(em) is then a chain of idempotents in M. Obviously, the
éléments TV (ei) are idempotents and these idempotents are ordered with
respect to the ^7-order. Since TT O ip = cp, we also have e% E Q O ft(ei) E P.
This implies 7r(eo) 6 P and ^(e*) G P & 7r(ei+i) 0 P.

Let / o , . . . , f m be a chain of idempotents in M. Since /o <j-- <j /m,
there are 2m éléments m,y\ of M such that y%j%y\ — f%-\ for 1 < % < m.

Informatique théorique et Applications/Theoretical Informaties and Applications



A HIERARCHY OF CYCLÏC LANGUAGES 363

We choose éléments U, xx and x\ of N such that 7r(£?;) = / z , 7r(xi) — yi
and TF(X') = y[. We define the idempotents e% of N by

p _
e r a —

&m—1 — 'm /

—2 — ( # m—1 em—1 ̂  ï7

eo =

By définition, the séquence eo, . . . , em is a séquence of idempotents ordered
for the\7-order. Since 7r(e2) = fiy we have eo G Q and e* e Q < ^ e?;+i G Q
and the séquence eo, - • •, em is a chain of idempotents.

Since for each chains in M of iength m there exists a chain in T of length
m and vice-versa, we have proved that m(M,P) = ra(JV, Q). •

Since the integer m(M^P) only dépends on the language recognized
and not on the monoid considered, we can define m(L) as m(M,P) for
any morphism <p : A* -»- M from A* onto a finite monoid M such that
L = y?" 1 ^) f o r s o m e P C M.

The définition of chains of idempotents is motivated by the following
resuit.

THEOREM 4: Let L be a rational cyclic language. Let (p : A* -» M be a
morphism from A* onto a finite monoid M such that L = (p~l(P) for some
P C M. We have then

L G Cm & m(M, P) < m - 1.

We first prove the following lemma which states that the function m is
"subadditive".

LEMMA 1: Let X and Y be two rational languages. We have then

m(XAY) < m{X) + m{Y) + 1.

Proof: We suppose that the languages X and Y are respectively recognized
by the morphisms tp : A* -» M and Î/J : A* ^» N from A* onto the
finite monoids M and N. Let P and Q be the images of X and y in
M and N. We have X = ^(P) and y = ^{Q). By définition, we
have m(X) = m(MyP) and m(y) = m(N,Q). The language I A 7 is
recognized by the morphism <p x ip : A* —» M x N where M x N is the
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3 6 4 O. CARTON

product of M and N. The morphism ip x ip may not be onto. Let R be the
submonoid of M x N defined by R — <p x I/J(A*). The language XAY
is then recognized by the morphism tp x ip : A* -» R and the image of
XAY in R is given by

tp x IJJ(XAY) = (P x (iV - Q) + (M - P) x Q) O B.

We prove that if there is a chain in R of length m, there are two integers p
and ç satisfying p + < / > m - l , a chain in M of length p and a chain in N
of length ç. Let (eo> /o)5 • • -, (em, /V??) be a chain of idempotents in R. We
consider the integers i for which one of the idempotents e?_i, e, belongs to
P and the other does not. We also consider the integers j for which one of
the idempotents fj-i, fj belongs to Q and the other does not. Formally, we
define the sets of integers / and J by

I = {1 <i< m|e*_i e P O e% £ P)

The séquence (eo,/o),. • •, (em)/m) is a chain in R. Every integer
1 < k < m belongs to exactly one on the sets / and J. Otherwise, both
idempotents (e^_i, fk~i) and (e^, ƒ/,) of R are in the image of XAY or out
of the image of XAY. We set / = {û < . . . < ip] and J = {j\ < . . . < j /)
where p and / are the cardinals of / and J. We have then p -j- l > m.
Since the idempotent (eo,/o) belongs to the image of XAY in iï, if eo
belongs to P , /o does not belong to Q and conversely. By symmetry, we
suppose that eo belongs to P . The séquences eo. etl,..., eïp and / ^ , . . . , /yz

are respectively chains in M and N of length p and q = l — l. We then have
m<p + l < p + q + l < m(X) + m ( F ) + 1. D

We can now complete the proof of the theorem.

Proof: We suppose first that L G Cm. The language L can be written
L = Xi - X-2 + . . . ± Xm or equivalently L = Xi A . . . AXm with X?

strongly cyclic language. By Theorem 2, we have rn(Xj) = 0 and the
preceding lemma implies that m(L) < m — 1.

We suppose now that m(X) < m — 1. For an idempotent e of M, we
dénote by m(e), the maximal length of a chain eo, . . . , en such that en — e.
We have of course the inequality m(e) < m{M1P) for any idempotent
e of M. Let J^ be the set of idempotents J& = {e E M\m(e) > k}. By
construction, we have that e £ Ĵ . and e <j f imply that ƒ e JA-. Let PJN
be the subset P^ — {5 G M|5W G Jjt}. Since every idempotent e satisfies

Informatique théorique et Applications/Theoretical Informaties and Applications
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= e, we have for any idempotents e and f of M

eePfc

, < , / • • ' e J V

By Theorem 2, the languages X& = tp~l{Pk) a r e m e n strongly cyclic. Since
the language L is cyclic, a element s of M belongs to P if and only if su

belongs to P. We have then L = XQ - X\ . . . ± X m _ i . D
The previous theorem can be used to give an another proof that any cyclic

language is a boolean combination of strongly cyclic languages. To get this
resuit, we must prove that any cyclic language belong to the class Cm for
some integer m. By the previous Theorem, it is sufficient to prove that the
length of chains of idempotents in a monoid recognizing L is bounded. We
have the following proposition.

PROPOSITION 5: Let L be a rational cyclic language. Let (p : A* -» M
be a morphism front A* onto a finite monoid M such that L — (p {P) for
some P C M. Let n be the number ofV-classes of the monoid M. We have
then the inequality

m(M,P) < n.

Proof: Let eo , . . . , em be a chain of idempotents in M. The idempotents
e,; satisfy e^-i <j ejt for 1 < k < m. We will see that all these inequalities
are strict. The idempotents e% satisfy in fact e^-i < j e^. Suppose that one
of the inequality is not strict. Two idempotent e^-i and e& belongs to the
same P-class and are then conjugated. There are two éléments x and y of M
such that xy — efc_i and yx = e^. Since the language L is cyclic, we have
by Proposition 1, e^-i 6 P O e/b G P and this leads to a contradiction. The
idempotents et belong to different P-classes and the length of the chain is
bounded by the number of X>-classes of the monoid M. D

6. CLOSURE OF A CYCLIC LANGUAGE

In this section, we first prove that for any cyclic language L, there is a
smallest strongly cyclic language containing L.

We first recall that the syntactic monoid of a rational cyclic language has
a zero. It has been proved in [BCR96, Cor. 5].

THEOREM 5: Let L be a rational cyclic language and (p : A* -» M
the canonical morphism from A* onto the syntactic monoid M of L. There

vol. 31, n° 4, 1997



366 O. CARTON

is then a smallest strongly cyclic language containing L. This language is
L = (p~l(P) where P — {s\su ^ Q) if the zero of M does not belong to the
image of L in M and is A* otherwise.

We point out that the result is false if the monoid considered is not
the syntactic monoid. Let us consider the strongly cyclic language L — 6*
over the alphabet A — {a, b}. The syntactic monoid of L is the monoid
{6 = 1, a = 0}. The language L is also recognizedby the idempotent monoid
M = {1, a, b. ab — ba — 0} with the canonical morphism from A* onto this
monoid. The image of L in M is P — {1,6} but the subset P is {l,a,6}.
The language L is then a* + ö* which is not the smallest strongly cyclic
language containing L.

Proof: We first consider the case in which the zero of M does not belong
to the image of L in M. The language Z = ip~~l(P) where P = {s|sw ^ 0}
is strongly cyclic by Theorem 1 and contains the language L. Let prove now
that this language is the smallest one.

Let X be a strongly cyclic language containing L and w be a word of L.
Let A — (QyA,E) be a deterministic automaton such that X — Stab(^l).
By définition, we have <p(w) — s where su ^ 0. For every integer n, the
element (p(s)n is different from the zero of M. There are two words xn and
yn such that xnw

nyn belongs to L. By Proposition 2, there is a state qn of
A such that the transition qn •xnw

nyn is defined. The transition (qn -xn)'W
n

is then defined and the word w belongs to X, We have proved that L e l .
The language L is then the smallest strongly cyclic language containing L,

mm
"ir
a

ba

ab

aab

bab = 0

Figure 2. - Structure of the syntactic monoid of L.

Informatique théorique et Application s/Theoretical Informaties and Applications



A HIERARCHY OF CYCLIC LANGUAGES 3 6 7

Let us now consider the case in which the zero of M does belong to the
image of L in M. In this case, the languages L intersects every idéal / of
A*, Le., L n I / 0 . Let X be a strongly cyclic language different from A*.
By Theorem 1, the syntactic monoid of X has a zero which does not belong
to the image of X, The language X does not intersect the idéal equal to the
inverse image of 0 and cannot contain the language L. The only strongly
cyclic language containing L is then A*. D

EXAMPLE 3: Let L be the language (b + aa)* + (ab*a)* + a* - b*. The
structure of the syntactic monoid of L is given in Figure 2. The image P of
L in M(L) is equal to P — {a,aa,abayaab}.

The subset P defined in the proof is equal to P — {1, a, aa, b. aba. aab)
and the language L is (b + aa)* + (ab*a)* + a*T *

7. APPROXIMATIONS BY CHAINS

In this section, we will see how the existence of a smallest strongly cyclic
language L containing a cyclic language L can be used to compute a chain
of strongly cyclic languages equal to the language L.

We remark that if the language L is equal to the chain L = X\ — . . . ± Xm,
the languages L& for 1 < k < m defined by L& — Xi - . . . ± Xk satisfy

Lfc D L ii k is odd

Lk C L if k is even.

Suppose now that the language L is equal to the chain L = X\ - . - - ± Xm

where the languages Xi are strongly cyclic. We set L& = Xi — . . . ± Xk
for 1 < k < m. We introducé two other séquences of languages Yi and Mi
defined by Yi = M\ = L and

Yk = M - Affc_i and Mk - Mk^ + ^ if k is odd

yfc = Mk-i - M and Mfc = Mfc_! - Yfc if k is even.

In particular, we have Y2 — L — L and M2 — L — L — L.
By définition, the languages Y5 are strongly cyclic. The following theorem

states that the languages YJ form a chain and this chain is the best
approximation of the language L.
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THEOREM 6: Let L be a cyclic language equal to L = X\ — . . . ± Xm

where the languages Xz are strongly cyclic. Let Lk — X\ — ... ± Xjc for
1 < k < m. Define the languages Y% and Mj by Y\ = Mi = L and

Yk = M - Mk_i and Mk = M^-i + Yk if k is odd

Yk = Mfc_i - M and Mk = Mfc_i - Yk if k is even.

The languages Yl and Mt then satisfy
L For any 1 < k < m./Yk is strongly cyclic.
2.Y1 D . . . D Ym.
J. For any 1 < k < ?n,

Lk D Mk D L if k is odd

Lk C Mk C L if k is even.

The last inclusions mean that each set Mi is closer to L than the set Li.
In particular, if L is equal to a chain of length m of cyclic languages,
the language Mm computed by the previous procedure is equal to L. The
chain L = Y\ — ... ± ym computed is then the closest (in the sense of the
inclusions) and shortest chain of strongly cyclic languages equal to L.

Proof: We introducé the functions ƒ and g defined on V(A*) by:

The key property of the functions ƒ and g is expressed in the following
lemmalemma.

LEMMA 2: The functions f and g satisfy the following properties:

XCYCL =* f{X) D f(Y) D f(L) = L

XDYDL =• g{X) C g(Y) C g{L) = L

Proof: An easy calculation proves that L is a fixed point of ƒ and 5, i.e.,
f(L) = L and g(L) - L.

Suppose now that X C Y C L. The inclusion L - X D y - X implies
L-X D Y - X. We have X + L-X = Y + L-X DY + T^Y since
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L - X D L — Y. This ends the proof of property of ƒ. The property of g
is handled in the same way. D

Since the languages Mi can be defined by

Mk - /(Mfc_i) if k is odd

Mjt = g(Mk-i) if A: is even.

we can easily complete the proof of the theorem. D
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