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Abstract. - The Schützenberger product has been inîroduced for studying languages thaï are
subsets ofafree monoid. However, is ofien retains its useful properties when the underlying monoid
is notfree. The paper investigates when this is the case. It uses for this purpose an alternative proof
for the Schützenberger product, based on properties of a certain partition of a monoid. The same
approachis then usedfor a similar investigation ofthe diamond product for traces.

Keywords: Schützenberger product, Straubing product, diamond product, equidivisible monoids,
recognizable languages, traces, partially commutative monoids.

Résumé. — Le produit de Schützenberger a été introduit pour étudier les langages qui sont parties
d'un monoïde libre. Cependant, certaines propriétés de ce produit s'étendent à d'autres cas que le
monoïde libre. Cet article étudie ces extensions. On propose d'abord une autre preuve du résultat
standard sur le produit de Schützenberger, basé sur les propriétés d'une certaine partition du
monoïde. La même approche est utilisée pour étudier le produit diamant sur les traces.

1. INTRODUCTION

When studying the recognizable subsets of a monoid M, one often
faces this problem: given monoids that recognize subsets L\ Ç M and
L2 Ç M, construct a monoid that recognizes the product L\ L2. In [14] l,
Schützenberger presented a solution now known as the "Schützenberger
product". In [17], Straubing generalized the Schützenberger's solution to
n > 2 subsets Li, L2,..., Ln. The Schützenberger product and its generalized
form have many applications in the theory of formai languages. A survey of
these applications can be found in [16] and [18].

(*) Received September 23, 1993; accepted May 1994.
(**) IBM Nordic Laboratory, PO Box 962, S-18109 Lidingö, Sweden.
[e-màil: romanrf@ldgvml.vnet.ibm.com.
1 The paper [14] seems to be the first publication of the Schützenberger product in a periodical.

The paper contains, however, a référence to an earlier report [10]. Another early présentation can
be found in [15].
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2 1 0 R. R. REDZIEJOWSKI

In all applications of the Schützenberger product, M is a free monoid. This
paper is an attempt to investigate what happens when M is not free. We use for
this purpose an alternative proof of the Schützenberger product recongizing
Li L2..Ln. The proof is inspired by McKnight's "composite refinement" [6],
[7]. It uses the observation that a subset being recognized by a finite monoid
is equivalent to that subset being saturated by a finite quotient of M. We
choose a partition of M that saturâtes the product L\L^...Ln and show that,
under certain conditions, this partition is a quotient of M. The Schützenberger
product is then obtained as a monoid isomorphic to that quotient.

The proof uses a gênerai property of the minimal partition of a monoid
saturating a given family of subsets (Theorem 3). Once this property has
been established, the proof becomes quite short. One starts with the Levi's
lemma and proves a kind of "Levi's lemma for quotients". The resuit follows
then from the gênerai theorem. This approach may be of some interest in
itself, as it seems more transparent than the classical proofs in [14], [17], It
explains the form of the Schützenberger product as the necessary conséquence
of choosing a spécifie partition, and seems to offer some insight into the
reasons for that choice. This insight may help create new tools working on
the same principle.

The proof exhibits clearly the conditions under which the chosen
partition is a quotient; these conditions are sufficient for the Schützenberger
product to recognize L\ L2~-Ln. We show in this way that, in particular,
the Schützenberger product recognizes L\L2...Ln in any equidivisible
monoid M, but also whenever the quotients recognizing Li, L2,..., Ln

satisfy a certain weaker condition, called "refinability". This condition
is sufficient, but not necessary. It is necessary only if LiL2---Ln is
to be recognized using a spécifie homomorphism. This leaves out the
results of Reutenauer [13] and Pin [11] about all subsets recognized by the
Schützenberger product; these results are about all possible homomorphisms.

Some applicatons of the Schützenberger product use the fact
that it recognizes subsets of the form Li u\ L2 U2-»un-i Ln where
wi,..., un-i E M. Our procedure is easily modified to investigate also
that case. As a resuit, we find that the Schützenberger product recognizes
these subsets in any equidivisible monoid Af, under condition that each of
ui,..., un—i is prime. Again, this condition is not necessary, and there is a
weaker condition on the quotients recognizing Li, L2,..., Ln. This condition
is similar to, but different from, refinability. Again, it is necessary, but only
for a spécifie homomorphism.

Informatique théorique et Applications/Theoretical Informaties and Applications
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The approach used for the Schützenberger product is easily adapted to
other, similar constructions. We use it to investigate the "diamond product"
introduced recently in [4] by Gastin, Petit and Zielonka. The diamond product
is the counterpart of the Schützenberger product for partially commutative
monoids (the "trace monoids"). We find that the diamond product recognizes
the product L\L<i in any monoid M satisfying Levi's lemma for traces.
Again, we establish a weaker condition on the quotients saturating L\, L2.

The product Z<)n (Mi,..., Mn) introduced by Weil in [19] can probably
be treated in the same way, but this has not been attempted.

2. DEFINITIONS AND NOTATION

The reader is assumed to be familiar with the notion of a monoid. We
consider a fixed monoid M. lts monoid opération is referred to as product.
The product of éléments a, 6 G M is written as ab. This product is extended
to subsets A, B Ç M by defining AB = {ab\a G A and b G B}.

For monoids other than M, the monoid opération is denoted by o. The
monoid in question is then always identified by the context.

A partition of M is a family of mutually disjoint nonempty subsets of M
such that their union is M. The éléments of a partition are called classes. A
partition saturâtes a subset A Ç M if A is a union of classes of the partition.

We say that a partition is a quotient of M to mean that it is a quotient
of M by some congruence relation. One can easily see that a partition A is
a quotient if and only if for every pair of classes A, B G A there exists a
class C G A such that AB Ç C. A quotient of M is itself a monoid with
respect to the opération o defined by A o B — C for C as above.

A subset A Ç M is recognized by a monoid M1 if there exists a
homomorphism h : M —> M' such that A = h~l (h (A)). This is equivalent
to A being saturated by the quotient M/ker (h) consisting of the classes
h'1 (m) for m G M. It is easy to see that A is recognized by any quotient
saturating A, by any monoid isomorphic to that quotient, and by any monoid
with a submonoid recognizing A.

A subset A is recognizable if it is recognized by a finite monoid.

The powerset of a set A is denoted by V (A), and the set of all éléments
of A that are not in B is denoted by A — B.

vol, 29, n° 3, 1995



212 R. R. REDZIEJOWSKI

F.

{2,3}

3. THE MINIMAL PARTITION SATURATING A FAMILY OF SUBSETS

Given any family F = {Fi\i G /} of nonempty subsets of M, one can
always construct a partition that saturâtes every member of the family. The
minimal such partition consists of all nonempty subsets

n

for p e V (I). An example for a family F = {F\, i<2, F$} is shown in
Figure 1. The eight faces of the diagram represent the subsets Cp for the
eight indices p G V {{l, 2, 3}). The subsets of the form (1) are sometimes
[5] called the constituents of the Boolean algebra generated by the family F.

The partition of M into the constituents Cp is in the following denoted
byC(F).

Depending on the family F, the partition C (F) is, or is not, a quotient
of M. We shall use hère a property of F that is sufficient for C (F) being a
quotient. It is, however, not necessary; a simple property that would be both
sufficient and necessary seems difficult to find.

DÉFINITION 1: We say that the family F is decomposable iffor any member
Fk G F, and any a, b G M such that ab G Fk, there exist Fi G F and Fj G F
such that a G F» b G Fj, and FiFj Ç Fk.

If, instead of FiFj Ç Fkt the subsets Fi, Fj, Fk satisfy another relation
$ Ç (F x F x F) implying FiFj Ç Fk> we say that F is decomposable
according to $. •

Informatique théorique et Applications/Theoretical Informaties and Applications
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LEMMA 2: If F is decomposable according to <3>, the following conditions
are equivalent, for any classes C^, Cu G C (F) and any member Fk G F:

(a) CpCv Ç F*.

(6) C„ CunFk£ c/>.
(c) 77zere extó i G M «nd j G ^ such that (F», Fj, F&) e $.

Prao/* (a) =>> (b) is trivial since Cp and C„ are by définition nonempty.

(b) =>> (c): Suppose C^ Ci, n Fk #' <£. Consider any x G C^CU C\Fk.
We have x — ab £ Fk where a G C^, 6 G Ci,. If F is decomposable
according to $, there exist F{ G F and F, G F such that a G Fj, 6 G Fj ,
and (Fj, Fj, F^) G $. Suppose i ^ /x. From the second term of (1) follows
then Cp Ç M — Fj, which contradicts the f act that a is in both CM and Fj.
Hence, i G //. In a similar way, j G i/.

(c) ^ (a): Suppose there exist i G M and J G i/ such that (Fj, Fj , F^) G $.
According to the first term of (1), i G )tx implies CM Ç Fj and j G v implies
Cv Q Fj- From this follows C^ Cv Ç Fi Fj. If F is decomposable according
to $, (F», Fj,F&) G $ implies FiFj Ç Fk, •

THEOREM 3: The following two conditions are equivalent'.

(a) F is decomposable according to $.

(b) C (F)is a quotient of M, with its monoid opération defined by
Cjjt o Cv — Cp where

p = {fc|(Fj, Fj, Fk) G $ for some i G fi andj G i/}. (2)

/- (a) => (b): Suppose F is decomposable according to <&. Consider
any classes Cp, Cv G C (F). Their product CM C^, being a nonempty subset
of M, must have a nonempty intersection with some class Cp G C(F) .
According to (1) this means C^C» n F^ ^ ^ for each k e p, and
C^ C^ n (M - Ffc) 7̂  ^ for each k g p. By Lemma 2 (a) and (6), we
have C^ Cv Ç Fk for fc G p, and C^ Cv Ç (M - Ffc) for fc ^ p. From this
and (1) follows C^ Cv Ç Cp> which shows that C (F) is a quotient.

To verify (2), consider any CM, C^, Cp such that CM o Cv — Cp, that
is» CpCy Ç Cp.

Take any k G p. According to the first term of (1), this means Cp Ç F*,
and thus C^ Cu Ç Fk. By Lemma 2 (a) and (c) there exist i € fi and j G v
such that (Fi, Fh Fk) G $.

vol. 29, n° 3, 1995
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Take now any i g p. According to the second term of (1), this means
Cp Ç M - Fki and thus C^ Cu O Fk - <j>. By Lemma 2 (b) and (c) there do
not exist i e fi and j G v such that (Fi, Fj, Fk) G $.

(b) => (a): Suppose C (F) is a quotient of M. Consider any fteF and
any a, b e M such that ab e Fk, Let CM, C^ be the classes of C (F) that
contain, respectively, a and b. Let CM o Gu = Cp; that means ab E Cp. From
a& G Ffc and the second term of (1) follows fc G p.

Suppose the opération in C (F) is defined by (2). Then, there exist i G \x
and j G !• such that (i^, Fj, Fk) G $. According to the first term of (1),
i G / / means C^ Ç F; and thus a G Fi. Similarly, j € v implies b £ Fj. •

Taking F% Fj Ç Fk as the relation $, we obtain:

COROLLARY 4: For any decomposable family F, r/î£ partition C (F) /s a
quotient of M •

Note that F being decomposable is not necessary for C (F) being a
quotient. It is only necessary for C (F) being a quotient with a spécifie
monoid opération.

4. THE SCHÜTZENBERGER-STRAUBING PRODUCT

Let Li, . . . , Ln be n > 2 given subsets of M that are recognized,
respectively, by monoids Mi,. . . , M n using homomorphisms fti,..., /tn. We
want to find a monoid recognizing ail products of the forai Lp Lp+i . . .L r-i Lr
for 1 < p < r < n. We shall do it by constructing a quotient of M that
saturâtes all these products.

For 1 < i < n, define Az- = Mfker(hi): since /i2 recognizes Li,
the quotient Ai saturâtes Li. Because products distribute over unions, it
is sufficient to find a quotient that saturâtes ail products of the form
Ap Ap+i...Ar-i Ar, where 1 < p < r < n and Ai £ Ai forp < i < r. Let F
be the family of all these products. We treat F as a family indexed by &-tuples
(Ap, Ap+i,..., A r _i , Ar), each fc-tuple being the list of factors used in the
product. In this way, we distinguish products of different factors even if they
are identical sets. The symbols appearing in the fc-tuples should be treated
as labels for the classes AP).,., Ar, rather than the classes themselves. We
do not make this distinction explicit in order not to complicate the notation.
Each label is assumed to identify a class as a member of a spécifie quotient,
so that the same subset will have different labels if it appears as a member
in different quotients. We have thus:

Informatique théorique et Applications/Theoretical Informaties and Applications



SCHÜTZENBERGER-LIKE PRODUCTS IN NON-FREE MONOIDS 215

F = {Fi\i G 1}

where

I = {(Ap,..., Ar)\l <p<r <n and Ai £ Ai for p < i < r}

and
(3)

A spécifie partition of M saturating all members of F is C (F). It consists
of all nonempty subsets

Cp = ( p | Ap...Ar) n ( p | M - AV...AT) (4)
(Api..., Ar)ep (Ap,...t Ar)£p

for p e V (/). Our goal will be achieved if we can show that the partition
C (F) is a quotient of M.

PROPOSITION 5: If M is afree monoid, the partition C (F) is a quotient of
M, with monoid opération defined by CM o Cv — Cp where

..., Aq-i, (A'qoAq), Ag+i,..., AT)

. . , 4 r i , 4 ) ^ and (A£, ^+ i , . . . , Ar)€i/}. (5)

Proof: Consider any F& = ^4p...>lr E F. Suppose a, 6 G M are such
that ab G F&. That means a6 = xp...xr for some a;p G J4 P , . . . , x r G A r.
We recall a resuit about free monoids known as the "Levi's lemma": for
any a, b, c> d € M satisfying ab = cd, there exists z G M satisfying either
c = a^, ^d = b, or az = a, z& = d. (5ee, for example, [8], p. 103. The
original source is [9].) Using Levi's lemma, one can verify by induction that
there exists an index q, p < q < r, and two éléments y, z e M such that

(6)
= zxq+i...xr. J

Let Af
q and Af

q be the classes of A^ that contain, respectively, y and z.
We have thus

aeAp...Aq-iA!q - Fi,

vol. 29, n° 3, 1995



2 1 6 R. R. REDZIEJOWSKI

From yz — $q follows A'q o Aq = Aq, The indices i: j , k of the classes
F{, Fj, F}~ satisfy the condition

k = (Ap,..., Aq-i, (Af
q o A£), Aq+u ..., Ar) 1

where (Ap,..., A9_i, A£) = i and (A£, A A ) j J

Define the relation $ so that (F*, Fj, F*) G $ if and only if (7) is true.
One can easily see that (7) implies F% Fj Ç F&. The family F is thus
decomposable according to $. Substituting this $ in (2), we obtain (5). The
result follows by Theorem 3. •

The quotient C (F), treated as a monoid, recognizes the products
Lp Lp+i...Lr^i Lr using the natural homomorphism ƒ from M to its quotient.
Instead of C (F), we can take the set V (I) with the opération p, o v — p
defined by (5). It is easily verified to be a monoid. The monoid V(I)
recognizes the products Lv Lp+x—LT-\ LT using the composition of ƒ and
the isomorphism g(Cp) = p.

We note that the monoid C (F) is isomorphic to a subset of V (/), rather
than the whole set V (/). This is so because (5) dénotes an empty set for
many among the indices p G V(I). For example, Cp = (f) if p contains
both (Af

q) and (Aq) where Aq and Aq are classes of the same partition
Aq. Also, C (F) = 4> if P contains (Aq), but does not contain all fc-tuples
(lp,..., lg_i, Aq, lç-i-i,..., l r ) , where 1̂  is the class of Aj containing the
unit element of M.

If we want a monoid expressed in terms of the original monoids
Mi,..., Mn , we can replace each class Ai in V (/) and (5) by the element
hi (Ai) = mi € Mi 2. We obtain in this way a monoid (5, o), where

S = P({(mp,..., mr)\l <p<r<n

and rrii € Mi for p < i < r}),

and

/iOZ/ = { {ïUp, ..., TYlq—1, {yïlq O mq ) , Tïlq+ \ , ..., TTlr )

(9)

and (wdq-ï mg+:b---ï Tnr) G

2 h{ (Ai) is, strictly speaking, a singleton set {m;}; by an abuse of notation, we identify it with
the element nu.
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for //, v G 5. It is isomorphic to V (/), and recognizes the products
LpLp+i...Lr-iLr using the homomorphism

h(a) = {(hp(Ap)y...yhr(Ar))\(Ap,...,Ar)ep} for a e Cp. (10)

The "n-fold Schützenberger product" 0 (Mi,..., Mn) defined by Straubing
in [17] is identical to the submonoid of (S, o) consisting of only those
éléments p that contain exactly one fc-tuple (mi) for each z, 1 < i < n. This
does not affect our construction because the excluded éléments correspond
to empty classes of C (F) 3. For a convenient computation of the product
(9), an element p E 5 is represented in [17] as an n x n matrix whose
(p, r)-th element consists of all the fc-tuples (mp,..M mr) belonging to p.
As a later improvement, the fc-tuples (mp,..., mr) are extended with unit
éléments to n-tuples that can be multiplied component by component. (See,
for example, [11], [12], [16], [18].)

The special case of 0 (Mi,..., Mn) for n — 2 is the original
Schützenberger product 0(Mi, . . . , M%) introduced in [14] and used, for
example, in [3], [13], [15]. (It also appears under the name "Boolean
product" on p. 181 in [8].)

So far, we have provided an alternative proof of the known fact that in
a free monoid M, 0 ( M i , Mn) recognizes all products LpLp+i...Lr-iLr

of subsets Li,..., Ln that are recognized, respectively, by Mi,.. . , Mn. One
can argue whether this proof is simpler than the original one in [14] and
[17]. However, it is useful because it extends easily to the case when M
is not a free monoid.

We note first that in the proof of Proposition 5 we have used only Levi's
lemma, and not the fact that M is free. The proof remains thus valid for
any monoid M that satisfies Levi's lemma. The monoids satisfying Levi's
lemma are called equidivisible. Their class is larger than that of free monoids
(see [7] for an comprehensive study). This gives:

COROLLARY 6: 0 (Mi,..., Mn) recognizes the products Lp Lp+i...L r_i Lr

in any equidivisible monoid M. •

We note next that the proof of Proposition 5 dépends, at the end, on a
certain property of the ordered collection of quotients (Ai,.. . , A„), obtained
as a conséquence of Levi's lemma. We call it "refinability":

3 It seems, however, to be important for the results obtained in [11], [13], [16].
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DÉFINITION 7: An ordered collection of quotients (Ai,..., An) is called
refinable if for any product Ap...Ar G F and any a, b G M such that
ab G Ap...Ar> there exists an index g, p < q < r, and two members
Af

q, Aq G Aq such that:

Af n A ff _ A

(H)

Our observation can be now formulated as follows:

COROLLARY-8: 0 (Mi,..., Mn) recognizes the products Lp Lp+i...Lr_i Lr

if the séquence of quotients (Ai,..., An) is refinable. •
(The term "refinable" is intended to indicate that each product Ap...Ar

can be refined to agree with any factorization of its element. Refinability has
a certain resemblance to the generalized form (6) of Levi's lemma. One can
regard it as a kind of "Levi's lemma for quotients".)

We have shown, as a part of the proof of Proposition 5, that in an
equidivisible monoid M every ordered collection of quotients is refinable.
Conversely, if every ordered collection of quotients of M is refinable, M
is necessarily equidivisible: the partition S of M into singleton subsets
is a quotient, and refinability of (S, S) is identical to Levi's lemma.
However, a spécifie collection of quotients may be refinable without M
being equidivisible, as shown by the following example:

Example 9: Suppose M = {1, s, s2, s3} where s4 = s2. The monoid
M is not equidivisible: the element z G M required by the définition does
not exist for a = b = 5, c = d — s2. It would have to satisfy zs2 — s or
s2 z = 5, which is not possible.

Let BQ = {1, s2} and B\ = {s} s3}. One can easily see that {BQ, B\}
is a quotient of M. Suppose that Ai = A2 = {£?o, B\}. By checking all
possible cases, one can verify that the collection of quotients (Ai, A2) is
refinable. (There are 16 trivial cases of ab E Bi, and 16 trivial cases of
ab G Bi Bj where a G B{ and b G Bj. The remaining 15 cases foliow a
simple pattern.) •

In gênerai, it is sufficient to require refinability of only those collections
of quotients that are involved in a spécifie problem. For example, when
studying recognizable subsets, we deal only with finite quotients. We obtain
in this way:

Informatique théorique et Applications/Theoretical Informaties and Applications
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COROLLARY 10: A product of two recognizable subsets is recognizable in
every monoid where every pair offinite quotients is refinable. •

The results of Corollary 8 and Corollary 10 are, unfortunately, not
réversible. For example, a product of two subsets may be recognized by
a monoid other than the Schützenberger product. We can only establish a
rather weak necessary condition:

PROPOSITION 11: If <̂> (Mi,..., Mn) recognizes the products
Lp Lp+i ...Lr_i Lr using the homomorphism h defined by (10), the collection
of quotients (Ai,..., An) is refinable.

Proof: If h is a homomorphism, the partition C (F) is a quotient of M
(namely, M/ker(/i)). Using (9) and (5) one can verify that the monoid
opération in C (F) is defined by (5). The formula (5) is equivalent to
(2) for the relation $ defined by (7). From Theorem 3 follows that F is
decomposable according to that relation <&, which is easily seen equivalent
to (Ai,..., An) being refinable. •

The homomorphism (10) appears in the standard proofs [14], [17] and
various applications. We note, however, that Reutenauer [13] and Pin [11]
obtained important results using other homomorphisms. They are outside
the scope of this paper.

5. ANOTHER APPLICATION OF THE SCHÜTZENBERGER-STRAUBING
PRODUCT

One can also arrive at the n-fold Schützenberger product in a slightly
different way. As bef ore, let Li,..., Ln be n > 2 given subsets of M,
recognized by monoids Mi,..., Mn using homomorphisms /&i,..., hn. In
addition, let u\,..., un-\ be n - 1 given éléments of M. We want to find a
monoid recognizing all products of the form Lp up Lp+i up+i ...Lr_i ur-\ Lr

for 1 < p < r < n. In a similar way as before, this is reduced to finding a
quotient saturating all products of the form Ap up Ap+\ txp+i ,..Ar-\ ur~i Ar,
where 1 < p < r < n and Aj = M/ker (hi) for p < i < r. Let now F be
the family of all these products. Since ui,..., un-\ are fixed, each member
of F is identified by the classes Ap,..., Ar appearing in it; F can be thus
considered as a family indexed by the same set as before. We have now:
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2 2 0 R. R. REDZIEJOWSKI

F - {Fi\i G 1}
where
I — {(Ap,..., Ar)|l < p < r < n and i^ G Ai for p < i < r}
and

3 . . *J\f—l XL f 1 -/A f*.

(12)

A spécifie partition of M saturating all members of F is C (F). It consists
of all nonempty subsets

Cp — ( p | Apup Ap+i...ur-i Ar)

n ( | ) M - ApUp Ap+i...iir_i Ar)

for p G *P(I)' Using the insights gained in the preceding section, we start
by modifying the définition of refinability:

DÉFINITION 12: Given u\,..., un—i G M, we my ?/ia? an orde red collection
of quotients (Ai,..., An) is refinable under the marking (iti,..., ^n-i) (ƒ
/ar any product Apup Ap+\...uT-\ Ar G F and <my a, b G M swe/z r/râ
a& G Apttp Ap+i...ur_i Ar, there exists an index q, p < q < r, and two
members Af

q, Ag G Aq such that:

(14)

PROPOSITION 13: The following two conditions are equivalent:
(a) The collection of quotients (Ai,..., An) is refinable under the marking

(ui,..., un-i).

(b) The partition C (F) is a quotient of M with monoid opération defined
by (5).

Proof: One can easily verify that (Ai,..., An) is refinable under marking
(ui,..., Un-i) if and only if F is decomposable according to the relation $
defined by (7). The équivalence of (a) and (b) follows from Theorem 3. •

PROPOSITION 14: If M is equidivisible, and each of m,..., ui-\ is prime
(that is, does not have any other factors than 1 and itself), then every
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ordered collection of quotients (Ai,.. . , A n ) is refinable under the marking
(ui,..., Un-i).

Proof: Assume M is equidivisible. Consider any product
Apup Ap+i...ur_i Ar e F and a, b e M such that ab G
ApUpAp+i...ur-iAr. That means ab = XpUpxp+\...ur-\xr for some
Xp € Ap,..., xr G AT. Using Levi's lemma and induction, one can verify
that there exists an index q, p < q < r, and two éléments y, z G M
such that either

(15)

b = zuqxq+i...ur-i xr,

or

yz = uq,

a — xp Up...uq-i xq y, } (16)

b — zxq+\ uq+i...ur-ixr

In case (15), let Aq, A^ be the classes of A^ that contain, respectively,
y and z. Then, a G Apup.,.Aq-i uq-\ A

f
q and b G AgUq Aq+\...ur-\ Ar.

From yz — xq follows Af
q o Aq = Aq.

In case (16), since uq is prime, we must have either y = 1, z = ng or
t/ = Wg, ̂  = 1. The first case is identical to (15) with y = xq, z = 1 and the
second to (15) for q + 1 with y — 1, z = xq+\. •

Since the index set I and the monoid opération in C (F) are the same as
bef ore, expressing the result in terms of the monoids Mi,. . . , Mn gives (8)
and (9), and establishes the same connection to the Schützenberger product
0 (Mi,..«, Mn) as before. From Proposition 13 and Proposition 14 follows:

COROLLARY 15: 0 (Mi,..., Mn) recognizes all products
Lp Up Lp+i Up+i ...Lr_i ur-\ Lr with prime up,..., ur-\ in every
equidivisible monoid M and, in gênerai, whenever the collection of quotients
(Ai,..., A n ) is refinable under the marking ui, . . . , un-i. •

Formulating a result analogous to Proposition 11 is left to the reader.

6. THE DIAMOND PRODUCT OF GASTIN-PETIT-ZIELONKA

A monoid M is called partially commutative if it contains one or more
pairs of éléments w, v G M such that uv — vu. Free, finitely generated,
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partially commutative monoids are often called trace monoids and their
éléments are called traces. For their définition and a detailed discussion, the
reader is referred to the monograph [2]. Trace monoids are not equidivisible;
an example of an équation not satisfying the Levi's lemma is uv — vu
where u, v are generators. One uses instead a property known as the "Levi's
lemma for traces": for any a, 6, c, d G M satisfying ab = cd, there exist
r, u, u, s G M such that a — ru, b = vs, c = rv, d = us, uv — vu (see [1],
Prop, 1.3, [2], p. 21). The class of monoids satisfying the Levi's lemma for
traces is larger than the class of trace monoids.

For any partially commutative monoid M, there exists a quotient U having
the property that for any given pair of classes Ui, Uj G U, either uv — vu for
ail (u, v) G Ui x Uj, or uv ^ vu for ail (u, v) G UiX Uj. For trace monoids, a
quotient U with the stated property is obtained by classifying the éléments of
the monoid according to their generators: each class of U consists of éléments
with the same set of generators. The set of ail pairs (£/$, Uj) G U x U having
the property that uv — vu for ail (u, v) G UiX Uj is in the following denoted
by Comm. One can easily verify that if (Ui, Uj) G Comm, then for any pair
of subsets X C Ui and Y Ç Uj holds XY = YX.

In the following, we assume M to be a partially commutative monoid with
given U. Let L\, L<i be two given subsets of M, recognized, respectively,
by monoids M\ and M<i using homomorphisms h\ and /12. We want to
find a monoid recognizing the product L\ L2. As before, we shall do it by
constructing a quotient of M that saturâtes L\ L2.

Define A = M/ker(hi) and B = M/ker(/i2); the quotients A and
B saturate, respectively, the subsets L\ and L2. The subset L\ can be
represented as a union of subsets of the form {A H U) where A G A and
U G U. Similarly, L2 can be represented as a union of subsets of the form
(B n U) where B G B and U G U. Because products distribute over unions,
it is sufficient to construct a quotient that saturâtes ail products of the form
(A H Z7i) (B n U2) where A G A, B G A, U\ G U, and U2 G U. Let
F be the family of all these products. We treat F as a family indexed by
quadruples (A, C/i, B, U2):

where

I = {(A, Uly B, U2)\A 6 A, BeB, Ui,U2eV}) (17)
and

F(A,ultB,üa) = (Anu1)(B nu2).

Informatique théorique et Applications/Theoretical Informaties and Applications



SCHÜTZENBERGER-LIKE PRODUCTS IN NON-FREE MONODDS 223

A spécifie partition saturating all members of F is C (F). It consists of all
nonempty subsets

C,=( f| {Af\Ul){Bf\U2))

n( p| M-(AnUi)(Bnu2)) (18)

for p € V{I). We proceed as before:

DÉFINITION 16: We say that a pair of quotients is commutatively refinable if
for every product (A D Ui) (B (1 U2) G F and éléments a, b e M such
that ab € (AnUi)(B (1 U2), there exist A', A" € A, B', B" e B,
U'v U'{, U'2,U2' € U, such that:

A'oA" = A, U[o
B'oB" = B, U^o
(Ui, U'{) e Comm,

b e [A" n u'{) (B" n u$).

(19)

PROPOSITION 17: The following two conditions are equivalent:
(a) The pair of quotients (A, B) is commutatively refinable.

(b) The partition C (F) is a quotient of M with monoid opération defined
by Cp o Cv — Cp where

/!// Jjf JjH r>/ _ JDfl Tjl _ Tftf\

\{A', üj, 5', Ü5) G Mj ( > , C/J', i / ; , W) € t; J> (20)
and (f/f, üj) € Comm}.

Proof: Define the relation $ so that (F», Fj , F^) G $ if and only if the
indices of F^, Fy, F^ satisfy the following condition:

k = (A'o A", U[ o [ƒ", 5 ; o S / ; , i/a o U$)

where (A7, C/j, B\ U'2) — i, (A7/, £/", 5 " , ï/^') = j ^ (21)

and ([/£, üj') G Comm.

For any F2, Fj, F^ satisfying $ holds:
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Fi Fj = (Af n u[) (Bf n u*2) (A!! n u'{) (B'f n u%)

= (A! n u[) (A" n mi) (Bf n u!
2) {B" n u'{)

Ç {A! O A" nU[o Ufl) (Bf o B" nU!
2o UZ) = Fk.

One can easily verify that (A, B) is commutatively refinable if and only
if F is decomposable according to $. The formula (20) is obtained by
substituting this $ in (2). The équivalence of (o) and (6) follows from
Theorem 3. •

PROPOSITION 18: If M satisfies Levi's lemma for traces, every pair of
quotients (A, B) is commutatively refinable.

Proof: Consider any product (AnU\) (BnC/2) E F, and any a, b e M such
that ab e (An Ui) (B n U2). That means ab - cd for some c e (An U\)
and d G (B n U2). According to Levi's lemma for traces, there exist
r, u, v, s £ M such that a = ru, b = vs, c = rv, d = us, uv = vu.
Let A1', An be the classes of A that contain, respectively, r and v. Let B\
B" be the classes of B that contain u and s, and let £/{, U^'U[', U!{ be
the classes of U that contain, respectively, r, u, v, and s. We have then
a€(Afr\U[) (B1 nir£) and b G (A"HC/{;) (B"nU%). From c = rv follows
^4; o An = A, from d = us follows B1 o B" — B, and from uv = vu follows
(Ul

2, U'D G Comm. •

As in the case of the Schützenberger product, we can replace C (F) by
the set V(I) with the opération fj,ov = p defined by (20), and then replace
A by h\ (A) and B by h2 (B) in V (/)• and (20). The resuit is a monoid
(T, o) that consists of the set

T - V ({mi, C/i, m2, t^) |mi G Mi

and rri2 G M2 and £/"i, U2 G U}), (22)

with the opération defined by

M o v = {(mi o m!{, U[ o U", rri2 o m%, U2 o U2)

|(mi, U[, m'2) ü5) G M, K ' , üj ' , rnî, üj') G v (23)

and ( l^ , Uï) G Comm}

for /x, v G T. If C (F) is a quotient of M, it is isomorphic to a subset of
(T, o); the monoid (T, o) recognizes then all the products (AnU\) (BnU2),
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and therefore also the product L\ L2. As a conséquence of Proposition 17
and Proposition 18, we obtain:

CoROLLARY 19: The monoid (T, o) recognizes L\L<i in any partially
commutative monoid satisfying the Levi 's lemma for traces, and, in gênerai,
whenever the pair of quotients (A, B) is commutatively refinable. •

COROLLARY 20: A product of two recognizable subsets is recognizable in
any partially commutative monoid where U is ftnite and every pair offinite
quotients is commutatively refinable. •

With U defined as classification according to the set of generators , (T, o)
is identical to the "diamond product" < /̂ (Mi, M2) introduced by Gastin,
Petit and Zielonka in [4].

7. APPLICATION TO SEMIGROUPS

The assumption of M being a monoid (rather than a semigroup) is needed
for a purely technical reason. The unit element of M allows in the Levi's
lemma for the special case of a = c, b = d. In the Levi's lemma for traces, it
allows for the special cases of a — r, d = s and c = r, 6 = s. If these special
cases are included explicitly and propagated through all results derived from
these lemmas, the whole discussion can be modified so that it applies to any
semigroup M, with all quotients being semigroups rather than monoids.
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