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UNAVOIDABLE LANGUAGES,
CUTS AND INNOCENT SETS OF WORDS (*)

by L. ROSAZ C)

Communicated by C. CHOFFRUT

Abstract. - A language X on an alphabet A is unavoidable iffall but finitely many words in A*
have a factor in X. In this paper, cuts (which are basically simplifications of languages in terms of
avoidability) and innocent language (those which cannot be eut) are defined. Their properties, most
of which are related to unavoidable languages, are studied.

1. INTRODUCTION

A language X on the finite alphabet A (that is a subset X of the free
monoid A*, that is a set X of words on an alphabet A) is unavoidable iff
ail but finitely many words in A* have a factor in X. This is not to be
confused with unavoidable patterns, such as the square in squarefree words.
See D. R. Bean, A. Ehrenfeucht and G. F. MacNulty [2] or Lothaire [13]
for références on this latter topic.

Unavoidable languages appeared in 1964 in a paper by M. P. Schut-
zenberger {see [19]) where he gave a bound on the maximal length of a
word that avoids a finite unavoidable language. This bound dépends on the
maximal length of the words in the unavoidable language. M. Crochemore,
M. Lerest and P. Wender proved later (in 1983) in [5], that the bound given
by M. P. Schutzenberger was the best possible.

Unavoidable languages were explicitly introduced in 1983 by A. Ehren-
feucht, D. Haussier and G. Rozenberg in [6] in a generalization of Higman's
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340 L. ROSAZ

resuit [8]. Higman's theorem states that if A is a finite alphabet, then in
every infinité language { u\ \ i G / } on A, there is a pair (n^ UJ) of words
with % 7̂  j such that U{ is a subword of UJ (a subword of a word u is a
word v obtained by taking a subsequence of the letters of u. For example
ac is a subword of abc). The generalization by A. Ehrenfeucht, D. Haussier
and G. Rozenberg says that if the partial order relation < is the transitive
closure of:

"u < v iff 3u>, y, z with w, z E A* and y E X

such that u — wz and v = wyz",
then X is unavoidable iff every infinité language on A contains two different
words u and v such that u < v. One gets Higman's theorem from this result
by considering X = A.

W. Bûcher, A. Ehrenfeucht and D. Haussier generalized the latter result
in [3]. Kruskal in [9] and L. Puel in [16] gave some similar results on trees
instead of words.

It had been conjectured that if X is unavoidable, then there is a word
w in X and a letter a such that X — { w } + { wa } is still unavoidable.
This word-extension conjecture was often called Ehrenfeucht's conjecture,
though it might be due to D. Haussier. A counter-example to this conjecture
can be found in [17].

In 1984, C Choffrut and K. Culik published [4] where they recalled
some basic results (An unavoidable language always contains a finite
sublanguage which is unavoidable, recall of the automaton of A. V. Aho
and M. J. Corasick [1], and use of this automaton to décide whether a
given language is unavoidable) and gave some interesting new ones (partial
answer to the word-extension conjecture, uniqueness of the extention of a
word when it exists, first use of some important tools such as bi-infinite
periodic words...). This paper is the one to be read as an introduction to
unavoidable languages.

There are other notions of "unavoidable" in theoretical computer science:
Unavoidable patterns, such as the square in squarefree words, see D. R. Bean,
A. Ehrenfeucht and G. F. MacNulty [2] or Lothaire [13] for références on
this topic; unavoidable words with patterns, see [12]; unavoidable trees,
which were studied by L. Puel in her thesis [16] where she generalized
Kruskal's theorem [9]; unavoidable subset of an ordered set, see [15].

An unavoidable language X is minimal iff no proper sublanguage Y of
X is unavoidable. This paper first gives a simple necessary and sufficient
condition on a finite language Y for the existence of a finite minimal
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UNAVOIDABLE LANGUAGES, CUTS AND INNOCENT SETS OF WORDS 341

unavoidable language X containing Y. This result is used in the proof of
proposition 6.11.

Then, I will introducé cuts: A language X cuts into a language Y in an
elementary way iff [Y = X — { u } where u G X and there is a proper
factor v of u which belongs to X, or if Y = X — { ua } + { u } where
ua e X (a is a letter) and for every letter b ^ a, there is a suffix ^
of u such that 7x5 6 G X, or if F = X — { au } -h { u } where au G X
(a is a letter) and for every letter b ^ a, there is a prefix u& of u such that
6^5 G X]. A language X cuts into a language y iff a finite séquence of
elementary cuts leads from X to Y.

The basic interest of cuts is that if X cuts into F , then y is "shorter" than
X, but the set of bi-infinite words avoiding X (that is the set of bi-infinite
words with no factor in X) is the same as the set of bi-infinite words avoiding
F , so a eut is a simplification when you are interested in the set of bi-infinite
words avoiding a given set of finite words (For example, for unavoidable
languages, you want this set of bi-infinite words to be empty, and if you deal
with symbolic dynamic Systems, this set of bi-infinite words is a System of
finite type defined from the finite set of finite words they avoid.)

A language is innocent iff it cannot be eut. The main resuit for finite
languages X is that there is a unique innocent language X such that the
bi-infinite words avoiding X are the same as the bi-infinite words avoiding
X, and that X cuts into X. Consequently, one gets an algorithm to décide
whether a finite language is unavoidable (It seems that J. P. Duval discovered
this algorithm before I did, but he did not publish it.) By defining eventual
cuts, one gets similar results for infinité languages. One can define strong
équivalence for languages as X ~s Y iff X — Y iff the bi-infinite words
avoiding X are the same as the ones avoiding Y. Another définition, with
not so clear properties, is the weak équivalence: X ~w Y iff the periodic
bi-infinite words avoiding X are the same as the ones avoiding Y.

Various results and properties on these notions will be given in this paper.

I first recall in section 2 some basic définitions on words: on finite words
and languages (length of a word, word £, concaténation, factors, préfixes,
suffixes on finite words, opérations +, product, * and + on languages),
and on infinité words (finite factor of a bi-infinite word, periodic bi-infinite
words, notation u1, équivalence = (equality up to a translation)). I define
unavoidable languages and I give some examples in section 3. A necessary
and sufficient condition for the existence of an enlargement of a language
X into a minimal unavoidable language is given in section 4. In section 5,
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cuts are defined, as well as innocent and guilty languages, and their basic
properties are given, which lead to an algorithm to décide whether a finite
language is unavoidable. Section 6 gives further properties of cuts, which
lead to the définition of acquitted X for finite languages X and to strong
and weak équivalences. Section 7 restâtes the uniqueness of acquitted X for
finite languages X, with a more natural, but longer and more technical proof
than the one in section 6. This section also states that one can get acquitted
X by acquitting on the left, then on the right. Section 8 generalizes the most
important results of the previous sections to infinité languages. This requires
the définition of eventual cuts. In section 9, I give a few open problems.

2. BASIC DEFINITIONS

To begin with, let me précise that I consider that N = {0, 1, . . . } , so
that 0 G N (The set { 1, 2, ... } = N - {0} will be denoted by N*).
I also précise that whenever I write X — Y, where X and Y are two sets,
I implicity assume that Y C X.

An alphabet is a finite set whose éléments are called letters. The alphabet
is usually denoted by A. h finite word (or for short, a word) on A is a finite
séquence of éléments of the alphabet. A word will be denoted by writing its
letters one after the other. Unless otherwise stated, every word, and every
set of words we will talk about, is implicity on an alphabet denoted by A.
The length of a word n, denoted by | u |, is the number of its letters. There
is a word of length 0 which is denoted by e. The number of occurrences of
a letter a in a word u is denoted by | u \a. It is clear that V^ | u \a

The concaténation of two words u and v, denoted by uv, is the word
obtained by writing the letters of u and then those of v. A factor of a word
u is a word v such that there exist words w and z such that u — wvz. A
factor v of u is proper if it is different from u.

A word v is & prefix of a word u iff there exists a word w such that u — vw.
A word v is a suffix of a word u iff there exists a word w such that u — wv.

A language is a set of words. Then the set of all the words on an alphabet
A, (which is denoted by A*) with the concaténation product is the free
monoid on A. The set of the words on A of length / is Al and the set of
the words of length less than or equal to / is denoted by A-K Sometimes,
the language { u } will be denoted simply by u.

A bi-infinite word is a Z-sequence of éléments in A (An infinité
word is an N-sequence). The set of all bi-infinite words on A is
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denoted by A1. A bi-infinite word is denoted by (a*)* € z
 o r by

... a-p a-p-j-i ... a - 2 &—1 ÜQ a i a2 ... Q>q ...

A finite factor of a bi-infinite word H = (a,i)iei is a finite word u such
that there are integers N and Nf such that u — a^ ... ayy-i .

If the séquence is periodic of period T, then the bi-infinite word will be
said to be periodic of period T, Such a word H — (a{)iej is given by
(ai)ie{0....,r-i }• That word will be denoted by u2 where u = CLQ . . . a^_i .

Let Hi = ( a i ( ï l ) n € z and H2 = (û2,n)n€2 be two bi-infinite words on the
alphabet A They will be said to be translates ofeach other iff there is a p
such that Vn G Z, ai7n = a2,n+p- The notation Hi = H2 will be used to
say Hi and H2 are translates of each other, and Hi ^ H2 to say they are not.
The relation = is clearly an équivalence relation. From now on, bi-infinite
words will always be considered up to translation. Note that if p, s are words
(not both equal to e), then (ps)1 ~ (sp)1-

An infinité word is a N-sequence of éléments in A. An infinité word can
be denoted by (a^efy . If the séquence is periodic of period T, then the
infinité word will be denoted by uN, where u = ao ... Û T - I -

3. UNAVOIDABLE LANGUAGES

PROPOSITION 3.1: Let X be a language, then the following two properties
are equivalent:

(i) There is an integer N such that, for every word u in A* of length at
least N, there is a word v in X which is a factor of u.

(ii) For every word H in A1, there is a word v in X which is a factor ofH.

Moreover, if X is finite, then the above two properties are equivalent to
the following one:

(iii) For every periodic word K in Az , there is a word v in X which is
a factor of H.

Proof of proposition 3.1: (i) => (ii): Assume ->(ii): There is a bi-infinite
word H such that no element in X is a factor of H. Let E be the set of
the finite factors of H. Eléments in X are factors of no word in E. This
language E contains words of every length and therefore (i) is not satisfied.
One has ->(i).

(ii) => (i): Assume ->(i), then there is, for every n G N, a word un with
no factor in X and which is of length 2n + l. Let (an,t)n e N,«e 2,-n<«<n be
the letters such that un — an^n an ?_n+i ...an>o •••^n,n for every n G N.
Define (an,0n€N,i€2,|*|>n i n an arbitrary way. Then let Hn = (anj)i€z
for every n G N. Put the discrete topology on the alphabet A, which
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becomes a compact metric space, and the infinite-product topology on À1

which becomes also a compact metric space. Thus, one can extract from
( K n ) n e ^ a subsequence ( ^ ( ^ n e N which converges to a bi-infinite word
H = (ai)iej. The convergence of ( ^ ^ ) n G N to K implies that each finite
factor of ^ is a factor at the same position of all but finitely many N^(n)'s,
therefore is a factor of a word un for some n E N, and therefore is not in
X. So no element in X is a factor of H. Consequently, (ii) is not satisfied:
One has —i(ii).

(ii) => (iii) is obvious.
If X is finite, then (iii) =» (i):
Assume (iii). Let l = max | v |, K = (card Af (K is the number of words

v€X
on A of length l) and N — (K + 1)1. Let u be a word of length at least N.
The word u can be written u — u^u\ ... UK Z where for every i in [0, fc], u%
is a word of length l, and where z is a word. Because there are K + 1 Uk's
and only K different words of length l9 two w&'s must be equal, ie. 3i < j
such that Ui = UJ. Let u> — Ui Ui+\ ...u3-\. Because (iii) is assumed to be
true, there is an x G X which is a factor of w1. We have now two cases:

o If x is a factor of w9 then x is also a factor of u since w is a factor of u.
o If x is not a factor of w, then there are an n E N, a suffix 5 and a prefix

p o f w s u c h t h a t x = swn p . B u t | w \ — (j — i) l > l = m a x \v\ > \ x \ ,

therefore n must be 0 and x — sp (or n = 1 and 5 — p = e, but then x — w
which cannot happen here since we have assumed that x is not a factor of w).
But pis a prefix of w — Ui ...Uj-i and (since x = sp), | p | < | a ; | < Z = | ? ^ | ,
therefore p is a prefix of Ui, which is the same as Uj. Since s is a suffix
of w = ui ...Uj_i, since p is a prefix of Uj and since x — sp, one gets
that x is a factor of WUJ — u%... UJ-\ UJ which is a factor of u. Therefore
x is a factor of u.

In both case, x is found to be a factor of u, and (i) is proved.
Proposition 3.1 is proved. •

Notes 3.2

o The implication (iii) => (i) is false for infinité languages, see for
example X — { uu \ u G A+ }, the set of non-e squares on the alphabet
A = {a, 6, c} with the help of [2],

o When X is finite, another way to prove proposition 3.1 is to build an
automaton recognizing finite and infinité words with no factor in X and
then to see that the above three conditions are equivalent to "there are no
loops in the automaton".
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DÉFINITIONS 3.3: A language X is unavoidable iff it satisfies the first two
conditions in proposition 3.1, it is avoidable iff it does not.

Equivalent définitions are:

Let X be a language, then X is unavoidable iff:

o T4* — A*XA* is finite: all but finitely many finite words have a factor
in X.

o À1 — A~NXAN is empty: all bi-infinite words have a factor in X.

DÉFINITION 3.4: Let X be a language and w be a finite or a bi-infinite
word, then UJ avoids X if no element in X is a factor of uo.

Finite unavoidable languages are quite représentative of unavoidable
languages thanks to the following proposition:

PROPOSITION 3.5: Let X be an (infinité) unavoidable language. There is a
finite sublanguage Xf of X which is unavoidable.

Proof of proposition 3.5: This proposition is proved by W. Bûcher,
A. Erhenfeucht and D. Haussier in [3] and by C. Choffrut and K. Culik
in [4]. A short proof of this f act is: Let Sw be the set of bi-infinite words
containing w; as a factor, then UwçxSw = À1. But with the infinite-
product topology, the Sw's are open and À1 is compact, thus there is a
finite sublanguage X1 of X such that (J Sw — A1, that is, which is

unavoidable.

Proposition 3.5 is proved. D

Examples 3.6

o X — A is unavoidable.

o Vn e N, X = An (The set of the words of length n) is unavoidable.

o If A = { a, b}, then X — {aa, bab, bbbbbbbbbb} is unavoidable.

Indeed, try to construct a bi-infinite word K which avoids X: all a's must
be preceded and followed by a b because aa € X, thus must be included
in a factor bab. But bab e X, so there must be no a's in H, so ^ has to be
b1, but then it contains bbbbbbbbbb which is in X. Thus no bi-infinite word
can avoid X, which is therefore unavoidable.

o If A — {a, 6}, then

X - {bby bab, baab, baaab, . . , , ba' 6, . . . , ban b, ban+1, an+2 }

is unavoidable.
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Indeed, assume K is a bi-infinite word which avoids X and contains a b.
This b must be followed by an a, because bb is in X. Moreover, there cannot
be more than n-\-1 consécutive a's after that b because ban+l is in X. Thus,
after that b, there are k a's where 1 < k < n, and those a's are followed
by a 6, so that H contains bak b, which is in X, there is a contradiction.
Thus there cannot be any & in a word avoiding X, so there are only a's,
but this is also forbidden, since an+2 is in X. So, no bi-infinite word avoids
X, which is therefore unavoidable.

o If X = { ii, . . . , ln }, Xf = { l[} . . . , Vn }, if k is a factor of l\ for all
i and if X1 is unavoidable, then X is also unavoidable.

o If X c Xf and if X is unavoidable, then X' is also unavoidable.

By looking at the last example, one can see how unavoidable languages
can be uselessly big. That leads to define minimal unavoidable languages.

DÉFINITION 3.7: Let X be an unavoidable language, it is minimal iff no
proper sublanguage of X is unavoidable, that is iff

[[Y C X, Y + X\ => [Y is avoidable]].

Note that because of proposition 3.5, every minimal unavoidable language
is finite.

See [17] to see how to make systematic inventories of unavoidable
languages.

Note 3,8: To know whether or not a given finite language X is unavoidable,
one can build an automaton recognizing the words with no factor in X,
and see if this automaton has loops. For more details, see A. V. Aho and
M. J. Corasick [1], or C. Choffrut and K. Culik [4]. Another algorithm will
be given in this article.

4. EXISTENCE OF AN ENLARGEMENT OF A FINITE LANGUAGE INTO A
MINIMAL UNAVOIDABLE LANGUAGE

It is the aim of this section to study the following problem: Let y be a
finite language. Is there a finite language X which is a minimal unavoidable
language .such that Y C X?

Note that if one does not ask for a minimal, but for a plain unavoidable
language X, then the problem becomes obvious: The language X — Y yj Z,
where Z is any unavoidable language, is an unavoidable language containing
Y. Note also that if Y is infinité, then it is contained in no minimal
unavoidable language X since such a language X cannot be infinité.
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DÉFINITION 4.1: Let y be a finite language. The language Y is separable
iff for every y in Y, there is a periodic bi-infinite word Ky such that y is the
one and only one element in Y which is a factor of #y.

THEOREM 4.2: Let Y be a finite language, then there is a minimal
unavoidable language X such that Y C X iff Y is separable.

Proof of theorem 42:

The necessity of the condition

Assume Y is not separable, then there is a y G Y such that every periodic
bi-infinite word containing the factor y contains also a factor in Y — { y }. Let
X be an unavoidable language with Y C X. Then every periodic bi-infinite
word H has a factor in X which is:

- either an element in X — Y

- or an element in Y — { y }

- o r y.

But in the last case, H has also a factor in Y — { y }, so that K always has a
factor in X - { y }. Therefore, X - { y } is unavoidable and X is not minimal.
Thus, there is no minimal unavoidable language X which contains Y. D

The sufficiency of the condition

Assume Y is separable: For every y G Y, there is a periodic bi-infinite
word Hy such that y is the unique element of Y which is a factor of Ky.
Let P =. {Ny |y G Y} .

We will use the following lemma:

LEMMA 4.3: Let Ç&y)yeY (at that point, Y can be any finite set of index)
be afinitefamily ofperiodic bi-infinite words, then there is afinite language
C such that a periodic bi-infinite word ^ avoids C iff there is y £ Y such
that H = #y (that is, { #y | y 'G Y } are the only bUinfinite periodic words
avoiding C).

Proof of lemma 43: Let Ty be the smallest period of ^y and T = max Ty.

Let B be the set of the words which are factor of no Hy:

B = {w G A* | \fy G Y, w is not a factor of )Hy }.

Let C be the set of the words w E B with no proper factor in
B : C = {w e B\[v is 2i factor of w, v ^ w] => [v g B]}
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(that is, C is the set of the minimal éléments of B according to the order
"is a factor of) .

LEMMA 4.4: If K and W are two different periodic words of respective
periods T and T', and if u is a factor ofboth N and W, then \ u \ < T + T'.
(Here, "different" means "different up to translation", that is ^.)

Proof: Left to the reader or see [7] or [13]. D

We show now that C is finite:

Let w be a word in C of length at least 2. One can write w = a v f3
where a, f3 G A and v G A*. The words av and v f3 are proper factors
of w, so they are not in B (see the définition of C), therefore there are two
bi-infinite words Ka and K^ in { Ky | y G Y }, such that av is a factor of
ï(a and v f3 is a factor of K .̂

If Ha ^ H^: Let Ta and Tp be the respective periods of KQ, and K .̂
The word v is a factor of both Ha and H/?, therefore (see lemma 4.4),
I v | < Ta + T09 hence | w | < Ta + T^ + 2.

If Ka ^ K :̂ Let T be the period of Ha = ^^ (denoted by K from now on),
then [a v and v f3 are some factors of K, but a v (3 is not] implies \v\ < T.
Indeed, assume \v\ > T. Let u be the prefix of v of length T. The word
u is a factor of ^ (because v is a factor of K), of length the period of ^.
Therefore ^ = nz , and there are fc > 0 and p e A* such that v (3 — uk pf3
and such that pf3 is a prefix of u. But a u (3 — a uk p/3 is not a factor of K,
therefore the last letter of u is NOT a. The word at; is a factor of U, so
a u i s a factor of ^, so (| au \ — T + 1), au is a factor of uu, but is not
a suffix of uu (because a is not the last letter of u). Therefore, u can be
written u ~ u\u<i with | u\ \ > 0, | u<i \ > 0 and u<i u\ — u. Then | u% \ is a
period of H which contradicts the fact that T is the smallest period of H'.

In both cases, one finds that w must be of length less than 2T + 2. The
length of the words in C is bounded, therefore C is finite.

Let K be a periodic bi-infinite word of period T.

If H = Hy for some y G Y, then (by définition of B) no element in S is a
factor of any ï(y, so K avoids B and therefore (because C c ö ) X avoids C.

If K ^ üy for every y G Y, then:

Let 2:bea factor of ^ of length T + T + 1; by lemma 4.4, z cannot be a
factor of any 'Ry (for y (=. Y), so 2 is in B. There is a factor zf of 2 which
is in C. Then 2' is in C and is a factor of K, therefore N does not avoid C.

Therefore, C satisfies the conditions of lemma 4.3.
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Lemma 4.3 is proved. D
Let G be a finite language satisfying conditions of lemma 4.3. Since YuC

is finite and since a finite language is unavoidable iff no periodic bi-infinite
word avoids it, one gets that Y U C is unavoidable.

Moreover, every minimal unavoidable language contained in Y U C
contains Y.

Indeed, let X be an unavoidable language such that X c (Y U C). Let
y E Y, then ï(y has a factor in X, but y is the only factor of Ny in Y, so
no element in Y — { y } is a factor of Hy and Ky has no factor in C (because
Ny avoids C), so the factor of iïy in X must be y itself, so y E X. This
is true for every y e Y, so Y C X.

As a conclusion, y U C is finite and unavoidable, there is a sublanguage
X of Y U C which is a minimal unavoidable language. This language X
contains y , so it satisfies the required conditions.

Theorem 4.2 is proved. D

5. CUTS

In this section, I will introducé cuts, and give the properties which lead to
an algorithm to décide whether a finite language is unavoidable. It seems that
J. P. Duval discovered this algorithm before I did, but he never published it.

The idea of cuts is to remove what is obviously useless in terms of
avoidability.

Let X — {a6, baba}, a bi-infinite word which contains a factor baba
contains also a factor ab (because ab is a factor of baba), therefore a bi-
infinite word avoids X iff it avoids {ab}, so that baba has no effect on
the avoidability of the set.

Let {a, b} be the alphabet and let X be {babba, bbb}. A bi-infinite
word which contains a factor babb contains either a factor babba or a factor
babbb. In the latter case, it contains also a factor 666, since bbb is a factor of
babbb. Therefore a bi-infinite word avoids X = { babba, bbb } iff it avoids
{ 6a66, 666 }, so that, in terms of avoidability, the last a in 6a66a is useless.

Cuts are going to remove these useless parts. If X cuts into Y, then a
bi-infinite word will avoid Y iff it avoids X.

Let X and Y be some languages on the alphabet A, we consider the
following properties on X and Y:

(1) There are some words u, v E X, such that u / v, u is a factor of
v znd Y = X - { v }
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(2r) There is a letter a e A and a word u G A* such that:

wen is in X,

for every /? £ A, f3 ̂  a, there is a suffix w^ of u such that /3n^ G X and

[ y = X-{uc*} + {u}

(21) There is a letter a E A and a word u G A* such that:

au is in X,

for every f3 G A, ƒ3 7̂  a, there is a prefix w^ of u such that upf3 G X and

(3r) There is a word n G A* such that:

'u ^ X,

for every a G A, ua G X

ŷ = X-uA+M

(3/) There is a word u G A* such that:

for every a G A , cm £ X

^ = X-Au + {u}

DÉFINITIONS 5.1: Let X and Y be two languages, then:

The language X ci/ta into Y (resp. cwto mto Y on the right, resp. cuts into
Y on the left) in an elementary way iff (1), (2r) or (21) is satisfied (resp. iff
(1) or (2r) is satisfied, resp. iff (1) or (21) is satisfied).

The notation X ^> Y (resp. X ^ \ y , resp. X ^ y ) will be used to say
that X cuts into Y (resp. on the right, resp. on the left) in an elementary way.

The language X cuts into Y (resp. on the right, resp. on the left) in an
almost elementary way iff (1), (2r), (21), (3r) or (31) is satisfied (resp. iff
(1), (2r) or (3r) is satisfied, resp. iff (1), (2/) or (31) is satisfied).

The language X cuts into Y (resp. on the right, resp. on the left) iff
there is a finite séquence X — Xo, Xi, . . . , Xn = Y such that for all
i G [1, n], Xi_i cuts into Xi (resp. on the right, resp. on the left) in an
elementary way.
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The notation X c ^ Y (resp. X c^r Y, resp. X c ^ / Y) will be used to
say that X cuts into Y (resp. on the right, resp. on the left).

Note: If X cuts into Y in an almost elementary way, then X cuts into
Y (proof left to the reader), and therefore (proof also left to the reader), a
définition equivalent to the last of the définitions 5.1 is:

DÉFINITION 5.1 (bis): Let X and Y be two languages, the language X cuts
into Y (resp. on the right, resp. on the left) iff there is a finite séquence
X — Xo, -Xi, . . . , Xm = Y such that for all i e [1, m], Xi-i cuts into
Xi (resp. on the right, resp. on the left) in an almost elementary way.

Note 5.2: In (2r) and in (21), the "/? ^ a" is not necessary since, by
defining ua — u, one gets that ua is a prefix of n and that uaa £ X. Note
also that the définition of cuts would not be changed if one removed the
condition "u $ X" in (2r), (2r), (3r), (3/). It is for the sake of convenience
that they were included.

Examples 5.3: (The alphabet is {a, b, c })

aaaa
aaab

ac
bc
ccc

cuts into

aaa
aaab

ac
bc
ccc

on the right in an elementary way by

property (2r) with a — a and u = aaa,

aaa
aaab

ac
bc
ccc

cuts into on the right in an elementary way by

property (1) with u ~ aaa and v — aaab,

cuts into on the left in an elementary way by

property (21) with a — c and u — cc,

cuts into < > on the left in an almost elementary way by

property (3Z) with u = c.
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Therefore,

aaaa
aaab

ac
bc
ccc

cuts into on the right,

cuts into < } on the left and
l c ƒ

aaaa
aaab

ac
bc
ccc

cuts into aaa

}•

DÉFINITIONS 5.4: Let X be a language, X is innocent (resp. innocent on
the left, resp. innocent on the right) iff it cannot be eut (resp. eut on the left,
resp. eut on the right) except in the obvious way, that is iff [X cuts into Y
(resp. on the left, resp. on the right)] implies [X = Y and the séquence of
elementary cuts is trivial: X = XQ — Y],

A language is guilty (resp. guilty on the left, resp. guilty on the right) iff it
is not innocent (resp. on the left, resp. on the right).

Examples 5.5: (Still with alphabet {a, 6, c})

is guilty on both sides and is therefore guilty,

is innocent on the right, guilty on the left and is therefore guilty,

faaa] . .
< > i s i

l c J
innocent on both sides and is therefore innocent.

Cuts are a simplification in terms of unavoidability and a convenient tooi.
We study now the basic properties of cuts we will use for unavoidable
languages:

PROPOSITION 5.6: Let X and Y be two languages such that X cuts into Y",
then a bi-infinite word ^ avoids X iff it avoids Y.
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Proof of proposition 5,6: It is enough to prove the proposition in the case
where X cuts into Y in an elementary way (and then one gets the gênerai case
by an easy induction on the length of the séquence). There are three cases:

o case 1: the language Y is X — {v} with tt, v G X, u ^ v, u is
a factor of v

If H avoids X, it avoids Y since Y C X.

If ^ avoids Y', it avoids u (since u G Y), therefore it avoids v (because
u is a factor of v) and therefore it avoids X (it avoids Y and v, and
X = Y U {w}).

o case 2r: Y = X — {ua} + {u} with u e A*, a £ A, ua E X and

[for every f3 G A, /? / a, there is a suffix n# of w such that up f3 G X].

If N avoids Y, then H avoids I - { t i a } (because I - { U Ö } C 7 ) and u a
(because H avoids Y and u G Y, so H avoids u, but u is a factor of ?x a, so ^
avoids also n a), therefore H avoids X (because X — (X — {ua}) + {ua}).

If H avoids X, it avoids X — { u a } (because X — { u a } C X). Assume
N does not avoid it, this means that n i s a factor of H. The (or one of the)
occurrence of u in H is followed by a letter {3 G A, so that u f3 is a factor
of K. Now, there is up suffix of u such that u^ /? is in X (If /3 = a, then
take wa = u), but n^/3 is a factor of K (because up f3 is a factor of u f3
which is a factor of H), which contradicts the fact that ^ avoids X.

Therefore N avoids {u}, so K avoids Y (because b* avoids X - {ua}
and {n} , and Y = (X - { n a }) + { n}).

o case 2/: y = X - { n a } + {n} with n G A * , a ; G A , a u G X and
[for every f3 G A, /3 / a, there is a prefix u^ of it such that Pup G X],

The proof of this case is the symmetrie of the previous one.
Proposition 5.6 is proved. D

PROPOSITION 5.7: Let X and Y be two languages. If X cuts into Y, then,
for every language Z, [X U Z is unavoidable] ijf[Yl)Z is unavoidable],

Proof: This is an easy corollary of proposition 5.6. D

PROPOSITION 5.8: Let X and Y be two languages. If X cuts into Y, then
X is unavoidable iff Y is unavoidable.

Proof: This is proposition 5.7 with Z = 0. D

PROPOSITION 5.9: Let X be a language. If X is innocent on the right (resp.
innocent on the leftt resp. innocent) and unavoidable, then X — { e } .
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Proof of proposition 5.9: Assume X is innocent on the right and X / { e }.
We show that X is avoidable.

If X — 0, then X is avoidable, so we assume from now on that X / 0.
We prove by induction on L G N that there is a word u G A* of length L,
such that u avoids X:

L = 0 : I / l and 1 ^ {e} , so there is a word v G X with v ^ e,
therefore e ^ X (because if £ G X, then the f acts that e is a factor of v,
that e ^ v, and that e, f G X contradict the innocence of X) and therefore
e (which is of length 0) avoids X (The only factor of e is itself).

Assume there is a word v of length L which avoids X, we will find a
letter a such that v a (which is of length L + 1) avoids X. Assume that for
every f3 G A, v f3 does not avoid X, this means that there is xp G X which
is a factor of v f3. The word xp is not a factor of v (because v avoids X and
xp G X), so xp is a suffix of v/3, and since xp ^ e (because xp e X and
e £ X), there is a suffix up of u such that xp — up f3. Now let a be such
that | ua | = max | up \ and let u ~ ua. Then ua — xa G X and for every

p G A.

f3 G A, /? / a, u/5 is a suffix of u (because up and u = u a are suffix of the
same word t> and | n^ | < | n |) such that up f3 {— xp) G X. This contradicts
the fact that X is innocent. Therefore, there is a letter f3 E A such that v ƒ?
avoids X, and the induction hypothesis is true for L + 1.

By induction, there are words of every length which avoid X. So X is
avoidable.

The result is the same if X is innocent on the left (by symmetry) and if
X is innocent (because if X is innocent, then it is innocent on both side).

Proposition 5,9 is proved, D

THEOREM 5.10: Let X be a finite language, then the following properties
are equivalent:

(i): X is unavoidable

(ii): X cuts into {e}

(iii): X cuts into {e} on the right

(iv): X cuts into {e} on the left

Proof of theorem 5.10: (iii) => (ii) is obvious.

(ii) => (i) because of proposition 5.8 and because { e } is unavoidable.

(i) =^ (iii) is proved by induction on L = \ ^ \w\:
wex
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L = 0: If ^2 \w\ = 0 and X is unavoidable, then X — { e } and the

result is obvious.
Assume that [[Y is unavoidable and ^ ^ | w | < L] => Y cuts into { e }

on the right], and that X is an unavoidable language with Y^ | w | = L + 1 ,

then: X is guilty on the right (because { e } is the only unavoidable, innocent
on the right language, see proposition 5.9), therefore, there is Y such that
X cuts into Y on the right in an elementary way. But Y is unavoidable
(because of proposition 5.8) and Y^ | w | < Y^ | w \ = L + 1, so, by

weY wex
the induction hypothesis, Y cuts into e on the right. Therefore X cuts into
{ e } on the right.

By induction, the property is true for every L.
Therefore (i),..(ü) and (iü) are equivalent. By symmetry, (i), (ii) and (iv)

are equivalent arïd therefore (i), (ii), (iii) and (iv) are equivalent.
Theorem 5.10 is proved. D
Note 5.11: When X is unavoidable, then it cuts into { e } whichever way

you take, because if you eut X into Y9 then Y is unavoidable and therefore
it cuts into {e}.

Note 5J2; Proposition 5.10 and note 5.11 give an algorithm to know
whether a given finite language X is unavoidable: write down the éléments
in X and eut as long as you can. The language X is unavoidable iff you
can reach { e } and is not if you get stuck bef ore reaching { e }.

6. FURTHER STUDIES OF CUTS

This section is devoted to natural questions one can ask oneself about cuts.
The main results of this section are, îirst that for every finite language X,

there is a unique innocent language X such that X cuts into X , second the
équivalence between (where X and Y are two finite languages):

(1) X = F .

(2) for every bi-infinite word K, ([tt avoids X] iff [H avoids Y])
and third the équivalence between:

(3) For every finite language Z, X U Z is unavoidable iff Y U Z is
unavoidable.

(3') For every language Z, X U Z is unavoidable iff Y U Z is unavoidable.
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(4) For every periodic bi-infinite word K, ([H avoids X] iff [H avoids Y]).

The languages satisfying (1) and (2) will be defined to be strongly

equivalent.

The languages satisfying (3) and (4) will be defined to be weakly

equivalent.

LEMMA 6.1: Let Y be an innocent language, and v be afinite word which
avoids Y, then there is a bi-infinite word K such that H avoids Y and such
that v is a factor of N.

Proof of lemma 6.1: If e G Y (which in fact would imply Y = {e}) ,
then v cannot exist, because every word contains e as a factor, so one can
assume from now on that e 0 Y.

One builds by induction some letters a i , . . . , a^, . . . and &i, . . . ,
&X,, . . . such that the word defined by UL — a^ ... a\ vb\ ... b^ avoids Y:

L = 0: No letter needs to be built and UQ — v avoids Y.

Assume (aj)g<i, and (&j)i<£ are built so that «£, = ai, . . . ai v&i ...&£,
avoids Y.

Assume that for every letter ^ G A, there is a word a;̂  G Y which
is a factor of UL/3. Because UL avoids Y, xp is not a factor of UL, and
therefore x^ must be a suffix of UL 0. Since x@ y£ s (because xp G Y and
e ^ Y), there must be a suffix u@ of w^ such that x@ = up f3. Let a be
such that \ua\ — max | UQ \ and let u = ua, then U Û G Y and for every

letter /? / a, u@ J3 G Y and up is a suffix of u (because they both are
suffixes of UL and \u\ > \up\). This contradicts the innocence of Y, so
there is a letter fc^+i such that no word in Y is a factor of UL Ö L + I , that
is, such that UL &L+I avoids Y.

By a symmetrie reasoning (on the left, using UL &L+I instead of UL\ there
is a^+i such that a^+i ( ^ L ^ L + I ) avoids Y.

Therefore, ( a ^ ^ L + i and (bi)l<L+i are built with the required property.

By induction, (al)ie^* and (6^)*GN* a1"6 built and it is easy to see that
the bi-infinite word H = . . . ap . . . a<i a\ vb\ 62 . . • bq . . . avoids Y.

Lemma 6-1 is proved. D

COROLLARY 6.2: Let Y be an innocent language. For every y E Y, there
is a bi-infinite word ï<y which avoids Y — { y }, but contains y as a factor.

Proof of corollary 6.2: Because Y is innocent, no y' G Y — { y } is a
factor of y, so y avoids Y — { y } . The language Y is innocent, so Y — { y }
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is also innocent. Therefore corollary 6.2 is a conséquence of proposition 6.1
with (y, Y — {y}) used instead of (v, Y).

Corollary 6.2 is proved. D

Note 6.3 on corollary 6.2: The words üy are not stated to be periodic and
in fact cannot be. Consider for example Y — {a&, ba}.

DÉFINITIONS 6.4: Let S be a set of bi-infinite words, then S and S are
defined as:

5 = { u G A* | VK G S, u is not a factor of H }.

S ~ {u G 5 I VÎ; G A*, [f G 5 and v is a factor of u] =>- [f = u] }.

5 is the set of the words that never appear as a factor of a word in S,
and S is the set of the minimal éléments of 5 for the order "is a factor
of' (5 is the subset of S consisting of all the words u such that no factor
of u (except u itself) is in S).

PROPOSITION 6:5: Let Y be an innocent language and S be the set of the
bi-infinite words avoiding Y, then Y = S.

Proof of proposition 6.5: S is the set of the bi-infinite words which avoid
Y, so \/y G Y, VH G 5, y is not a factor of N;, and therefore y G S.
So Y CS.

Let s £ S, assume s £ Y, then 5 avoids Y (Indeed, assume it doesn't,
then there is y G Y which is a factor of 5. Since y G Y and s £ Y, y
cannot be 5, so y is a proper factor of s, but since y E S, this implies
that s G S has a proper factor in S. This contradicts the définition of S).
So thanks to lemma 6.1, there is a bi-infinite word K which contains s as a
factor and avoids Y. Because K avoids Y, ^ is in S. Because s G S C S
and S is the set of the words which are factor of no word in 5, s is not a
factor of ^, but K was assumed to have s as a factor. There is a contradiction,
therefore i f s G 5, then 5 G Y, so that S C Y.

Assume now that S 7̂  Y, then there is a; G Y — S. But a; G Y, so x G 5,
therefore x has a factor y in 5 (It is straightforward to see by induction on
| 5 | that every word s in S has a factor s1 in S), but 5 C Y, so y G Y.
So x, y £ Y, x ^Ê y (because x ^ S and y E S) and y is a factor of rr.
This contradicts the innocence of Y, so 5 = Y.

Proposition 6.5 is proved. D

THEOREM 6.6: Let Y be afinite language, then there is a unique innocent
language Y such that Y cuts into Y.
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Proof of theorem 6.6: An easy induction on V^ \x | shows that there is

_ _ xeY ___ _ ,
an innocent set Y such that Y cuts into Y. Assume now that Y and Y are
two innocent languages such that Y cuts into Y and into Y . Then thanks to
proposition 5.6 (and because Y cuts into Y and into Y ), for every bi-infinite
word H, ([N avoids Y] iff [N avoids F]) and ([N avoids Y] iff [N avoids
F']), so that ([H avoids F ] iff [N avoids F']). Therefore 5 and S \ the sets
of bi-infinite words avoiding respectively Y and Y , are the same. So thanks
to proposition 6.5: Y = S — Sf — Yf. Therefore, there is a unique innocent
language Y such that Y cuts into Y.

Theorem 6.6 is proved. D

DÉFINITION 6.7: Let X be a finite language, we will call acquittée X
the unique innocent language given by theorem 6.6. Acquitted X will be
denoted by X.

PROPOSITION 6.8: Let X and Y be two finite languages, the following two
propositions are equivalent:

(1) X = Y.
(2) for every bi-infinite word M, ([H avoids X] iff [H avoids Y]).

Proof of proposition 6.8: (1) =>• (2): According to proposition 5.6
(using that X cuts into X), [̂  avoids X] iff [K avoids X] and similarly
[N avoids Y] iff [N avoids F ] , so that if X = F , then [N avoids X] iff
[N avoids Y].

(2) => (1): Let S^, <%, 5 y ' ^ r b e t h e s e t s o f t h e s e t s o f t h e bi~
infinité words avoiding respectively X, X, Y, Y. Property (2) means that
Sx — Sy. Thanks to proposition 5.6, ([H avoids X] iff [H avoids X])
and ([K avoids Y] iff [K avoids F]), so that Sx = % and S'y = Sy.
Therefore Sj^ — Sy But X and Y are innocent, so thanks to proposition 6.5,

Proposition 6.8 is proved. D

DÉFINITION 6.9: Two finite languages X and Y are strongly equivalent iff
they satisfy the properties of proposition 6.8. The fact that X and Y are
strongly equivalent will be denoted by X ~s Y.

Note 6.10: One could get properties "on the right", which are similar to
the previous ones, by considering infinité words instead of bi-infinite ones.

PROPOSITION 6.11: Let X and Y be two languages, then the following two
properties are equivalent:
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(3) For every finite language Z, X U Z is unavoidable iffY U Z is
unavoidable.

(3') For every language Z, XuZ is unavoidable iff Y U Z is unavoidable.

If X and Y are finite, then the above two properties are equivalent to
the following one:

(4) For every periodic bi-infinite word K, ([H avoids X] iff [H avoids Y]).

Proof of proposition 6.11: (3') =>• (3) is obvious.
(3) => (3'): Assume (3). Let Z be a language. If X U Z is unavoidable,

then (see proposition 3.5), there is a finite sublanguage of X U Z which is
unavoidable, so there are some finite sublanguages X1 and Z1 of X and Z
such that X' U Z' is unavoidable. Since I ' C I , I U 2 ' is unavoidable.
Since Z' is finite and (3) is assumed to be satisfied, Y U Z' is unavoidable.
Since Z' C Z, Y U Z is unavoidable. By a symmetrie argument, if Y U Z
is unavoidable, then X U Z is unavoidable. So (3') is satisfied.

(4) =̂> (3) is straightforward since a ƒ mte language is unavoidable iff no
periodic bi-infinite word avoids it.

-.(4) =^ ->(3): Assume for example that there is a periodic bi-infinite word
H which avoids X, but not Y, then according to proposition 4.3, there is a
finite language Z such that every periodic bi-infinite word, but K, contains
a factor in Z. Since N avoids X and avoids Z, it avoids X U Z which
therefore is no/ unavoidable. Since ^ does not avoid Y, there is y G Y
which is a factor of H. Every periodic bi-infinite word contains a factor in
Z U { y } (R contains y and every other word contains an element in Z)
and Z U {y } is finite (since Z is finite), so Z U {y} is unavoidable, and
therefore Z U Y is unavoidable. So (3) is not satisfied.

Proposition 6.11 is proved. D

Note 6.12: (4) => (3) is not true if X or Y can be infinité. See for example
X = { e } and Y = { uu | n G A+ } the set of the non-e squares on the
alphabet {a, 6, c} , with the help of [2], On the other hand, ->(4) ^> ->(3)
is valid even if X or Y is infinité.

DÉFINITION 6.13: Two finite languages X and Y are weakly equivalent iff
they satisfy the properties of proposition 6.11. The fact that X and Y are
weakly equivalent will be denoted by X

PROPOSITION 6.14: Let X and Y be two finite languages. If X and Y are
strongly equivalent, then there are weakly equivalent.
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Proof: Obvious. D

Example 6.15: Let A = { a, b } and n be an integer. Let X — { an b } and
Y = { ban }, then X and Y are weakly, but not strongly equivalent.

Proof of the statement of example 6.15: To prove that an b ~w ban, one
can use any définition of weak équivalence.

Proof 1: Let K be a bi-infinite periodic word, then ^ avoids an 6 iff H — a1

or H avoids an. Indeed, if H = a1 or H avoids an, then H avoids an b. If
H / a z and K contains an as a factor, then (H contains an as a factor and is
periodic) there is a word u such that N = (an u)1. Since ^ ^ a1, u contains
the letter 6, so can be written u = ak bv, so N: = (au afc 6t>)z = (a71 (a71 &) v)1

contains an b as a factor. By symmetry, H avoids 6an iff K = a1 or H avoids
a71, so K avoids an b iff ^ avoids ban.

Proof 2: Let Z be a finite language.

If Z contains no power of a, then az avoids both Z U {an b} and
Z U {6a n } .

If ak E Z and ak is the smallest power of a in Z, then let Z1 — Z - { ak }.

If A; < n, then (ak is a factor of an b) Z U { an b } = Z' U { ak, anb} cuts
into Z1 U { afc } = Z, and similarly, ZU{ban} cuts into Z7 U { ak } = Z.
Therefore, Z U {an b} is unavoidable iff Z is unavoidable iff Z U {èan }
is unavoidable.

If k > n, then Z U {an b} = Zf U {ak, anb} cuts into Zf U { an } (By
induction on A; : A; — n : because an is a factor of an 6, if A; > n, because
afc = a(*-n-i) a n a ? s o z / y |afc? a n 6 | c u t s i n t o z / u {a*"1, anb} by

using the eut (2r) with a = a, u = a^"1 and u& = an), and by symmetry,
Z U { 6an } cuts into Z' U { an }, so Z U { a™ 6 } is unavoidable iff Z' U { an }
is unavoidable iff Z U { 6a™ } is unavoidable.

Now an b rp$ ban because H = {ai)i e 2 with ai — a for i < 0 and ai ~ b
for i > 0 avoids 6an, but not an 6 (or because they are distinct singletons and
every singleton is innocent). The statement of example 6.15 is proved. D

THEOREM 6.16: Let A — { a , b}, let u and v be two words on A,

the singletons {u} and {v} are weakly equivalent iff [u = v] or if

[there is an integer n such that {u, v} = {an 6, ban } or such that

{u,v} = {bna, abn}].

Proof of theorem 6.16: It is obvious that if u = v, then {u} and {v}

are strongly and therefore weakly equivalent, and it is easy to see from
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example 6.15 and some symmetry considérations that

if { u,v } = { an 6, ban } or if { u, v } = { bn o, abn },

then u and v are weakly equivalent.

Assume now that u and v are weakly equivalent, but different. We have
to show that { u, v } — { an 6, ban } or {u, v} — {bn a, abn } for some n.

Let T be an integer, then there is at most, up to translation, one bi-infinite

word, periodic of period T, containing u as a factor ijf[T< \u\]. Indeed:

Assume T < \u\. Let UT be the prefix of u with length T. If ^ is of period
T and contains u as a factor, then it contains UT, and therefore (| UT \ — T
the period of N) H = (UT)1- SO there is only one (up to translation) periodic
bi-infinite word of period T that might contain u as a factor.

Assume T ~ \u\+k9 with k > 0, then Ha = (uak)J and N& = (ubk)2

are two words of period T containing u. Furthermore, Ka ^ H^ (Indeed,
if u\ = n^ with \ua\ — \ u^ |, then there are as many a's in ua

as in ub9 but Ka = (uak)2, H6 = (w6A;)z, | itafe | = | u6fc | = T and
| uak \a — | u \a + A: 7̂  |• U |a = | wèfe |a)- So there are at least two words of
period T containing u as a factor and which are different up to translation.

One has the similar property for v and therefore
| u | = max { k G N |. There is at most, up to translation,

one bi-infinite word which is periodic of period T,
and which is a factor of u }

= max { k G N |. There is at most, up to translation,

one bi-infinite word which is periodic of period T,
and which is a factor of v }

(because u ~ w v, so a periodic bi-infinite word K
contains w a s a factor iff it contains v as a factor)

So u and v have the same length,

Now v1 is periodic of period | v | and contains v as a factor, therefore
(| u | = | v | and u ~w v), v1 is periodic of period | u \ and contains was a
factor, but u1 is also periodic of period | u \ with u as a factor, but there
is at most one bi-infinite word which is periodic of period | u \ and which
contains u as a factor, therefore u1 = v1, and since \u\ = \v\9 this implies
that there are some words t and s such that u = st and v — ts.

Moreover, s ^ e and t ^ e because u / v.

Let L — \u\ — \v\. The word K = (uaL)z contains u as a factor and is
periodic, therefore (since u ~w v), K contains v and (K is periodic of period
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2 L and | v \ — L) there is a word w of length L such that H = (vw)1. Now
| uaL | = | vw |(— 2L) and (uaL)1 = (vw)1, therefore there are as many a's
in uaL as in vw, that is | uaL \a = \ vw \a. Since | uaL \a — \ s \a + 11 \a + L
and | vw \a — \ tsw \a — \ t \a + \ s \a + | w | a , one has | w \a = L — \ w | so
w = aL and (uaL)z = (vaL)2.

Therefore, there is an integer ka such that imfca = aka v or such that
vaka — afca n (Indeed (uaL)z = {va1")1 implies that there are words s' and
t; such that t iaL = t ' s ' and ï;aL = s't7. Because 11'5; | — 2L, one has
| sf | > L or | £' | > L. If | 5' | > L, then let fcfl = | i71(< L).

From 'ya1' — sftf, one gets that tf = afca and 5; — vaL~ka. From
^ a L = t ' s ' , one gets that u a L = akavaL~ka

9 so that uafca — afca u. If
| tf \ > L, one gets a number ka such that vaka — aka u in a similarly way).
Note that ka ^ 0 (because ka = 0 would imply that u = u).

The latter result can be rewritten: there is an integer ka / 0 such that
staka — aka ts or such that tsaka — aka st. A similar reasoning shows that
there is an integer k^ ^ 0 such that stbkb = bkb ts or such that tsbkb = 6fcï> si.

Since sta^01 = a^a t s forces the first letter of s to be an a, while
stbkb — bkb ts forces the first letter of s to be a 6, those two conditions
are incompatible, so there are integers ka and kb with ka ^ 0, k^ ^ 0,
such that staka = afca t s and ts iA = 6fcb st or such that tsafca — aka st and
5t6fcö = bkb ts. For symmetry reasons, we can assume that staka = afea tg
and tsbkb = bkb st.

If 5 is not a power of a, then afca is a prefix of s (because staka = afca ts ,
so s is a prefix of aka or a/Ca is a prefix of s, but s prefix of afca would
contradict the hypothesis that s is not a power of a) and also a suffix of a
(by a symmetrie argument). Since s is not a power of a, this implies that
there is a word za such that s — aka za aka. So, either there is an integer ma

such that s = a m a (and m a 7̂  0 because s ^ e) or there is a word za such
that 5 = aka za aka. Similarly, either there is an integer mj, ^ 0 such that
t = bmb or there is a word zi such that t = bkb z^bkb.

o If s = am* and 6m&, then u{= st) = am° 6m& and v (= ts) = bmb am«.

o If s — am a and t = bkb z^ bkb
y then the équation tsbkb = bkb st becomes

bkb zb bkb am* bkb = bkb am* bkb zb bkb, that is zb bkb am« = am« bkb zb. This

last équation forces ama to be a prefix of zb, so there is a word wb

such that zb = a m a ty^ and the équation 2b 6
fc6 am* - am° 6fcfc ^ becomes

o™* wb bkb am* = a m a 6 ^ a m - IÜ6 , that is wb bkb ama = bkb a m - wb. So

there is an integer p such that wb = (bkb ama)p (Because, by induction
on \w\9 the relation wbkb am<L — bkb ama w forces w = (ama bkb)p
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for some integer p: This is true if | w \ — 0, and if | w \ ^ 0, then
the relation wbkb ama = bkb ama w forces bkb ama to be a prefix of
w, so w = bkb ama wf and the relation wbkb ama — bkb ama w become
w' bkb ania — bkb ama u / , so by an induction, w' = (bkb ama)p> and therefore
w = bkb am« wf = (bkb am-y/+1). Therefore

zh = am«wb - am« (bkb am«Y,

t = bkb zb b
kb = 6*6 afca (6fcfc am*)p bkb = (bkb a

u = st = am" (bkb ama)p+1 bkb = (ama bkb)p+2

and
v = ts = (bkb a

o If 5 =' aka za aka and t = 6m&, one concludes that there is an integer p
such that u — (aka bmb )p+2 and v = (bmb aka)p+2 by a reasoning symmetrie
to the previous one.

o If s — aka za aka and t = bkb zb b
kb, then the équations staka = afca ts

and t56fcfc — bkb st become

aka za a
ka bkb zb b

kb aka — aka bkb zb b
kb aka za a

ka

and
bkb zb b

kb ak* za a
k« bkb = bkb ak« za a

k« bkb zb b
kb,

that is: 7 7 7 7 7 7
za ak* bkbzb bkb = bkb zb b

kb ak« za (1)

and
zb b

kb aK za a
K = ak* za ak* bkb zb (2)

One shows by induction on JV that

f Either bkb (a*° bkb)N is a prefix of za

\ o r 3na such that za = bkb (aka bkb)n*

and

fEither aK (bkb aK)N is a prefix of zb

| o r 3nb such that zb = afca (&** a fca)nb

N — 0 : The équation (1) forces è^6 to be a prefix of za while the

équation (2) forces aka to be a prefix of zb.

Assume the proposition is true for N.
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If za — bkb (aka bkb)Ua for some integer na (rank N) then

za — bkb (aka bkb)Ua for the same integer na (rank N + 1).

If zb = aka (bkb aka)nb for some integer nb (rank N) then

zb — aka (bkb aka)Uri for the same integer nb (rank N + 1).

If bkb (ak« bkb)N is a prefix of za and zb = aK (bkb ak*)nb, then there
is a word wa such that za = bkb (aka bkb)N wa and the équation (1)
induces that za aka bkb = bkb (aka bkb)N wa aka bkb is a prefix of
bkb aka (bkb aKyb bkb aka bkb (aha bkb^N w^ s o t h a t Wa aka bkb i s a p r e f i x Qf

(ak* bkb)nb+2 wa. Therefore either wa = s and one has za = bkb {aK bkb)n*
with na = N or aka bkb is a prefix of iua and bkb (aka bkb)N+1 is a prefix
of za - bkb(ak«bkb)wa.

If afca (èfcfe afca)Ar is a prefix of 25 and za — bkb (aka bkb)ïla
J then one can

conclude by an argument symmetrie to the one in the previous case.

If bkb (aka bkb)N and aka (bkb aka)N are respectively préfixes of za and
Zb, then there are words wa and wb such that za — bkb (aka bkb)N wa and
zb = aka (bkb aka)N wb. If wa — e or wb — e, then za = bkb (aka bkb)na with
na = N or zt, = afca (6fcb a^)7*6 with n^ = iV, and the situation has already
been considered, so we can assume that wa / e and that wb 7̂  e. The
équation (1) induces that za aka bkb = 6fcb (aka bkb)N wa aka bkb is a prefix
of bkb ak« (bkb ak«)N wb b

kb ak- za, so that

wa aka bkb is a prefix of aK wb b
kb aka (3)

and the équation (2) induces that

wb bkb aka is a prefix of bkb wa aka bkb (4)

From (3), one gets that wa = a / a , la < ka or that aka is a prefix of wa.

From (4), one gets that wb — blb, lb < kb or that bkh is a prefix of wb.

But wa — ala, la < ka is impossible because of (3) and because wb begins
with a b. For similar reason, wb = 6/fe, lb < kb is impossible. Therefore aka is
a prefix of wa and bkb is a prefix of wb, now (3) again shows that aka bkb is a
prefix of wa and (4) shows that bkb aka is a prefix of u/&, so bkb (aka bkb)N+1

is a prefix of 2a = bkb (aka bkb)N wa and aka (bkb aka)N+1 is a prefix of zb.

The proposition is true for N + 1.

So the proposition is true for every N.

For large N's (for example, iV > | z a | , TV > | ^ 6 | ) , bkb (ak« bkb)N

cannot be a prefix of za, nor aka (bkb aka)N be prefix of z&, therefore
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there are some integers na and n& such that za — bkb (aka bkb)Ua and
zb = ak«(bkbak«)Ub, therefore s = ak« zaa

k« = (ak* fr**)»*^1 ak« and
t = bkbzbb

kb = (bkbak«)nb+1bkb, so that u = st = (ak«bkb)n and
v = ts — (bkh aka)n with n = na + nö + 3.

In every case, one finds that there are some positive integers na9 n&, n
such that u = {an« bUb)n and v = (bUb an«)n.

Assume n > 2, then (an*+1 6nb ( a ^ 6 ^ ) n - 2 an* è ^ + 1 ) z avoids u.but
not u, this contradicts the assumption that u ~w v, so n = 1, u — a"a 6Rb

and t; = 6n& a7**.

Assume now that na > 2 and that nb > 2, then (ana bnb ab)z avoids v9

(u - abnb fu = an* 6
but not u, so na = 1 or nb — 1, that is < or < „ which

^ — 6Ufc a [v = 6an a

is what we wanted to prove.

Theorem 6.16 is proved. D

7. SOME DIRECT PROOFS ON ACQUITTED X

The first aim of this section is to give a direct proof of proposition 6.6,
stating the uniqueness of acquitted X. This proof is more natural than the
one given in the previous section, but it turns out to be quite tedious and
bulky because of the high number of cases which are to be considered, even
though it is not very difficult.

The second part of this section states that one can get acquitted X by
acquitting first on the left, then on the right (or conversely).

PROPOSITION 7.1: Let X be a finite language, then there is one and only
one language X (resp. X , resp. X ) ofwords which is innocent (resp. on
the right, resp. on the left) and such that X cuts into X (resp. into Xr on
the right, resp. into X on the left).

Proof of proposition 7.1: The following lemma is the core of the proof
of proposition 7.1:

LEMMA 7.2: Let X be a finite language. Assume Y and Yf are two
languages such that X cuts into Y and into Yf (resp. on the right, resp.
on the left) in an elementary way, then there is a language Z such that both
Y and Yf eut (resp. on the right, resp. on the left) into Z.
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X
/

Y Y'

Proof of lemma 72: Only the skeleton of the proof will be given. I will
just indicate the different cases to be considered, and for each of them, what
the set Z is. Readers interested in details can look in [18] (It is not very
difficult to make out those details, it is just very long and tedious).

Assume X cuts into Y and into Yf on the right in an elementary way.
Should Y and Yf be interchanged, we can split the problem in three main
cases.

Case 1

There are u, v in X such that u ^ v, u is a factor of v, and Y — X — { v },
and there are uf, vl in X such that v! ^ vf, uf is a factor of v\ and
Y = X — { vl }, and we can assume that | v/| < \v\, This case subdivides
in three cases:

Case 1.1: v = vf: The conclusion is obvious with Z = Y — Yf.

Case 1.2: u = v' : Z = X - { v, v'} = Y - { v'} = Yf - { v }.

Case 1.3: v1 # v and vf ^ u : Z = X - {v,vf } = Y- {vf } = Yf - {v }.

Case 2

There are a in A and u in A* such that ua G X, such that for every
letter / J / a , there is a suffix up of w such that up f3 e X, and such that
Y — X — {ua} + {u}, and there are it', vf in X such that v! ^ v'9 v!
is a factor of t^, and Y = X — { vf}.

If u G X, then let v = ua : u, v E 1 , u is a factor of v and
y = I - { w a } + { î i } = : M 6 x ^ - { w a } = I - { î i } . This situation has
already been studied in case 1. Therefore, one can assume from now on that
u & X. This case subdi vides in five cases:

Case 2.1: ua = vf and v! is a factor of u :

Z = X - {v!} = Y - {u} = Yf.

Case 2.2: ua = v1 and ul is not a factor of u: The word u' is a factor of
v' — ua, but not a factor of u, therefore there is a suffix ua of u such that
v! — u a a. Because | ua \ + 1 = | ua a \ — \ u{ \ < \ v1 \ = | u a \ — | u \ 4- 1,
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one has ua ^ u. Now up is defined for every f3 G A, including for /? = a.
Let a be such that I U-Q I — max \UQ\.

There are now two subsubcases:
Case 22.1: Uâ = u :
Z = X -{ua, M } + {W} = y -

2.2.2; u^ ^ u :
Z = X - {na , w^â} + {WÖ} =

(Y - {uââ} + n r̂) - {u} = y ' - { t ^ a } + uâ.
2.3; ua — v! :

2.4; There is a letter (3 ^ a such that u^/? = v'. There are two
subcases:

Case 2.4J: uf is a suffix of i>' and uf ^ e :

2.4.2; it7 is not a suffix of v1 (or u1 = e):
Z = X - {ua, v1} = y - {n, v7} = y ' - {ua}.

Case 2.5: vf ^ ua, uf ^ ua and for every letter f3 ̂  a, u@{3 ̂  v' :

Z = X - {ua, ü /} + {u} = y - { t / } = y / - { ü Q } + { u } .

Ca.se 3
There are a in A and u in A* such that ua G X, such that for every

letter /3 ^ a, there is a suffix up of n such that up/3 E X and such that
y = I - { n t t } + {u} , and there are a1 in A and uf in A* such that
uf a' G X, such that for every letter ƒ? / ay', there is a suffix u^ of u'
such that ulpj3 E X and such that Yf = X - { uf a*} + { uf }, and one
can assume that | u \ > | u' |.

The situation when u G X or u7 G X or both, has already been studied
in case 1 or 2. Therefore one can assume from now on that u ^ X and
uf £ X. This case subdivides into four cases:

Case 3.1; ua = u! a1 : Z = Y - Yf.
Case 3.2: u — uf but u a ^ u' a1 :

3.3: u1 is a suffix of u, but u! ^ u (so that | n; | < | u |) :

Case 3.4: u! is not a suffix of n :
Z = X-{ua,uf a' } + {u,u' } = Y-{ uf a1 } + {n7 } = Y!-{ua } + { u}.
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So, if X cuts into Y and into Yf on the right in an elementary way, then
one can find in every case a language Z such that both Y and Yf eut into
Z on the right. By symmetry, if X cuts into Y and into Yf on the left in an
elementary way, then one can find a language Z such that both Y and Yf eut
into Z on the left. If X cuts into Y and into Yf in an elementary way, then

either X cuts into Y and into Yf both on the right, or both on the left
in an elementary way, but then we already know that there is a language
Z such that Y and Y' eut into Z both on the right, or both on the left,
so that Y and Y' eut into Z,

or (should one interchange Y and Y'), -ï cuts into Y on the right, but not
on the left, and X cuts into Y' on the left, but not on the right. Therefore
one is in the

Case 4

There are a in A and u in 4*, such that ua G X and for every
letter (3 / a, there is a suffix up of w such that up (3 G X, and
Y = X - { u a } + {u} , and there are d G A, v! G A*, such that
a' uf £ X and for every letter /3 ̂  af, there is a prefix ?A of u such that
Pu'p G X, and Y = X - {a'u'} + {u'}.

If u E X, then u, ua G 1 , w is a factor of ua , Y = X — {ua},
so X cuts into Y on both sides, which contradicts "X cuts into Y on the
right, but not on the left", so u $. X. For similar reasons, v! £ X. This
case subdivides in six cases:

Case 4,1: u = v! and ua = a' it' : Z = Y = Y'.

.2; u — u{ and ua ^ af uf :

Z = X - {ua, du'} + {u} = Y - {a'ï/} = Yy - {ua}.

4.J; e = v! ^ u :

Z = X-{ua, d} + {s} = Y-{u, d} + {̂ } = r - { u a } .

Ca.ŝ  4.4: e — u ^ u1 \ This case is the symmetrie of the previous one.

Case 4.5: u ^ e7 u
f ^ e, u ^ uf, ua ^ d uf :

Z = X - {du', ua} + {u\ u}

- Y ~{du'} + {u'} = Y' ~{ua}{u}.

Case 4.6: u ^ e, u' ^ e, u ^ u', ua = du' :

From u ^ e, u1 ̂  e and ua = d uf
9 one can deduce that there is a word

v such that u' —'va and u = d v, so that ua — d u' ~ a' v a. For every
letter /3 ̂  a, u^ is a suffix of w — av', so either u^ = d v, or u^ is a
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suffix of vf, and for every letter j3 ̂  a', v!n is a prefix of v! — v a, so either
v/p = va, or V!Q is a prefix of v. There are now four subsubcases.

Case 4,6,1: For every letter (3 / a, it^ is a suffix of i> and for every letter
(3 / a', w^ is a prefix of v :

= Y -{afv} + {v} = Y' - { M } + { V } .

4.6.2: There is 7 ^ a such that u7 — a' v (= u) and for every letter
/?. / a', u^ is a prefix of u :

Z — X ~ {af va, o!vy} + {v}

4.6.3; There 7 / a ; , such that ^ = Ü G Ü ( = U / ) and for every letter

P ^ a, U{3 i$ a suffix of i>'. This case is just the symmetrie of the previous one.

Case 4.6.4: There is 7 ^ a such that u7 = u (— af v) and there is 7 ' 7̂  a/
such that vL, = uf (= u a ) ,

Z = X — { 7' 7; a, ol v a, a ' v 7 } + { a ' v, 7; a }

So, in every case again, one can find a language Z such that both Y and
Y1 eut into Z, so lemma 7.2 is proved. D

LEMMA 7.3: Le? X be afinite language. IfY and Y1 are two languages
such that X cuts into Y and into Y! (resp. on the right, resp. on the left),
then there is a language Z such that both Y and Y1 eut (resp. on the right,
resp. on the left) into Z.

Proof of lemma 7.3: Lemma 7.3 is proved by induction on Y ^ \x\:
xex

o If J2 I x I — 0, then X — U o r X = { e } and the result is obvious.
xex

o Assume the result is true for every language W with Y ^ \w\ < L,

assume that X, Y and Yf are some languages such that Y^ \x \ — L + 1,
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and such that X cuts into Y and into Y' (resp. on the left, resp. on the
right). We prove the result is true for X.

If Y - X, the result is obvious with Z = Yf.
If Y1 = X, the result is obvious with Z - Y.

If Y / X and Yf ^ X, then there are some languages Yb̂  ^o s u c ^ m a t

X cuts into Yo and into Yo' (resp. on the left, resp. on the right) in an
elementary way, such that Yo cuts into Y (resp. on the left, resp. on the
right) and such that YQ cuts into Y' (resp. on the left, resp. on the right).
Then, thanks to lemma 7.2, there is a language Z such that both Yo and Yo'
eut into Z (resp. on the left, resp. on the right).

Now, ^2 \v\ < ^2 I x I - L + *' and Y° cuts both into Y and int0 ̂
yeYo xGX

(resp. on the left, resp. on the right), so thanks to the induction hypothesis,
there is a language Zo such that both Y and Z eut into ZQ (resp. on the
left, resp. on the right). For symmetrie reasons, there is a language Z'o such
that both Y' and Z eut into Z'o (resp. on the left, resp. on the right). But

z I < Xy \x\ < L + l9 and Z cuts into Zo and into Z'o, so thanks

xex
Lemma 7.3 is proved. D

to the induction hypothesis again, there is a language Z such that both Zo
and ZQ eut into Z (resp. on the left, resp. on the right). Now Y cuts into Zo
which cuts into Z, so Y cuts into Z, and Y' cuts into Zf

0 which cuts into
Z, so Y' cuts into Z too. The language Z satisfies the required property, so
the induction hypothesis is true for L + 1.

By induction, the result is true for every finite language X, whatever
| ar | is.

X
\

Y ~Z Y'
\

z
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By an obvious induction on Y^ \x |, there is an innocent languages X

_ _ _
such that X cuts into X. Assume Xf is another one. Then X cuts into X
and into X', so by lemma 7.2, there is a language Xn such that both X and
X1 eut into X", but X and X1 are innocent, therefore X = Xn = X', and
therefore there is a unique innocent language X, such that X cuts into X.

The same proof can be made with X and with X .
Proposition 7.1 is proved. D

PROPOSITION 7.4: Le? X Z?e afinite language, then X — X r = X .

Proof of proposition 7.4:

LEMMA 7.5: Let X be afinite language which is innocent on the left, guilty
on the right, then there is an innocent on the left language Y such that
Y ^ X and such that X cuts into Y on the right.

Proof of proposition 7.5: X is guilty on the right. The existence of words
u, v G X such that u ^ v and u is a factor of v would contradict the
innocence of X on the left, so there is a letter a G A and a word u G A*
such that ua is in X and such that for every letter /3 G A, (3 ̂  a, there
is a suffix up of u such that up (3 G X.

Let X1 — X — {ua} + {u}, then X cuts into X1 on the right Let
Xu — {v G Xf \v ^ u and u is a factor of v } and let Y — Xf — Xu, then
X' cuts into Y on the right (by a séquence of deletion using the eut (1)), so
X cuts into Y on the right, and it is clear that X ^ Y.

Note that if a word z is in Y and is different from u, then it is in X.
We have to show now that Y is innocent on the left. Assume Y is guilty

on the left, then:

o Either there are distinct words u', vf G Y such that uf is factor of vf.
If v! T̂  u, vf / i4, then u, u' G X and this contradicts the innocent

on the left of X.

If vf = u, then uf ^ u so uf G X, and ?/ is a factor of IA a (because u1 is
a factor of u — vf which is a factor of ua) and ua G X, this contradicts
the innocence of X on the left.

If u' = u, then v' G Y is a contradiction because u is a factor of v1 and
F = X1 -Xu - X 7 - { ^ G X'\vïu9 u is factor of v} .

o Or there is a letter â e A and a word ü G A* such that â û G F and
for every letter (3 =£ â, there is a prefix ü-̂  of ü such that /??% G y .
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oo If au / u, and for every letter (3 ̂  â~, (3üj =̂  u9 then âû G X
and for every letter (3 ̂  a, fiü-Q G X. This contradicts the innocence of
X on the left.

oo If av, — u9 then let û — wet. Then au — a~ü~a — ua G X, for every
letter f3 ^ a, Ü-Q is a prefix of û (because ü j is a prefix of ü which is a
prefix of u) and / 3 % G 7 , and since f3ü-g ̂  u(= au), one has f3ü^ e X.
This contradicts the innocence of X on the left.

oo If there is 7 such that jüj = u, then:

If üj = û, then let % = Tt, then 7ïZa = jü^a = ua G X, and for
every ƒ? ^ 7, ü j is a prefix of ü (It is true if (3 ̂  â and it is true if
j3 = a). Since 7^0; and for every letter f3 ̂  7 /?ï%, belongs to X (because
Pu- G F , /Ju-g 7̂  7üy = u so ö̂ïZ-g G X)y the innocence of X on the
left is contradicted.

So one can assume that üy ^ ü. Since üj is a prefix of ü, there is a letter
7 and a word u? such that ü~ = üj jw.

o o o If 7 = a, then let ûy = ïZy a = ny 7, then a u G X (because
âû G F and ~a~ü~ ^ 7üy = u), for every /? ^ { a, 7 }, Ü-Ö is a prefix of ü
and f3u-g E X (because (3Ü-Q E Y and (3ü-a ̂  7?Iy = it) and ûy = üy 7
is a prefix of w = wy 711;, and 7Wy = 7Üy7 = ^ 7 = ua G X. This
contradicts the innocence of X on the left.

o o o If 7 7̂  a, then recall that there is u7 suffix of u such that u7 7 G X.

o o 00 If n7 7̂  u, then (because ÏX7 is a suffix of u — 7 üy), w7 is a suffix
of üy, therefore u7 7 is a factor of ïZy7 and therefore of a~üy 7lu = au. But
n 7 7 G X, a ü G X (because a ü G Y, âv, ^ 7 ü 7 a = u), ti7 7 / â^Z
(because of their length) and this contradicts the innocence of X on the left.

o o o oïf u7 = u, then let wy = üy 7, then aü G X (because
a u / 7 w7 = u), for every f3 £ { a: 7 }, Ü-Ö is a prefix of tx and f3ü^ e X
(because Pü^ e Y and ^9% / 7 ^ 7 = w) and üy = ïïy 7 is a prefix of
ü = ü~y 7iü, and 7Ûy = 7 ^ 7 = « 7 = w77 G X. This contradicts the
innocence of X on the left.

Lemma 7.5 is proved. D

Now, we can prove proposition 7.4 by induction on V^ \x |.

If ^ I a; I = 0, then X = 0 o r X — { e } and the result is obvióus.

Informatique théorique et Applications/Theoretical Informaties and Applications



UNAVOIDABLE LANGUAGES, CUTS AND INNOCENT SETS OF WORDS 373

Let us assume that Y — Y for every language Y such that V^ | y | < L.

L e t X b e a finite l a n g u a g e sa t i s fy ing \ \x\ = L + l, t h e n :

xex

If X is gu i l ty o n t h e left, le t Y — X , t h e n Y ^ \y\ < L ( b e c a u s e X

yeY
is guilty on the left, so Y^ | x \ < V^ | x \ — L + 1), and therefore, by

xeX* ^ X

induction hypothesis Y — Y. Since Y is innocent on the left, Y — Y.
—îr —r —lr — =F —

As a conclusion, X = Y = Y = Y = X — X.
If X is innocent on the left and on the right, then X = X = X .

If X is innocent on the left and guilty on the right, then thanks to
lemma 7.5, there is an innocent on the left language Y which is distinct
from X, such that X cuts into Y on the right. Since V ^ \y\ < L, one

^ j

has Y —Y. The language X is innocent on the left so X — X and

therefore X — X . The language X cuts into Y on the right, therefore
X — Y . The language Y is innocent on the left, so Y = Y and therefore

r ^ / " r —[ r

Y — Y . Recall that Y = y . The language X cuts into y , therefore
Y = X. Therefore X ' r - X r = Yr = Y1 T = Y = X.

/
By symmetry, X — X.
Proposition 7.4 is proved. D

8. CUTS AND INFINITE LANGUAGES

The aim of this section is to study cuts on infinité languages, and to try
to give a définition of "X eventually cuts into Y", and of "acquitted X"
for infinité languages, which generalizes in a satisfactory way the results we
have for finite languages.

To begin with, recall that the définitions of elementary cuts, of cuts,
of guilty and of innocent languages (see section 5) are valid for infinité
languages, and that the following propositions are valid for infinité languages:

PROPOSITION 5.6: Let X and Y be some languages such that X cuts into
y , then a bi-infinite word H avoids X iff it avoids Y.
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PROPOSITION 6.5: Let X be an innocent language and S be the set of the
words which avoid X, then X — S:

Recall (see définition 6.4) that if S is a set of bi-infinite words, then S is
the set of the words that never appear as a factor of a word in S7 and that 5
is the set of the minimal éléments in S for the order "is a factor of'.

We can state now the following proposition which is the beginning of an
attempt of a generalization of proposition 6.6:

PROPOSITION 8.1: Let X be a language, then there is a unique language,
denoted by X and called acquitted X, which is innocent and is such that a
bi-infinite word K avoids X iff it avoids X.

Proof of proposition 8.1: Let S be the set of bi-infinite words avoiding
X, then:

- The language S is innocent, indeed:

The assumption that there are s, s' G S, s ^ sf such that s is a factor of
s', is absurd because of the définition of 5.

Assume that there is sa G 5 (s is a word, a is a letter) such that for
every letter b ̂  a, there is a suffix s& of s such that 55 b G S, then 5 cannot
be a factor of a bi-infinite word in S (because if it is, this factor has to be
followed by a letter a, so that sa, if a — a, or sa a if a ^ a, is a factor
of that bi-infinite word in S. This contradicts the f act that sa G S or that
st>b e S for every b ^ a, and the définition of 5). Therefore s e S, and
there is a factor s1 of s which is in 5, then 5', sa E 5, s' / sa and s1 is
a factor of sa. This contradicts the définition of S.

- Let K be a bi-infinite word, then H avoids 5 iff K G S, that is iff
^ avoids X, indeed:

If K G 5, then according to the définition of 5, no word of S and therefore
no word of S is a factor of K, so the word K avoids 5.

If H 0 5, then N does not avoid X, so there is x G X which is a factor
of K. Because S is the set of bi-infinite words avoiding X, and S the set of
the words which are avoided by 5, one has X C S, and therefore there is
x' e S such that x1 is a factor of x. The word xf is a factor of H (since x
is a factor of K), so the bi-infinite word H does not avoid S.

So S is innocent and a bi-infinite word K avoids X iff it avoids 5. We
have to prove now that S is the only language satisfying these properties.

If X is an innocent language such that for every bi-infinite word H,
K avoids X iff it avoids X, then S is also the set of bi-infinite words
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avoiding X, so thanks to proposition 6.5, X = 5, so 5 is the only language
satisfying the required properties, so by defining X — S.

Proposition 8.1 is proved. D
We would like now to say that X cuts into X in some sense. Regular cuts

will not work because one might need infinitely many cuts to go from X to
X, so there is a need to define eventual cuts.

DÉFINITIONS 8.2: Let X be a language, a séquence of cuts from X is a
séquence of languages S = (Xn)ne^ such that X = XQ, and such that for
every n G N, Xn cuts into Xn+\.

Let X be a language and S = (X{)ie^ be a séquence of cuts from X,
then Xs ! S u p and Xs^nî are defined as follows:

Xs,sup = {y G A*|ViV G N, 3n>N, y G Xn}

and

^5,inf = {y e A*\3N G N, Vn>N, y G Xn}

Let X and Y be two languages, then, X eventually cuts into Y iff there is
a séquence <S = ( X ^ Ç M of cuts from X, such that

PROPOSITION 8.3: Ler X be a language, S — (Xi)i e^ be a séquence of cuts
from X, and K be a bi-infinite word, then the following three propositions
are equivalent:

(1) K avoids X.
(2) H avoids X$iSup.

(3) K avoids Xs,mî>

Proof of proposition 83: (2) => (3): one has Xstinf C Xs^sup, so if
H avoids Xs^up, it avoids X^^nf.

(1) z^ (2): If H avoids X, then let x G -X^sup- Because of the définition
of Xs,sup, there is an integer n such that x G Xn: The language "X cuts
into Xn and H avoids X, so thanks to proposition 5.6, H avoids Xn, so
that x is not a factor of H. Since this is true for every x G Xs5 S u p , the
word U avoids Xs ) S u p .

(3) ^ (1): If tt does not avoid X, then there i s ^ G l which is a factor
of K. There is a séquence of words ( x n ) n € N such that xo = x and such
that for every n G N, one has xn G Xn and xn+i is a factor of xn (This
séquence can be built by induction, using the fact that if y G Y and Y cuts
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into Z, then there is z € Z which is a factor of y, this statement itself being
proved by induction on the number of elementary cuts necessary to go from
Y to Z). Now by an argument on the length of the xn 's (and using that each
xn+i is a factor of xn), one can see that there is an integer N such that for
every n > N, one has xn — xjy, so that XN £ Xn for all n > N9 therefore
Xfsf G Xs^inîj and since XN is a factor of x which is a factor of ^, one has
that XJY is a factor of H. Therefore, H does not avoid -X^inf.

Proposition 8.3 is proved. D

PROPOSITION 8.4: Let X be a language, then X eventually cuts into X.

Proof of proposition SA: Let us define (X n) n €N by induction:

- Let Xo = X,

- Assume Xn is built. If Xn is innocent, then let Xn+\ = Xn. If Xn is
guilty, then Xn+i is the language obtained by cutting one of the shortest word
which can be possibly eut, and by removing a word rather than shortening
one whenever there is a choice. More precisely:

Let us define the word eut by the elementary eut Y —> Z by u
if Z = Y — {u}, by ua if Z — Y — {ua} -\- {u} and by au if

Z — Y — {au}.+ {u}. Let l be the minimum length of the words in
Xn which can be eut. If there is a word u satisfying | u \ — l and such that
Xn cuts into Xn — {u} in elementary way, then let Xn+i = Xn — {u}.
Otherwise, there are words u, v and a letter a, satisfying | v \ = l9 such that
v — au or v = ua and such that Xn cuts into Xn — { v } -h { u }. In that
latter case, let J n + i — Xn — {v} + {u}.

We prove now that X$^snp = X^jnf and that it is innocent. If there is iV
such that XN is innocent, then for every n > N, Xn = XN, and therefore
X^.sup — Xs^ini — XN and is innocent. So we can assume from now on
that Xn is guilty for every n, so that Xn cuts into Xn+\ in an elementary
way for every n G N. Let us prove now that for every L € N, there is a
subset UL of A- L , and an integer UL such that for every n > UL, one has
Xn n yl^1' = UL (Note that this implies that UL = C7L̂  n A^L if L < L7).

This is proved by induction on L:

L = 0: The only word of length 0 is e, If e is in no Xn, then the
proposition is true for L = 0 with no = 0 and C/Q = 0. If e e XN for some
integer N, then an induction on n shows that e G Xn for every n > N (you
need to use that if Y cuts into Z in an elementary way and e € Y, then
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e E Z, which is pretty clear from what the cuts are), so that the proposition
is true with UQ = N and UQ — {^}.

Assume L > 0 and that there are a sublanguage UL of A-L and an
integer TIL such that for every n > n^, one has Xn n A-L = U^, Let
Zn = Xn n A L + 1 for every n, then:

(a) For every n > UL, the word eut by Xn ^ Xn+i is of length at
least L + 1 (because if X n ^> Xn+i cuts a word of length less than L,
then Xn n A- L 7̂  Xn_|_i n A~L, which contradicts the fact that there are
both equal to

(b) There is n > n^ such that no word in UL is a factor of Z^ (Indeed, if
n G Ui is a factor of a word £ € Zn for n > n^, then, since n, ^ G Xn ,
the language Xn cuts into Xn - { z }. Since there is no elementary eut
X^ ^ y cutting a word of length less than L (because of (a))9 since
\z\ — L + 1 (so that X^ ^ Xu — { z } is a eut removing a word of length
less than L + 1) and because of the way (Xn)nef^ has been defined (The
word eut is among the shortest which could be eut, and a word is removed
if possible), there is zf e Zn such that Xn+i — Xn - {zf}, therefore
Zn+i = Zn — {zf}. Therefore, if n > UL and if there is a word in UL
which is factor of a word in Zn, then one has card (Zn+i) ~ card (Zn) ~ 1,
but this cannot happen for every n > TIL since the Zn are finite, so that
the card(Zn)'s are finite integers. Therefore, there is n > UL such that no
word in UL is a factor of Zn).

(e) For every n > n, no word in UL is a factor of Zn (By induction on
n: this is true for n — n thanks to (b). Assume it is true for n, but not for
n + 1, so there is a word z which is in Zn+i, but not in Zn and a word u in
[/£ which is a factor of z. Since z € Zn+i ~ Zn, o n e has 2: € Xn+\ — Xn,
and since Xn cuts into X^+i in an elementary way, this means that there
is a word w and a letter a such that w — za ox w — az and such that
Xn_|_i — Xn — { w } + { z }. Now n and w are in Xn , and u is a factor of
w (because u is a factor of z which is a factor of w), so Xn also cuts into

eut the same word, but the first one replaces it by z, while the second one
removes it. Therefore, the fact that Xn+\ — Xn — {w} + {z} contradicts
the way the (Xn)n € M have been built (It contradicts the fact that préférence
was given to removals, rather than to shortenings), so no element in UL is
a factor of a word in Zn for n > n).

vol 29, n° 5, 1995



378 L. ROSAZ

(d) For n > n, one has Zn C Zn+\ (Indeed, if Zn ÇL Zn+\, then the eut
Xn ^ Xn+\ cuts a word z in Zn .

If X n + i = X n — { z }, then there must be u in Xn which is a factor of z.
Since | u | < | ; z | = L + l , one has u G U^. This contradicts (c).

If Xn+\ — Xn — { z } + { v }, for a word u such that there is a letter a with
z — av or z = va, then | v | < n (because | r; | < | # | = L + 1), v E Xn+i,
v 0 Xn (otherwise, the eut would have been Xn ^ Xn+\ — { z }) and
n > nL, so v e Xn+! n A^L = UL and u 0 Xn n A^L = C/̂ . There
is a contradiction.

(e) Therefore Zn is increasing, and since card(Z^) is bounded (There is
only a finite number of words of length L + 1), there is a number n^+i > n,
from which it is constant, so for every n > n^+i, one has

Xn n A^L+1 = xn n (A^L u
= (X, n A^L) u (xn n AL+1) - uL n z n = c/L n

so the proposition is true at rank L + 1 with t/x,+i U ZnL+1.

Now X 5 ; S u p = X 5 ) i n f = X . Indeed:

For every L, there is UL such that for every n > UL, one has
Xn H A ^ L = t/L , and therefore X ^ s u p n A ^ L = Xs^i H A ^ L (= UL)9

and since this is true for every L, one has X s ; S u p = X55inf.

Now X s ; S u p = J^^nf is innocent. Indeed, assume it is not, then there is a
finite sublanguage Y of Xs,Sup which is guilty, let L — max \y\9 then there

yeY
is a language Z such that Y cuts into Z in an elementary way, and this eut
cuts a word of length less than L. Let W = X U L - Y, then XnL =Y\JW
cuts into Z UW, and this eut cuts the same word as Y ^ Z does, that is, a
word of length less than L. On the other hand, XUL ^ XnL+\ cuts a word
of length at least L + 1 (because XnL n A^h ~ XnL+i H A^L (= üi))» but
this contradicts the way the (Xn)n € M have been built (It contradicts the f act
that one always cuts one of the shortest word which can be eut).

So Xs.sup — ^s,inf is innocent, and thanks to proposition 8.3, a bi-infinite
word avoids X iff it avoids Xs ; S u p , therefore, thanks to proposition 8.1,
^<S,sup = XsAnî — X, and proposition 8.4 is proved. D

Remark 8.5: It is tempting to define simultaneous cuts, so that X
simultaneously cuts into X in a finite number of steps. The first idea
would be to say that X simultaneously cuts into Y in an elementary way
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if there is a set / of indices, some disjoint languages (Xj) j € j , and some
disjoint languages (Yi)iej, such that X — \J X%, such that Y = (J Y{

and such that X{ cuts into Y% in an elementary way for every i G / , then
to say that X simultaneously cuts into Y iff there a finite séquence of
elementary simultaneous cuts leading from X to Y. Unfortunately, X might
fail to simultaneously eut into X with that définition. Consider for example
X = U ({ an bn an b71*1 } U ( U {anbnanbma })). One can see

nGN,n>2 0<m<n

that for every n e N,{anbn an bn+1 }U( |J { an bn an bm a }) cuts into

{ an bn an }, and that therefore X eventually cuts into (J { an bn an }.

Since the latter language is innocent, this is X. Now the reader can check that
no other eut that the ones inside { an bn an bn+l }u( IJ { an bn an bm a })

0<m<n

are possible, so, to go from X to X, one needs to eut each

{ an bn an bn+1 } U ( U {anbnanbrna})
0<m<n

into { an bn an }, this requires n+1 steps for a given n, so the whole thing
requires sup { n + 11 n E N , n > 2 } , that is infinitely many steps to go
from X to X .

To avoid such phenomena, one could thing to replace "X; cuts into Y% in an
elementary way for every i G / " in the above définition by "Xi cuts into Y%
for every i G / " . Then the X in the above example would simultaneously eut
into X . Unfortunately, there are still examples of languages Y which would
not eut into F , such as Y = (J { abn abn } (Note: 0 G N). The reader

can check that Y = (J { a6™ a }, and that Y f ails to eut simultaneously

into Y with the latter définition.

9. OPEN PROBLEMS

Finiteness of the set of the enlargements of a language

See section 4.

Let y be a finite language. Let us call compléments of Y, the
finite languages Z such that Y U Z is minimal unavoidable. There are
usually infinitely many different compléments of a language Y, they
might be infinitely many different innocent compléments (For example,
if Y — {aa, 66}, the innocent compléments are the Z — {u} with
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u E (6 + e) (ab)* (a + e), | u | > 2. They are infinité in number and
they are all innocent.)

Open problem 9.1: Let Y be a finite language. Is it possible to give a
finite number of compléments of Y which would represent (in some sense
to be defined) all of them?

I would look for a property such as: Let y be a finite language, then there
is a finite number of compléments (^X € [ i ,?H °f Y> s u ch that if ^ is a
complement of Y, then there is an integer i <E [1, ny] such that YU Z cuts
into Y U Zi. (Consider Y = { aaa, aa6, 666, 66a } to see that one cannot
replace Y U Zi by Y U Zi).

Enlargement into a non-extendible unavoidable language

An extendible unavoidable language is an unavoidable language X such
that there is x G X and some letters ai , <Z2, . . . , an, . . . such that
X — { x } + { x ai CL2 . . . an } is unavoidable for every integer n. It was
believed that every unavoidable language, but {e}, was extendible. It is
known now that it is not the case {see [17]).

Open problem 9.2: Let 7 be a finite language. What is a necessary
and sufficient condition on Y for there exists an enlargement of Y into a
now-extendible unavoidable language?

A necessary condition is: For every y £ Y, there are at least two different
periodic bi-infinite words Ky and Wy such that y is a factor of both Hy and
Hy, and such that y is the only element in y to be a factor of Ky and the
only one to be a factor of Wy.

This condition is not sufficient as one can see by considering the example
Y = {ab}.

Weak équivalence

See section 6.

It is not clear what the weak équivalence is. I would like first to see
some examples of weakly equivalent languages whose weak équivalence
cannot be deduced from the strong équivalence and the équivalence between
an b and ban (For example, {aaab, aabaab} ~w{baaa, baabaa} is not
interesting because one can deduce it from strong équivalence and one-word
équivalences, by

{aaab, aabaab} ~s{aaab} baabaab}~w{baaa, baabaab}

~ 5{6aaa, baabaa }~w{aaab, baabaa}).
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Open problem 9.3: Is it possible to describe the weak équivalence in
gênerai, the weak équivalence for languages of bounded cardinality? Is there
something finite in the set of the languages weakly equivalent to a given
language XI

I am also surprised not to be able to find a short proof of the fact that
u ~wv iff u — v or { u, v } = { an 6, ban } or { w, v } — { bn a, abn }
(see theorem 6.16).
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