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ON-LINE COMPUTATIONS
OF THE IDEAL LATTICE OF POSETS (*)

by Claude JARD (1), Guy-Vincent JOURDAN ( l)
and Jean-Xavier RAMPON (2)

Communicated by A. ARNOLD

Abstract. - Partially ordered sets appear in many branches of computer science. In some cases,
people are interested in manipulating the associated set of all linear extensions, This leads directly
to the problem of building the idéal lattice ofposets. Furthermore, we require that the poset be only
known dynamically, element by element, in order to obtain an "on-line" construction ofthe lattice.
This has practical interest notably in the area of uon~the-fiy" testing (Le. during the running time)
of distributedSystems. We introducé an algorithmicprinciple to compute this "on-line" construction
of the lattice. From this, we first directly deduce an algorithm performing this construction under
some wide assumptions and with a time complexity close to that of the best known algorithms.
Secondly, we detail two efficient spécifie cases: the case in which the covering relations ofthe poset
are known and the case in which the order éléments are given with respect to a linear extension. In
this last case, we obtain a time complexity comparable to that ofthe best known algorithms in spite
of the fact of using a more gênerai approach.

Résumé. - De nombreuses branches de l'informatique sont aujourd'hui concernées par la théorie
des ensembles ordonnés. Lors de l'utilisation d'un ensemble ordonné comme outil de modélisation,
un des objets fréquemment considéré est Vensemble de ses extensions linéaires et par là même le
treillis de ses idéaux. Les objets ainsi modélisés ont bien souvent un caractère dynamique important
comme dans le cadre de la vérification des exécutions réparties. Nous nous sommes donc intéressés
à la construction "on-line'' du treillis des idéaux d'un ensemble ordonné fi.e. les éléments de
l'ensemble ordonné ainsi que leurs relations ne sont connus que les uns après les autres). Nous
introduisons une structure d'algorithme permettant la construction t(on-line" de ce treillis. En un
premier temps, nous en déduisons directement un algorithme qui, sous des conditions très générales,
permet cette construction en une complexité temporelle proche de celles des meilleurs algorithmes
connus. Puis nous détaillons deux cas particuliers qui nous permettent d'améliorer la complexité
précédente, sous réserve de légères modifications de Valgorithme. Dans le premier cas étudié les
relations de couvertures de l'ensemble ordonné sont connues, alors que dans le deuxième cas les
éléments de l'ensemble ordonné sont donnés suivant une de ses extensions linéaires. Dans ce dernier
cas nous obtenons une complexité temporelle comparable à celle des algorithmes connus tout en
étant dans un cadre plus générai
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1. INTRODUCTION

1.1. Problem Statement

Designing "on-line" algorithms is a natural idea for processing dynamic
and time-evolving information. In an "on-line" approach, data is only
available pièce by pièce. With each newly added part, the algorithm carries
on its computation, accumulâtes the result provided by the new pièce of data,
and adds it to the already computed results. We present herewith an "on-line"
method for Computing the covering digraph of the ideal lattice of posets.

This research has been motivated by practical problems in the context of
parallel program debugging where the correct évaluation of global properties
requires a careful analysis of the causal structure of the exécution. The
causal structure, induced by the message exchanges between processes in
the distributed system, forms a partial order, as Lamport [18] remarked
in 1978. Since then, "on-line" time-stàmping algorithms which encode this
causal poset have been proposed by Fidge [13] and Mattern [19]. As a
conséquence, numerous questions about distributed exécutions refer to the
notions of linear extensions and order ideals (also called consistent cuts). At
present, some testing methods are based on a kind of reachability analysis
which builds the covering digraph of the ideal lattice of the causality relation
(e.g. Cooper and Marzullo [9], Diehl [10], Diehl et al [11] or Babaoglu and
Raynal [2]). In this context, testing must be performed "on-the-fly", Le. in
parallel with the exécution of the application under test.

In gênerai, the problem of generating a set of ideals, say I(P), of a
given poset, say P = (P, <p), occurs in combinatorial optimization as well

as in opérations research. One of the first efficient algorithms to solve this
problem was proposed by Steiner in [20], and has a time complexity in
O ( | P | | ƒ (P) | ). This result was improved by Bordât in [5] with a time
complexity in O (tu (P) \ I (P) | ) (where UJ (P) is the width of P). Moreover,
Bordât extends this generationjo a construction of the covering digraph of
the ideal lattice of P, say I(P), in the same time complexity, providing
the computation of some poset invariants (see Bouchitté and Habib [7] for a
survey on such invariants). Indeed, the covering digraph of the ideal lattice of
P allows the computation of the number of linear extensions of P (the linear
extensions of P are in one-to-one correspondent with the maximal chains
of the ideal lattice, see Bonnet and Pouzet [4]) as well as the jump number of
P (see Chaty and Chein [8]). A profound study of the combinatorial behavior
of posets and lattices was achieved by Bordât in [6]. The drawback of these
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ON-LINE COMPUTATIONS OF THE IDEAL LATTICE OF POSETS 229

algorithms is their intrinsic "off-line" structure. Motivated by our practical
problems, we investigated an "on-line" approach in [10] and [11], and began
a first generalization in [12], Dealing with the récognition of distributive
lattices, Habib and Nourine also investigated in [14] the construction of such
covering digraphs. In order to perform this construction, they reused the
algorithmic principle introduced in [10] and [11]. The case they considered,
included in the second spécifie case that we present herein, shows equivalent
time complexity. Note that an "on-line" approach was first considered by
Cooper and Marzullo in [9] within the applied context of detecting global
predicates in distributed computations. Their algorithm, however, requiring
a level-by-level processing of the éléments of the order, is based on a naive
(and costly) enumeration.

This paper présents a complete generalization of [12] together with an
improvement in time complexity. In the gênerai case of a "subposet"
hypothesis, our algorithm builds the covering digraph in

O(\I(P)\u,(P)+\P\2
U(P)).

We also elucidate two particular cases which demonstrate a better
performance. In the first case, the covering relations of the poset are known
and we obtain a construction in Ö ( 11 (P) \ & (P)). In the second case, the
orders éléments are given with respect to a linear extension and we obtain a
construction in O ( 11 (P) | + E^ ( ~ ) } + | P |2 w (P)) where E^ ( ~ ) }

is the number of edges in the digraph.

The present paper is organized as follows: first, after giving définitions
of spécifie terms, we illustrate our meaning of an "on-line" paradigm in
subsection 1.3. In section 2, we deal with the structural aspects of the
problem, showing the links between two main steps of our construction.
Finally, in section 3, we focus on the algorithmic aspects, in one gênerai
example and in two spécifie examples.

1.2. Définitions
A set P associated with a partial order relation {Le. an antisymmetric,

transitive and reflexive binary relation on P) is called a partially ordered
set (poset for short) and is denoted by P = (P, <p)- When x < py and
x ^ y we simply write x <py.

Let or, y E P : we say that x and y are comparable in P when either
# ^pV o r V ̂ px- Otherwise, x and y are called incomparable in P . We say
that x is covered by y in P, denoted by x^Cpy, if x <py and V z G P ,
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230 c. JARD et al.

(x <pz <py) => (z = y)\ then x is an immédiate predecessor of y, and y
is an immédiate successor of x in P, The directed graph (digraph for short)
associated with this covering relation is called the covering digraph of P
and is denoted by Cov (P) = (P, £ » .

A cAam (resp. an antichain) in P is a subset A of P such that each pair of
distinct éléments of A is comparable (resp. incomparable) in P . The width
of P , denoted o; (P), is the maximum number of éléments in an antichain
in P . A linear extension of P is a chain on P, say L = (P, <^), which
preserves P , that is: x <p^/ => # <£,?/•

Let A be a subset of P : the subposet of P induced by A is the

poset A = (A, <^ ) where V re, y G A, (x <^y) ^ (ar <pj/). An

element # G A is maximal (resp. minimal) in A for P if V a € A,

(x <pa) => (a = #) (resp. (a <px) => (a — x)). We dénote the predecessor

(resp. successor) set of A in P by j ~̂ A = {# G P, 3 a G A, x <pft}

(resp. î -̂ A = {x G P, 3 a G A, a <p#}). For a singleton {x}, we dénote

i]
px=i]p {x}, î ^ =î p {x}, lpx=l]

px- {x}, î L x_=T l x - {x}.
The immédiate predecessor (resp. successor) set of {x} in P is denoted by

i x}, (resp. î f x = {y G P, xl x = {yeP1 y^.px}, (resp. î f
A set A is an idéal in P if it is "closed" by predecessors, that is: J, ̂ ~ A = A.

The set of ail ideals in P is denoted as I(P). Thisjset ƒ (P) ordered by
inclusion forms a distributive lattice C) denoted as / ( P ) . Observe that the
set of ail maximal éléments in an idéal forms an antichain. This provides a
one-to-one correspondence between the ideals and the antichains of a poset.
In the sequel, all the considered posets are finite.

1.3. Model and Paradigm

Ail complexity results are calculated using a RAM model with uniform cost
criterion (see Aho, Hopcroft and Ullman [1]). Our "on-line" paradigm that
we call the "subposet" hypothesis, is as follows: given a poset P = (P, <p),

a new element x 0 P and two possibly empty subsets of P, say V (x)
and <S(x), we consider the poset P ' = (P', <p,) where Pf = P U {x}
and where P is the subposet of P' induced by P. We also assume that

0) For any Ji, I2 in / ( P ) , h U I2 and h n I2 belongs to I(P). Moreover, 7i U J2 (resp.
Il n 1*2 ) isjhe smallest (resp. greatest) element of ƒ (P) including (resp. included in) both I\ and
h. Thus / (P) is a lattice.
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ONLINE COMPUTATIONS OF THE IDEAL LATTICE OF POSETS 231

l™x Ç V(x) Ç | l ; a ; a n d î ^ a ? Ç 5 ( a ; ) Ç | [
p/X. That is, the poset

"grows", vertex by vertex. Each incoming vertex x comes with its associated
"environment" (that we dénote V (x) and S (x)) in P ' the poset currently
being built. The "subposet" hypothesis is used in order to preserve the same
poset "structure" throughout the different steps. This case is identical to those
we encounter in our practical problems. In order to remain as comprehensive
as possible, the only assumption we make is that the immédiate neighbours
of x in P' are included in the environment (which is required to be able
to correctly define P').

The data associated with the subsets V (x) and <S (x) are either direct
références to the éléments of P they represent or a "coding" (usually a label)
of those éléments. Accessing to the corresponding element of P takes a
constant time in the first case and ö (log ( | P | )) time in the second case,
by structuring the éléments of P in a height-balanced tree.

In the present paper we consider that each éléments of the subsets
V (x) and S (x) is a direct références to the element of P it represents.
After considering our "subposet" hypothesis and in order to improve
our time complexity results, we will also strengthen this hypothesis with
additional assumptions based on the two given subsets V (x) and 5 (x).
In a first approach, which we call the "covering relations" hypothesis,
we assume that both j ^x = V(x) and | ^x — S{x). That is, at
each step we deal with the covering relations of the new element in the
built poset. In a second approach, which we call the "linear extension!"
hypothesis, we assume that S(x) = 0 . At each step, the order of the
incoming éléments which build the current poset respects one of its linear
extensions.

2. COMPUTING Cov (I {P ujx})) FROM Cov (f{P))

Let P = (P, <p) be a poset and let x <£ P. Let P ' = (P', <pt)
be a poset such that P ' = P U {x} and P be a subposet of F ' . Given
V(x) and S(x), two subsets of P such that | ^x C V (x) Ç | L/X and

Î ^x Ç S(x) Ç Î ^ptx, our goal is to compute Cov(7(P /)) knowing

Cov(/(P)). In the sequel, and unless otherwise stated, P and P ' dénote
such posets.

To that purpose, we first show the relationships between / (P) and / (P')

and then we characterize the covering relations of / (Pf) using these of I (P).
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232 c JARD et al

This characterization, given in a constructive way, gives the underlying
structure of our algorithm.

2.1. Sets Relationships
Our study of the relationships between I(P) and I (P') is based on the

following observations: given an idéal / of P, if I contains an immédiate
successor of x then I is replaced by / U {x} in /(P')* ^ there exists an
immédiate predecessor of x which is not in / , then I is an idéal of P ' . In
the other cases, both I and I U {x} are ideals of P ' .

Therefore, since | ^x Ç S (x) and l^xÇV (x), I (P) can be divided
into the three following groups:

•Ax = {ie i(P), V{x)$i)
. A2 = {I e I (P), V (x) C I and S (x) n / = 0}
•A3 = {/ e / ( P ) , S(x)niï 0 }

Since P is a subposet of Pl then any ideal of P which contains an element
of S(x) contains all the éléments of V(x). This allows us to state the
following proposition:

PROPOSITION 1: The non empty Ai 's define a partition of I (P).

Remark 1:
• Let I G AU J G Aj such that I Ç J, then i < j .

• i ]p (1 f,*) =1 ]pV (x) is the infimum of A2 in f(P) (2).

• P- î ]p (î f,x) = P- î 'p (S(x)) is the supremum of A2 in I(P) (3).

Following our previous observations, in order to characterize I(Pf),
it remains to introducé the two sets A!2 = {/U {x}, / G A2} and
A'3 = {7U {x}, / G A3}. Thus we obtain:

PROPOSITION 2: I {P{) = Ai U A2 U A'2 U Af
z

Proof: Since P is a subposet of P \ it is clear that

Ai uA2UA /
2UA /3 Ç 7(P ' )

and that V / G I (P'), rîx £ I then ƒ G Ai U A2. Assume that a; 6 I, if
3y G J such that x <p/2/ then I - {x} G A3, else / - {x} G A2. •

(2) The greatest element among the éléments of I{P) smaller thàn all the éléments of A2
(3) The least element among the éléments of I (P) bigger than all the éléments of A2.

Informatique théorique et Applications/Theoretical Informaties and Applications
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2.2. Covering relations
The définition of I (Pf) in terms of I (P) as given in section 2.1, and

the fact that poset ideals grow by adding one element at a time have as
a straightforward conséquence the fact that the covering relations of / (P')
may be easily deduced from those of I (P). This means that, the covering
relations of I (Pf) on A\ U Ai (resp. on Af

2 U A%) are those of I (P) on
Ai U A2 (resp. on A2 U A3), and that each element of A2 is covered by the
element it "générâtes" in A!2. These relations are illustrated in Figure 1 and
are formally expressed in Theorem 1.

First of ail, for the proof of this theorem, we recall the following well
known lemma, stating that the ideals grow by adding one element at a time.
We give a proof for the reader's benefit.

3/ the part A2 U A3 tums iiito the part A'2 U A'3

4/ Cov(l(P')) is obtained by addmg

the edges (J,/U {x}),VI 6 A2

Figure 1. - Cov (ƒ(ƒ>')) from Cov(/(P))

LEMMA 1: Let Q be a poset, then

V7, JeI(Q), / ^—-J^ /C J and | J-I\ = 1.

Proof: Assume that ^^fTXx^» then i C J and thus \J - I\ > 1. If

| J - 11 > 2, let x, y e J - / such that x ̂  y. W.l.o.g., assumes y <£QX,

then I <rrprJU i \^x <r^,J which contradicts

a conséquence of the fact that V i", J e I (Q), /
(Q)

J. The converse is

vol. 29, n° 3, 1995



234 c JARD et al

THEOREM 1: Cov (ƒ (P ' ) ) = (^i u M U Al
2 U A3, Er (P,)), w/wrn? £ƒ (p>)

U A2) X (Ai U A2)) n Ej(pt) is isomorphic to

((Ai U A2) x (Ai U A2)) n £/(p) 6y fft̂  identity mapping.

• ((A2 U A3) x (A2 U A3)) D £ƒ (p/j IJ isomorphic to

((A2 U A3) x (A2 U A3)) Pi -Ej(p) by the one to one mapping

4> : A2 U A3 -> A2 U A3, MC/Z r t o ^ (/) = / U {x}.

• ((Ai U A2) x (A'2 U A'3)) n Ë / ( ? ) = {(ƒ,.ƒ U{a?}), / € A2}.

Proo/' V / e Ai U A2, V J G A7
2 U A7

3, J ^ / , so

((Ai U A2) x (Ai U A2)) n £ j ( p 0

is exactly the set inclusion on Ai U A2. Moreover, VI , J G A'2 U A3,
IÇJ<&IU{X}ÇJ\J {x}9 then ((A'2 U A'3) x (A'2 U A'3)) n Ej(P,) is
exactiy the set inclusion on A2 U A3.

Foi; the remaining case, notice that Lemma 1 forbids any covering relations
between éléments of Ai and éléments of A2 U A3 (because if / G A2 U A3
then {x}uV (x) Ç ƒ) as well as between éléments of A2 and éléments of A3

(because if I G A3 then x G / and IC\S(x) 7̂  0) . According to Lemma 1,
we obtain that V / G A2ï I-<*j^ I U [x], It remains to show that I is the

only element of A2 covered by ƒ U {x}, which is coherent with Lemma 1
since \/ J e A2, V h, 1% G A2 such that h-<f7p;,J and 1<1^<up''\j' w e

have h == J — {%} and I2 = J - {x}. •

The décomposition ofthe covering relations of I (Pf) and the links with the
covering relations of / (P), as displayed in Theorem 1, give the underlying
structure of our algorithm. Roughly speaking, this means: the détermination
of the set A2, the duplication of this set and the computation of the new
covering relations.

Before giving a complete description of the algorithm, we will first present
it informally through the example illustrated in Figure 2. Notice that in this
figure, an edge of the covering digraph of an idéal lattice is labeled by the
set différence between the two ideals associated with its endpoints. Thus,
the set corresponding to an idéal is the union of these labels in a path from
the bottom to the vertex which represents it (for example, ƒ5 = {1, 2, 3}
while h = {1, 2, 3, 4, 6}).
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Consider the poset P and assume that on one hand we have

1 ffx = {3} C V(x) = {2, 3} C | l
p,x = {1, 2, 3}

and on the other hand we have Î ^x = {5, 6} = S (x) Ç t ^,x = {5, 6, 7}.
The ideals not including V (x) are in Ai - {/i, J2, I3, h}, the ideals
including V (x) but no element of S(x) are in A2 =. {h, Ie}, and the
remaining ideals are in A3 = {ƒ7, ƒ§, 7g, iio, J u } (notice that each ideal
of A2 U A3 is greater than or equal to ƒ5 — [ '- V (x)).

In order to obtain Cov (/(P')) , we duplicate A.2 into A'2 — {Fb, 7g} and
we transform A3 in A'3 where any I in A2 U A3 is now /7 = I U {x} in
A'2 U Ar

3 (for example, % = J9 U {x} = {1, 2, 3, 4, 6, ar}). It remains to
"delete" the covering relations between A2 and the new A3 and to "add"
the covering relations between A2 and Af

2. That is, we have to remove the
edges (ƒ5, lij) and (h, I'%) and to add the edges (ƒ5, ƒ£) and (Jg, /g).

A poset P A poset P ' with

Figure 2. - The partition of the covering relations

3. COMPILATION OF Cov{I{PU{x}))

As stated previously, in order to compute Cov(/(P /)) , our algorithm
must be broken down into two main parts. In the first part, we find the
infimum of A2 U A3 in / (P), and in the second part we duplicate A2 and we
make the corresponding updates on the covering relations. We present two
different ways of obtaining the infimum of A2 U A3 (Le. the ideal j ^V (x))

and we give the whole algorithm in the genera! case. We then study some
spécifie cases, which are the "covering relations" hypothesis and the "linear
extension" hypothesis. The efficiency of these two given way to compute
I pP {te) differs on those particular cases. First of all, let us introducé our
data structure assumptions.

vol 29, n° 3, 1995



236 c. JARD et al.

3.1. Data Structure Assumptions

The new vertex x of P ' is given with two lists, V (x) and S (x) (recall
that | ^x Ç V{x) C i [

pix and ] ^x Ç S(x) Ç Î [
p/x) such that from

any element in a list, we can access the element of P it represents in O (1).
We also have direct access from any element y G P to its associated ideal
i ]

py in Cov(/(P)) .

Two lists succ (/) and pred (7) are associated with each element 7 of
Cov(7(P)). These are respectively the list of immédiate successors and

predecessors of 7 in Cov (/ (P)). Moreover, with each element J in succ (7)
(resp. in pred (7)), an element is associated, denoted by J—7 (resp. by I—J),
corresponding to the unique vertex of P which represents the set différence
between the ideals 7 and J (cf Lemma 1). The element J — 7 (or 7 — J)
is called the label of the edge IJ (or the edge JI). Using classical data
structures, we access in O (1) from any element in succ (7) or in pred (7)

to the element of Cov(7(P)) it represents and from any element of type
J — 7 to the element of P it represents.

3.2. The General Case

3.2.1. Finding the Ideal | ^V (x)

We give two algorithms to find the ideal j pP(x). They are both based
on the same idea: first, we go on a spécifie ideal in Cov(7(P)) and then
we stay along a path in Cov(7(P)) until we reach | pP{x). These two
algorithms are equivalent in the genera! case, but not in the spécifie cases.
We first need the present Proposition 3, which, given a poset Q, describes
the structure of maximal paths joining any two éléments of I (Q) to their

supremum in 7 (Q). In Cov (7 (Q)) each edge corresponding to a covering
relation between two ideals 7 and J is labeled by the unique vertex of Q
defined by J — 7.

PROPOSITION 3: Let 7i, h E I(Q), then every path of Cov (I(Q))from I\
to I\ U 72 has the same length and the label set of its edges is exactly I2 — /i-
Moreover, there exists at least one such path.

Proof: Given any pair of ideals (7, 7;), we know from Lernma ï that
if J Ç 7' then the label set of any path of Cov7(Q)) from 7 to V is
exactly V - I. •

Informatique théorique et Applications/Theoretical Informaties and Applications
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The first algorithm starts the search from the idéal | '-y f° r V € S(x).

Thus, we are on an ideal which contains j pV(x) and then we "remove"

I pV~ ï hP{x)- More precisely, the algorithm is the following:

Algorithm "FROM ÀBOVE"

(1) Mark ail éléments of V(x).

(2) If S {x) = 0 Then ƒ = the top of Cov (/(?))

Else / = 1 py for y 6 S{x).

(3) While there exists an element J in pred (I) such that I — J is not marked, I := J.

LEMMA 2: 77œ algorithm "FROM ABOVE" ./irais | ' -P (x) m Cov (f[P))

Proof: The termination is obvious. After step (2), by définition ƒ contains
lp *P 0*0- ^ J t>e the ideal chosen in pred (/) inside the while loop.

Since / - J is not marked, J contains J, p V (x) because I contains

i]pV(x) and i^x Ç V(x). So at the end of the algorithm, we have

l|p V (x) Ç /- Assume that | ^ V (x) C / and let y G J - i^ V (x) such that

y is maximal in I— jj~ P (x). Then by Lemma 1, we have / — {y}—<^y--/,

which contradicts that V J G pred (/), / - J is marked.

For the time complexity, step (1) is performed in O ( | P \ ). With
Proposition 3, any path from the first ideal / to | ^ V (x) contains exactly

I- i pV(x) edges, which is bounded by | P | . We conclude since

V / G / ( P ) , | pred ( I ) | < w(P). •

The second algorithm to find \}p V (x) starts the search from an idéal. | p y

f or y e V (x). We are on an ideal which is contained in j ^ V (x) and we

have to "add" | l V ( x ) - j ^ y. This idea was first presented in [10] and [11],

Algorithm "FROM BELOW"

(1) Mark ail éléments of Ipx.

(2) If V (x) = 0 Then i]
p P (x) is the bottom of Cov (/(?))

Else Let ƒ = | ]
py for y e V(x).

(3) While tiiere exists an element J in suce (7) such that J — I is marked, I :~ J.

End If

vol. 29, n° 3, 1995



238 c. JARD et al

LEMMA 3: The algorithm "FROM BELOW" finds j l V (x) in Cov (ij?))

in O ( | P | u) (P)).

Proof: The termination is obvious. If V (x) = 0 then | ' - P ( i ) = 0 .

Otherwise, by définition, lp,y QlpV(x) for any y € V(x). Since

A a; = J/- V (x)9 inside the while loop we always have ƒ C j l p (x). So at

the end of the algorithm we have I Ç\}pV (x). Assume that I c\}pV (x)

and let y e\}p V (x) - I such that y is minimal in j ' ~ V (x) - I. Then by
Lemma 1, we have I-<f?-\IU {y} which contradicts that V J £ succ (/)
J - / is not marked.

For the time complexity, step (1) can be performed in ö(\P\u>(P)).
With proposition 3, any path from the first ideal I to | pV(x) contains

exactly j^~ V (x) — I edges, which is bounded by | P \. We conclude since

V I e / ( F ) , | succ( / ) | < Lü(P). M

3.2.2. Duplication

Knowing ]}p V (x) in Cov (ƒ (P)), we want to compute Cov (/ (Pr)). In
order to do so, and, according to Theorem 1, we have to duplicate A2 into Af

2

so that éléments of A% "keep" the edges between A\ and A2, while éléments
of A*2 "keep" the edges between A2 and A3. In this way, A3 "becomes" A3,
because every path in Cov(/(P /)) from the bottom to an element of A3
has an edge labeled by x. Our algorithm is based on a Breadth-First-Search
starting from lpV{x). It uses a list called List. We do not detail data
structure modifications. Just note that the instruction Duplicate K into K1

means the création of a vertex K\ the addition of K{ in succ (K) with x as a
label for the edge K K1 and the addition of K in pred {K1) with x as a label
for the edge Kl K. K1 is always the duplication of K. Finally, the mark of
steps (1) and (6) is on vertices of P while the mark of step (7) is on ideals.

LEMMA 4: The algorithm "DUPLICATION" computes Cov(/(P /)) in

O((\I(P')\ - \I(P)\)u,(P)+ \S(x)\).

Proof: The termination is clear, since we make a classical Breadth-First-
Search and since éléments are put in List only once. The correctness is a
conséquence of Theorem 1.
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Algorithm "DUPLICATION"

(1) Mark ail éléments of S(x).

(2) Let / =\}pV{x)\ Duplicate I into I ' ; Put ƒ in List.

(3) While List + 0

(4) Take I in List; Delete I from List

(5)Forall J G suce (7)

(6) If J - / is nbt marked Then

(7) If J is not marked Then

Mark J\ Duplicate J into J ' ; Put J in List.

End If

(8) Add J ' in succ(Z') and ƒ' in pred(J')> with label I - J

Else

(9) Add J in succ(J') and 7' in pred(J), with label I - J

(10) remove edge IJ

End If

End Forall

End While

Clearly, step (1) is in O( \S(x) | ) . All steps except steps (3) and (5)
are performed in O(l). For one loop of the while of step (3) we have
at most Lü(P) loops of the Forall of step (5). Indeed, V / e I(P),
|succ(J) | < CJ(P)' Since List contains only éléments of A% and only
once each, and since | / ( P ' ) | - | / (P) | ~ | A<i \, we get the announced
time complexity. •

3.2.3. Whole Computation

When we perform the algorithm "FROM BELOW" (or "FROMABOVE")
and then^the algorithm "DUPLICATION", we obtain Cov(/(P /)) from
Cov ( /(P)) . So using Lemma 3 (or Lemma 2) and Lemma 4, we deduce:

THEOREM 2: LetP — (P, <p) be aposetandP' — (P ; , <p,) be aposetsuch
that P' = P U {x}, x g P andP is a subposet ofP'. Given V (x) and S (x)
two subsets ofP such that ̂ xÇV (x) Ç j l , x and fjP; x Ç S (x) Ç t ^ x,

we can compute Cov(/(P /)) knowing Cov(/(P)) in

O((\l(P')\-\I(P)\)u,(P)+\P\u(P))

Remark 2: It is clear that all the data structures can be maintained and
restored without increasing the announced time complexities.
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As a conséquence of this theorem, we are able to achieve the computation
of the covering digraph of the ideal lattice of a poset given any séquence
of vertices w.r.t our assumptions. We just have to apply our construction
| P | times in order to obtain:

THEOREM 3: Let P be a poset The covering digraph of I (P) can be
computed "on-line" in O ( 11 (F) | UJ (P) + | P |2 u> (P)).

3.3. The "Covering Relations" Hypothesis

We assume that S (x) =V~£x and V(x) -[^x: that is, we know

the covering relations of x in P1. Under this hypothesis, we are able to
improve the first part of our algorithm. Indeed, using the algorithm "FROM
ABOVE", we begin the search from an ideal Ipy, where y E S(x). But
now, S (x) = Ypf x and, since P is a subposet of P' , we have the following
property:

PROPERTY 1: Fory €fjgx,VI e I(P) such that \}pV{x) Ç I C\}py,
I e A2.

This property allows us to deduce that the "FROM ABOVE" algorithm
finds i]

p V (x) in O (( | A2 | + 1) w (P)), that is

So togetiier with the '̂ DUPLICATION" algorithm, we can compute
Cov (I (Pf)) from Cov (I (P)) in O ((/ (P/) | - 11 (P) \ + 1) w (P)) (note
that under this hypothesis, | S(x) \ < u (P)), thus we obtain.

THEOREM 4: Let P be a poset. Under the "covering relations"
hypothesis, the covering digraph of I(P) can be computed "on-line" in

3.4. The "Linear Extension" Hypothesis

We assume that the poset is known under a linear extension, that is, the new
element x is maximal in P ' . So we only have a list V (x), such that | ^ x Ç

*P (#) ^ lp, x. Under this hypothesis, we are able to improve the second part
of our algorithm. Indeed, the set A$ is always empty, thus if E (f7^^

dénotes the number of edges of Cov ( /(P)) . the "DUPLICATION" algorithm
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runsnowinö(|7(P')l +^C o v ( / 1 F ) )- |/(P) I - *c«v(/(P)))- ltaa We

obtain:

THEOREM 5: Let P bejiposet Under the "linear extension" hypothesis, the
covering digraph of I (P) can be computed "on-line" in

Remark 3: On forest posets {Le. a poset such that each element has no more
than one immédiate predecessor), under both the "linear extension" and the
"covering relations" hypothesis, our algorithm is optimal; that is, it générâtes

Cov {HP)) in O ( | I(P) | 4- E
Coyfj7p)))' I d e a l s o f s u c h P o s e t s a r e u s e f u l

for network partitioning: see Koda and Ruskey [17] for an algorithm which
générâtes all ideals in a gray code manner (4) in ö ( \I(P) | ).

4. CONCLUSION

Motivated by the practical problem of checking global predicates in
distributed Systems, we were interested in building the covering digraph of
the ideal lattice of finite posets. Thus, a preliminary version of the algorithm
under the "subposet" hypothesis and one under the "linear extension"
hypothesis have already been implemented. The complete intégration of
these procedures into a software vérification tooi for analyzing traces of
distributed Systems is in progress, as a part of the French national project
"Trace".

To call attention to the accuracy of the algorithmic principle we have
discussed throughout this paper, we are going to analyse more precisely the
time complexity yielded by each step of the proposed algorithms. Notice
that any algorithm building the covering digraph of the ideal lattice of finite
posets has a lower time complexity bound in il ( 11 (P) | + E (f7p\ J-

Under the "linear extension" hypothesis, and in order to reach the
lower bound, the time complexity drawback of our algorithm comes
from the search of the infimum of A2. It is then easy to see that
using the "FROM ABOVE" algorithm, we obtain a time complexity in

E ~ + £ £ S-(7))where5(a;)isthesetof

(4) That is according to a Hamiltonian path in the Hasse diagram of the lattice.
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éléments in a path from the ideal |l~ x to the top of the current lattice (when x

is the incoming vertex) which has immédiate predecessors not including A x
and where 5~ (/) is the number of such predecessors. Although we have to
notice that even if there are Q ( | P | ) éléments x such that for at least one / in
B (x) we have 6~ (/)) E ft (w (P)), then the sum ^ ] P 6~ (ƒ)) belongs

xePieB (x)
to fl ( | P | w (P)) and can be the main factor of our time complexity (5).
Thus, a natural question is to give a characterization of posets such that
E E S-(D) €O(\I(P)\ +E ~).
xePieB(x)

Under the "covering relations" hypothesis, the proposed algorithm gets
one more additional time complexity factor. Indeed, in the duplication
part we have to perform a search algorithm and the costly points appear
when we are on an element of A2 having immédiate successors which
contain at least an element of the set S (x). Thus, we have to add to the
previous final time complexity, a factor in OÇS^ Y^ ^+CO)

C (x) is the set of éléments in the set A2 of the current lattice (when
x is the incoming vertex) which has immédiate successors containing
at least one element of the successors set of x and where £+ (/) is
the number of such successors. The characterization of posets such that
Y Y <5+ (7) G O ( 17 (JP) I + £CovfjTp))) has then to be related to the

previous question, in order to reach the lower bound.
After all our algorithmic principle seems to be a good candidate for

obtaining an optimal "on-line" construction of the covering digraph of
the ideal lattice of posets. In any case, it has already had some fruitful
repercussion because it allows us to get the same time complexity than the
best known "off-line" algorithm (Le. the whole poset is known in advance)
building this digraph.

Apart from our practical motivations we are also interested in abstractions
(subposets) of this ideal lattice. More particularly, we have already foUowed
a similar algorithmic principle in [16] for building the lattice of maximal
antichains for inclusion. Indeed, as suggestion by Janicki and Koutny [15],
such antichains can be associated with points on the observer time scale.

(5) Let P be the poset obtained by the series composition of an antichain of size k with a total
order of size p. It süffices to take A; == log2 (log2 (p))<
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Our conviction is that the study of idéal lattice abstractions is one of the
relevant challenges for parallel program debugging.
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