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FIBRATIONS AND RECURSIVITY (1)

by Richard MIJOULE (l)

Communicated by G. LONGO

Abstract. — We present hère some facts about recursive function theory that we describe in an
abstract jorm; for this we use hère fibered catégories. A first approach ofthis was made by P. Mulry
by using of topos theory. Out of the results find hère, we give the first steps towards the treatment
of partiality in an abstract form.

Résumé. — Nous donnons ici quelques résultats sur les fonctions récursives au moyen des
fibrations. Une première approche de cette formalisation avait été faite par P. Mulry en utilisant la
théorie des topos. En utilisant les résultats trouvés ici, nous donnons les premières définitions pour
une formalisation abstraite des fonctions partielles.

0. INTRODUCTION

We present hère some results concerning recursivity by use of category
theory and more particularly fibrations. A first work on this subject was made
by P. Mulry (10) by considering recursive topos. We study hère particularly
effective opérations by introducing enumerated fibrations.

In chapter I we give some properties about the fibration of recursively
enumerable sets and the fibration of partial recursive functions.

Using these examples, we introducé in chapter II a gênerai définition of
enumerated fibrations and effective operators. We give some properties about
these fibrations and in particular some fixed point theorems.

In chapter III, we introducé the first définitions of what we mean by an
abstract définition of partial functions. The définitions we give generalize the
notion of presheaf over a locale defined by Fourman and Scott (4). Further
results about this will be given in a fortheoming paper.

(*) Received March 23, 1993; accepted February 2, 1994.
(*) 18, allée Jean-Rostand, 91025 Evry Cedex, e-mail:mijoule@viie.iie.cnam.fr.
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194 R. MIJOULE

1. NOTATIONS

Let B, S be catégories and p a functor from B to S. If u : J —> / is
a morphism of 5, a morphism ƒ : y —> X in 5 is said to be cartesian
over w if p (ƒ) = u and if, for any g : Z —> X in J3 and t> : p (Z) —> J
such that u.u = p(g), there exists an unique h : Z -* Y in B such that
p(ft) = v and /./i = #.

(B, p) is said to be a fîbration (or a fibered category) over S if for any
X G B and any w : J —» p (X) in 5, there exists a cartesian morphism
ƒ : Y -> X over u. We dénote by B 1 = p " 1 (/) the fibre over / .

We say that the fibration (B, p) is split if there exists a choice, for each
pair (X, u) with X e B and u : J —» p (X) = ƒ, of a cartesian morphism
over u with domain denoted w* (X) (and then u* : p~l (ƒ) —> p " 1 ( J) is
a functor), such that (Jdj)* = Idp-i^ and (u.u)* = î;*.it*.

A fibration (S, p) over 5 is discrete if for any I 6 S B1 is a discrete
category.

If (JB, p) and (C, q) are two fibrations over 5, a cartesian functor from
(B, p) to (C, q) is a functor G : B -> C such that ç.G = p and that
sends each cartesian morphism of B onto a cartesian morphism of C. If
the fibrations are split, a cartesian functor from (S, p) to (C, q) commute
with ( )*.

If if G S1, we dénote by ([if], t?o) t n e split discrete fibration over 5 such
that [K]1 is the set of morphisms of 5 from / to K ; if u : J —• / is
in 5, then n* : [if]7 —> [if]J is the functor composition with U.ÔQ is the
domain functor from [if] to 5. Usuelly this fibration is denoted (S/if, 9b);
the notation [if] will be appear clear in the next paragraph. It's the only
change of notation that we use on fibration.

If (B, p) is a split fibration over S and if X G BK, then GX defined
by GX (u) — u* (X), where u : J —• if, is a cartesian functor from
([if], ÖQ) to (B, p) and the correspondance X —> GX is a bijection
between BK and the set of cartesian functor from ([if], ÔQ) to (B, p) and
natural transformations between these functors.

A fibration ( 5 , p) is said to be small if there is if G S such that
([K], d0) = (B, p).

Let (i?, p) be a fibration over S. We dénote by Fam(i?) the comma
category (p, Ids) and by Fam(p) the projection from Fam(S) to S. The
objects of Fam(i?) are the pairs (y, u) where Y E B and u : p (Y) —> I
in 5. We have Fam(p) (y, u) = / . In gênerai, (Fam(fî), Fam(p)) is not a
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FIBRATIONS AND RECURSIVITY 195

fibration (see (2)). We dénote by A the diagonal functor from (B, p) to
(Fam(B), Fam(p)).

If S has finite products and if K G 5, we have a subcategory Fam# (B)
of Fam(B) whose objects are pairs (Y, TT2 J ) where TT2 J : ÜT x I —> ƒ; a
morphism from (Z, 7T2j) to (Y, TT2J) is a pair (ƒ, it) where it : J —• /
in 5 and ƒ : Z —> Y in B such that p(f) — K x u, If we dénote by
Farn/r (p) the restriction of Fam(p) to Fam^ (5), (Fam^ (B), Fam# (p))
is now a fibration over S. In fact, (Fam/c (B), Fam^ (p)) is obtained by
pullingback p along the functor K x- from 5 to 5 and so is isomorphic to the
fibration {BK, p / c) where objects are pairs (Y, ƒ) such that p (Y) = K x I.
If (5 , p) and ((7, ç) are fibrations over 5, we dénote by (i?, p) x (C, g)
the fibration over S wich is the pullback of p and q. In particular, if the
diagonal functor A from (B> p) to (S, p) x (B, p) has a right adjoint A
wich is cartesian we say that (B, p) has finite products.

If (B, p) is a fibration over 5 and if % is a class of objects of B, we say
that T is stable if for any X e % and any cartesian morphism Y —> X
we have Y G T.

We dénote by (fî, fi) the fibration over 5 whose objects are subobjects
of [/], IeS, and whose morphisms from (F > -» [J]) to (G > —> [J])
are paires (t, w) where u : J —• i is in 5 and t : F -^ G a cartesian
functor such that the following diagram commute:

M

[j]

where [u] is the cartesian functor composition with u.

We have also the fibration (fid, fi<j): the objects of fi^ are mono of S.
A morphism from m : J > —> ƒ to m! : J ' > —• 7; is a pair (u, v) of
morphisms of S u : J > —> 7' and v \ J >-* J1 such that î£.m = m'.v.
The functor fi^ sends m : J > —> . ƒ onto / .
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196 R. MIJOULE

2. THE MAIN EXAMPLES

We dénote by S (respectively S^) the category whose objects are finites
products of N (the set of naturels numbers) and whose morphisms from
Np to Nq are uples (wi, ..., uq) of totals (respectively partials) recursives
maps from Np to N.

If u is a partial map from N^ to N et if x E NP, we dénote by u (x) |
the fact that u is defined on xAom u is then the set of x such that u (x) j .

The constructions of fibrations over S or S1- will be refered in the sequel
by ME.

We dénote by (P, p) the fibration over S defined by the following way:

- the objects of P are pairs (A, I) where I E S and A Ç ƒ.

- a morphism from (A, / ) to (£?, J) is given by u : / —• J in 5 such
that A Ç n" 1 (5) ; we dénote by (u) such a morphism.

The functor p : P —> 5 is defined on objects by p (A, / ) = / .

A morphism (it) : (A, / ) —» (B, J) is cartesian iff A = u"1 (B).

We dénote by (Ré, p) the full subfibration of (P, p) whose objects are
pairs (A, / ) where A is a recursively enumerable subset of / and by (Ree, p)
the full subfibration of (Ré, p) whose objects are pairs (A, / ) where A is
a recursive subset of / . We dénote by V the stable class of objects of P
of the form (/, / ) .

We have an another interresting fibration over S which we dénote by
(F, q)\ it's defined by:

- objects of F are pairs (ƒ, / ) where ƒ is a partial map from / to N.

- a morphism from (ƒ, ƒ) to (#, J) is given by u : I —• J in S such that
ƒ < u~l g\ this notation said that for x G / , if ƒ (x) | then g (u (x)) | and
in this case they have the same value. We dénote by ( u ) such a morphism.

The functor q : F —> S is defined on objects by q (ƒ, / ) = /.

A morphism (u) : (ƒ,ƒ)—• (p, J) is cartesian iff ƒ — u~l (g).

We dénote by (Fr, q) the full subfibration of (F, q) whose objects are pairs
( ƒ, I) where ƒ is partial recursive. We dénote by (Frt, q) the full subfibration
of (Fr, q) whose objects are pairs (ƒ, / ) where ƒ is total recursive.

In the same way we define fibrations (P x , p x ) , (Réx , p 1 ) , (F1-, qL),
(Fr-1, q^) over 5"1 where the objects are the same as above but the
morphisms (u) are taken in S1.

We give now some facts about these fibrations.
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FIBRATIONS AND RECURSIVITY 197

PROPOSITION 1: The fibrations (P,p), (Ré, p), (Rec,p) have finîtes products
and so have the catégories P, Ré, Ree. The same fact is available for the
fibrations with ± in exposant

Proof: If (A, I) and (B, I) are objects of these catégories, one put
(A, I) A (S, / ) — (An B, I). Morever, as 5 has finites products, the
catégories P, Ré, Ree have finites products.

PROPOSITION 2: The fibrations (P, p), (Ré, p), (P-1, p x ) and (Réx , p x )
teve small sums: for each of these catégories the diagonal functor A has
a left adjoint.

Proof: If ((A, 7), u) G Fam(P)J where u : I - • J, we put
II ((A, / ) , n) = (w(^)) ^)- It's clear that II defines a cartesian functor
left adjoint to A. This functor restricts to Ré.

PROPOSITION 3: There are embedding from (fi^, Sl^) to (Ré, p) and from
(Ré, p) r0 (n, îî).

Proof: The first embedding is the functor wich to any mono m send the
image of m. For the secund, consider the functor G from P to ft defined by:

-G(A, I) = Â -> [/] where i(üT) - {t; : if - . J/u (K) Ç A }
- (u) : (A, / ) —> (A7, J) in P is sended on (n, u) where û : Â —> Â1

is defined by û (K) (v) = u.v.

It's easy to see that G is cartesian.

Consider the restriction of G to Ré and show that G is an embedding.

First, G is injective on objects; if (A, I) and (A;, / ) are objects of Ré
such that G (Ay I) = i , G (A', I) = i ' and i = A\ take u, v! : N -> /
such that w(N) = A and u' (N) = A1. Then u e A(H) and so n G A';
thus u (N) = i Ç A'. The converse is same and thus A = A''.

Let (u), K ) : (A, ƒ) -> (B, J) in Ré such that G ((u)) = G ((«'))• By
construction of G, it's clear that u = v!.

We have in particular the following inclusions that Mulry had
discovered (10): Rec >—• Ré >-> Q .

PROPOSITION 4: 77zere exwtó a cartesian functor E from (F, ç) to (P, p)
r/iaf the restriction of E to Fr defines a cartesian functor from (Fr, ç)

to (Ré, p) swcft fAar E1"1 (V) = Frt.

Proof: E is defined on objects of F by £ ( ƒ , I) = (dom ƒ, ƒ). If
(u) : ( ƒ , / ) — > (p, J) is a morphism of F then we put E({u)) = (u).
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198 R. MUOULE

It's clear that E becomes a cartesian functor from (F, q) to (P, p). The
others affirmations are obvious.

In fact we have more about E and this will be of great importance for
paragraph 4.

THEOREM 5: (Fr, E) is afibration over Ré and (F, E) is afibration over P.

Proof: We give the proof in the first case.
We remark that every morphism of Fr is cartesian.
Let consider now the above situation where (ƒ, / ) E Fr:

E

Ré (B, J) , /) = £?(ƒ,ƒ)

We want a cartesian morphism over (u)\ let h = f,u and g = h\ B
the restriction of h to B. So we have (u) : (g, J) —> (ƒ, / ) such that

Finally the last fact about these examples is enumeration.

THEOREM 6: There exists, for any K € 5, a cartesian functor ipx • ([N],
do) —> (FrK, qK) such that for any I e S and any f : ([/], ölo) —>
(FrK, qK) cartesian there exists a morphism u : I —> N m 5 .SMC/Z f to
rfte following diagram commute:

FrA'
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Proof: Let tpK be an universal partial recursive function N x K —* N. We
know (by S-m-n) that for any partial recursive function g : IxK —• Nthere
exists a totale recursive function u : / —• N such that </?# (u(#), J/) =
g(x, y) where x £ I and y £ K.

We translate this property in the following way; such an element (pK is
the same thing as to give an object of Fr^ in the fibre over N. So (p%
define a cartesian functor ([N], do) —• Fr/C wich we dénote again by (px.
It's easy to see that this functor has the claimed property. In particular, if g
is a partial recursive function K —> N, there exists e G N such that for
y G K g(y) = <px (e, y); we call e an index of 5.

When we see the diagram above, we may compare it with the notion of
enumerated set of Ershof. This is the reason that we take the notation [N]
in place of S/N.

We see that we have the same property for (Ré, p) by using of an universel
recursively enumerable subset of UJ x K.

What are cartesian functors between these fibrations? If we consider a
cartesian functor $ from (Fr*, q1) to (Fr17, qJ), with J, J G S, we
consider not only a functionnal from the fibre Fr* to the fibre Fr1* but also a
functionnal from the fibre (Fr*)*c to the fibre (FrJ)*c for any K e 5, and
these functionnals must to commute with the u* for any morphism u in S.
For understand this f act, consider an example;

let $ : FrNP x FrN2xNP -> FrNxNP wich sends (g, h) to ƒ defined by

( n v ) =

for n G N and y G

We remark that if u is in 5, then we have:

for n G N and z G N?, and so that n* (ƒ) = u* (5, /i).

We may then consider the opération of primitive recursion as a cartesian
functor from (Fr, q) x (FrN2, qN*) to (FrN, ^N) . We résume in this simple
f act construction by primitive recursion for functions of any arguments.
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2 0 0 R. MIJOULE

3. u;-FIBRATIONS AND EFFECTIVITY

The définitions that we give here about enumeration were given in (7).
We fix a category S with finite products and an object CJ of 5; all the

fibrations in this section are over S and are split. When it'snt confusing we
omit projection of fibration; for instance ([K], do) is denoted [K].

DÉFINITION: A fibration (B, p) is said to be strongly uj-enumereted if for
any K G S there exists a cartesian functor WR : [o;] —> BK such that for
any X G (BK)], where I G S, there exists a morphism u : I —> u in S
such that the following diagram commute:

WK

[u,] • BK

[I]
In the same way, we say that (B, p) is weakly u;-enumered if for any
K G S there exists a cartesian functor WK ' M —• BK such that for any
X G BK\ there exists e : 1 —> w in S such that W/c-N = -*"•

Obviously, any (B, p) wich is strongly a;-enumered is weakly o;-enumered.
With these notations, we dénote by W = { WK/K E S } ; this is a class

of objects of B and we say that (B, p, W) is a (strong or weak) u;-fibration.
If (B, p, VF) and (C, g, V) are a;-fibrations, an effective operator at

(JTi, ..., Kn, J) , where Ku ..., Kn, J e 5, from (B, p, W) to (C, q, V)
is a cartesian functor $ from (B / C l , pKl) x ... x (B / c- , pKn) to (C J

5 g
J) such

that there exists a morphism u : o;n —• o; in 5 satisfying $.W = Vj.[u],
where W = (WK, ..., W^) :[u;]n - • (BK\ pKl) x ... x (BK-, pK~). The
results on effective operators are given in the sequel for n — 1.
Example: Take ME1; we have shown that (Fr, ç, (p) and (Ré, p, W) are
N-fibrations over 5. An effective operator $ at (üf, J) from (Ré, p, W) to
itself is an effective operator (in the usuel sense of recursivity) from Ré7^ to
RêJ; if X G RéK with index e then $ (X) G Ré J with index u (e).

PROPOSITION 1: If (B, p, W) w a strong (weak) u-fibration then for any
J e S there exists a class WJ of objects of B3 such that (B J , p J , WJ)
be a strong (weak) cj-fibration.

Proof: For K G S we put W3
K : [u] -> (BJ)K =
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FIBRATIONS AND RECURSIVITY 201

PROPOSITION 2: Let (B, p, W) be a strong (weak) ui-fibration, (C, q) a
fibration and G a cartesian functor from (B, p) to (C, ç) surjective on the
objects. Then there is a class of objects V of C such that (C, q, V) is a
strong (weak) u)-fibration.

Proof: Let K G S and GK : (BK, pK) -* (CK, g*). Put V^ =
G^.Wx. It's easy to see that the class V = {VK/K G 5 } is such that
(C, g, V) is a strong (weak) u;-fibration if (JB, p, W) is a strong (weak)
c<;-fïbration.

Example: Take M £ : we define two new fibrations over S.

1) The fibration (TT ; n n j : the objects of TT are pairs (A, / ) where

I E S and A is a J J subset of ƒ. A morphism from (A, I) to (B, J) is

given by u : ƒ —> J in S such that A Ç u~l (B).IIn sends (A, I) onto / .

In the same way we have the fibration ( V^ , En j if we replace TT

subsets by y ^ subsets of / . By induction on n we prove that (TT ; ü n )

and f ̂  , EnJ are strongly a;-enumered. f ̂  , Ei J is (Ré, p).

If we consider the cartesian functor -• from (Ré, p) to f TT , u i ) defined
on object by -i (A, / ) = (-< A, ƒ), this functor is surjective on objects.

If we consider the cartesian functor G from f TT , 11^ j to f V^ , S2 )

defined on objects by g (A, I x N ) = (S, / ) where, for x G J, we have
a; G B iff there n G N such that (a;, n) G A; this functor is surjective
on objects.

2) The fibration (Fr^, qu) where /i G N fixed: the category Fr^ is the
full subcategory of Fr where the objects are pairs ( ƒ, / ) such that codomain
ƒ Q {05 1? ••• ) ^}'Çfc is the restriction of q to Fr^.

The functor G from (Fr, g) to (Fr/,, gA) defined by G ( / , i) = (5, / )
where g is defined by # (x) = ƒ (a;) if ƒ (x) < /i and else undefined, is
cartesian and surjective on objects. So (Fr^, q^) is strongly N-enumered.

PROPOSITION 3: If (B, p, W) and (C, g, V) are strong w-fibrations then
cartesian functors from (BK, p^) ro (C17, gJ) are exactly effective operators
at (K, J) from (B, p, W) to (C, g, V).

Proof: Let $ cartesian from (BK, pK) to (C J , ç7) and consider $WK-
As (C, g, V) is a stong a;-fibration, there exists u : u; —> u; in 5 such
that $.WK = V>.[u],

vol. 29, n° 3, 1995



2 0 2 R- MIJOULE

THEOREM 4 (Fixpoint): Let (S, p, W) be a weak w-fibration. For any
K £ 5, tfny effective operator $ ar (üf, K) from (B, p, W) to itselfhas a
fixed point; so there exists X € BK such that $ (X) = X.

Proö/* The proof is an adaptation of the welknown one in recursivity. For
simplification we don't write the projection of fibration; these projections are
clear. For instance, a cartesian functor G from (B, p) to (C, q) is denoted
by G : B -> C.

Let A : [w x w] - • H x [w] et 7 : S K x w ^ (B^) w the canonical
isomorphisms and let ev : {BKf x [w] -* B / c the évaluation morphism.

Put W - WK*w et W - ev.({i.W) x IdM).A.
Let Jî' = $.W.[A] where A is the diagonal morphism (*;.-> w x a; in 5.
Dénote by R the unique morphism from [1] to BKxu such that

Rf = e-u.((7.JR) x Id[w]).M, where /i : [w] - • [1] x [w] is the canonical
isomorphism. As S est weakly cü-enumered, there exists eo : 1 —> a; in 5
such that W.eo = iî. Let P = ^'.[Aj.eo.

We may see this construction by the following diagrams:
w

H

I *
M

We then have :

[1] > {©]

eO [A) W '

Informatique théorique et Applications/Theoretical Infonnatics and Applications
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Put X = Wf.[A].eo and evaluate $ (X):

203

But i?'.e0 = ev. ((7.^) x Id[u,])-/x.eo = ev. ((7.W.eo) x Id[w])./*.eo.
We have X = W.[A].eo = ev. ((7.W) x Id[w]).A.[A].e0.
A categorical argument shows that ((7.W)xId[wj).A.[A].eo = ((7-W.eo) x

Id^jJ./i.eo- We deduce that <3>.X = X.
The element finded here is not unique and is not necessary the leasted.
In the sequel we suppose that in 5 there are two morphisms 0 : 1 —• u

and 5 : u) —• o> such that for any morphisms in 5, ƒ : 1 —• u) and
g : u) —» u) there exists a morphism denoted [ƒ, r̂] : o; —> u> such that
[ƒ, ff].O = ƒ and [ƒ, g].3 - 5.

In our example ME this says that we have the définition by cases for
the total recursive functions.

PROPOSITION 5: Lei (B, p, W) be a strong u-fibration, X G BK and
Y E BKxu. There exists Z G BKxu> such that Z.[0] = X and Z\s] = Y.
In other words the following diagram commute:

Proof: As (B, p, W) is a strong u;-fibration, for X and y there exists
respectively e : 1 —> o; and w : o; —>• u; in 5 such that X = W/f-[e]
and Y — WK>U. If we take v — [e, it], then Z — WK-V verify the desired
properties.

Unfortunetly, such a Z is not unique; this fact don't dépends of the
enumeration but is a property on functions. In the sequel we suppose that
we have unicity of this object and we dénote it by [X, Y] : morever, we
suppose that [-,-] defines a cartesian functor from BK x BKx<JJ to BKxu)

which to (X, Y) sends [X, Y].

vol. 29, n° 3, 1995



2 0 4 R. MIJOULE

PROPOSITION 6: Let (B, p, W) be a strong cv-fibration, K e S and $
an effective operator at (K, K) from (B, p, W) to itself. For X G BK

there exists Y G BKxuj such that Y.[0] = X and Y.[s] = S.y. So the
following diagram commute:

-» BK

Proof: Let \I> be the cartesian functor from BKxu) to itself defined by
* (Z) = [X, $.Z]. Let y be a fixed point of tf ; then y = [X, $.y] and y
satisfies the properties of proposition. We remark that [u] is a weak natural
number object. Intuitively, Y represents all the iterated of X by <Ê>. We
dénote Y = I t (X, $). We see that itération dépends only of the set of
codes u) of the éléments of B. We conclude this chapter by the generalized
least fixed point theorem.

For this consider the following conditions:
Let ( 5 , p, W) be a strong u;-fibration, $ an effective operator at

(K, K) from ( 5 , p, W) to itself such that there exists a cartesian
functor I t ($ ) from ( B * , p ^ ) to ( 5 ^ x a ; , p X x a ï ) defined on objects by
I t ( $ ) ( X ) = It(X, $) . We suppose morever that (B, p) has an initial
object and that A : (B, p) -> (5W , pw) has a left adjoint II wich is
cartesian and commute with <£>. Finally, suppose that the cartesian functor
It (<&) defined above is faithfull. We have then:

THEOREM 7: $ admits a least fixed point; there exists X G BK such that
$ (X) = X and for any Y G BK such that $ (Y) = Y there exists a
morphism X —> y m B ^ .

Prao/* Let C/ G BK be an initial object and let Z = It (C/, $).
Put X = II (Z, 7Ti) where 7ri is the first projection iï" x o; —> K.
So X G BK: we show that it's the leasted fixpoint object. We have
$ (X) - $ (II (Z, TQ)) = II (* (Z), TTi) = H (s*Z, Tra). But X = II (Z, TTI);
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we must then show that II(s* Z, TTI) = II(Z, ni). We remark first
that I t ($) ($( f / ) ) = s* Z because s* Z.O = Z.s.O = $ (U) and
$ (s* Z) = s* $ (Z) = s* (Z.s) = s* Z.s.

We have then Z = It ($) [U) -* It ($) ($ (£/)) = s* Z. We have also
s* Z —+ Z a cartesian morphism about a> x s.

For any y G BK we have the bijection:

~ (Z,
(s* z, Tri) - A Y

and by adjunction:

In particular, we have that we want.
If Y is such that $(Y) = Y one has U -> F and so It (Î7, $) - • It (V, $) .

By adjunction we have X —> y .
In particular, if each fibre B1 is an order, with the same hypothesis except

faithfullness we have:

COROLLARY: $ has a least fixed point; there exists X E BK such that
= X and for any Y G BK such that $(Y) = Y we have X Ç Y.

4. ABSTRACT APPROACH OF PARTIALITY

Let's again have a look at the main example ME and more precisely
theorem 6. The observations that we describe for it may be made for other
examples; we are just intended in partiality here. We have seen that (Fr, E)
is a fibration over Ré. Each fiber of Ré over S is a poset and we can think
(Ré, p) as a generalized poset with joins and finite meets. If we dénote it,
for a moment by £1, we can see (Fr, E) as an fî-set as it was defined by
Fournan and Scott (4). But for this, we must define an equality [| — |] or a
restriction [ satisfying some properties. We have in fact this:

PROPOSITION 1: There exists a cartesian functor \ from (Fr, q) x (Ré, p) to
(Fr, q) such that on objects [((ƒ, / ) , (A, /)) = (#, I) where g is defined
by: for x G / , g (x) | iff ƒ (x) J, and x G A, and in that case one has
g(x) — f (x), So g is the restriction of f to A.

Proof: is staightforward and is not of interest here.
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If we want generalize this situation, we fix a category 5, a fibration (B, p)
over S with some properties and we study fibration (F, q) over S equipped
with cartesian functors E : (F, q) - • (B, p) and [ : (F, g) x (5 , p) - • (F, q)
satisfying some equalities.

In fact, we may made this program in a simpler and more gênerai manner.

Take again the main example. (Fr, E) is a fibration over Ré: let
(u) : (B, J) -> (A, / ) be a morphism of Ré and (ƒ, I) G Fr in the
fibre over (A, / ) . A cartesian morphism over (u) is ( u) : (5, J) —• (ƒ, /)
where g is defined by: for x G J, g (x) | ifF x G B and in this case
g(x) = ƒ (u (ar)). In particular for (ld/) : (B, ƒ) -> (A, J) and (ƒ, J) G Fr,
a cartesian morphism over (ld/) is exactly (Idj ) : (gi I) —> (ƒ, / ) where
g is the restriction of ƒ to J3.

We then have a notion of restriction by using only the fact that (Fr, E) is
a fibration over Ré. Morever the usual équations which must satisfy E and f
for fi-set are automaticly true here. We show this fact in a gênerai manner. In
(6), Hyland-Johnston-Pitts define the P-valued set by using equality [| = |]
and so a generalization of fï-valued set. Here we present a generalization of
presheaf over a locale by considering presheaf over a fibration.

Let S be a category and (H, p) a fixed fibration over S.

DÉFINITION: A presheaf over H is a fibration (F, q) over S such that there
exists a cartesian functor E from (F, q) to (H, p) such that (F, E) be a
fibration over H. We will dénote (F, E) a presheaf over H; it is understand
that q - p.E.

Let (F, E) be a presheaf over H, X G F and ƒ : B - • E (X) a
morphism of HL We call restriction of X to ƒ a cartesian morphism over
ƒ; we dénote it by X\f.

PROPOSITION 2: 1°) X[ Id E ( X ) = X

2°) E(X\f) = ƒ
3°) Dénote by Y the domain of X\f, Then X\f.g = Y\g, where g is a

morphism of H with codomain E(Y).

PROPOSITION 3: If (F' , E1) is an another presheaf over H and if G is a
cartesian functor from (F, E) to (F' , F') then G(X\f) ^ G(X)\f.

If we suppose now that the fibration (H, p) has finite products we
have the particular définition: let X G F and B G H such that
q (X) = p (B). We dénote by X\B the domain of the cartesian morphism
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over B A E (X) —> E (X)\ we remark that B and E (X) are in the same
fibre and so we can take her product. We have the following picture:

X\B

È

7T2

H BAE(X)

If we dénote by TT2 the secund projection from B A E (X) to E (X),
then X\B =

PROPOSITION 4: 1°) X\E(X) = X

2°) E(X\B) = E(X)AB

3°) X\B\C = X\B AC

We remark that these équations are exactly those used for a presheaf on
a locale (4).

PROPOSITION 5: If G is a cartesian functor from (F, E) to an another
presheaf {F9, El) then G(X\B) = G(X)\B.

Let (F, E) be a presheaf over H, X, Y e F such that q (X) = g (y) .
Put A - E(X) and B = E(Y). We say that X and y are compatible
if X\B = Y|"A

Thus we can see that this notion of presheaf over a fibration is a good
notion for the study of partiality. It's developped in a forthcoming paper
where we define the sheaf property. If we have an object UJ of S. Thus
we call a recursive fibration a presheaf (F, JS) over H such that (F, q) is
strongly u;-enumered.
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