F. Blanchet-Sadri

Equations on the semidirect product of a finite semilattice by a J-trivial monoid of height k

<http://www.numdam.org/item?id=ITA_1995__29_3_157_0>
EQUATIONS ON THE SEMIDIRECT PRODUCT OF A FINITE SEMILATTICE BY A J-TRIVIAL MONOID OF HEIGHT k (*)

by F. BLANCHET-SADRI (1)

Communicated by J.-E. PIN

1. INTRODUCTION

Let J_k denote the kth level of Simon’s hierarchy of J-trivial monoids. The 1st level J_1 is the M-variety of finite semilattices. In this paper, we give a complete sequence of equations for the product $J_1 \ast J_k$ generated by all semidirect products of the form $M \ast N$ with $M \in J_1$ and $N \in J_k$. Results of Almeida imply that this sequence of equations is complete for the product J_{k+1} or $J_1 \ast \cdots \ast J_1$ ($k + 1$ times) generated by all semidirect products of $k + 1$ finite semilattices and that $J_1 \ast J_k$ is defined by a finite sequence of equations if and only if $k = 1$. The equality $J_1 \ast J_k = J_{k+1}^1$ implies that a conjecture of Pin concerning tree hierarchies of M-varieties is false.

(*) Received September 1992; accepted September 1994.
(1) Department of Mathematics, University of North Carolina, Greensboro, NC 27412, USA.
E-Mail: blanchet@iris.uncg.edu

This material is based upon work supported by the National Science Foundation under Grants No. CCR-9101800 and CCR-9300738. Many thanks to the referees of preliminary versions of this paper for their valuable comments and suggestions.
\(J_1 \ast \ldots \ast J_{1}(k + 1 \text{ times}) \) or \(J_1^{k+1} \), which turns out to be our equational characterization of \(J_1 \ast J_k \). The equality \(J_1 \ast J_k = J_1^{k+1} \) implies that a conjecture of Pin concerning tree hierarchies of M-varieties is false. Almeida [3] implies that \(J_1 \ast J_k \) is defined by a finite sequence of equations if and only if \(k = 1 \). The methods used in this paper were developed by Almeida [1], [2].

1.1 Preliminaries

The reader is referred to the books of Eilenberg [15], Lallement [19] or Pin [20] for terminology not defined in this paper.

Let \(A \) be a finite set called an alphabet, whose elements are called letters. We will denote by \(A^* \) the free monoid over \(A \). The elements of \(A^* \) are the finite sequences of letters called words. The empty word (denoted by \(1 \)) corresponds to the empty sequence.

Let \(L \) be a subset of \(A^* \) (or a language over \(A \)) and \(\sim \) be an equivalence relation on \(A^* \). We say that \(\sim \) saturates \(L \) if \(L \) is a union of classes modulo \(\sim \) or for every \(u, v \in A^*, u \sim v \) and \(u \in L \) imply \(v \in L \).

The syntactic congruence of \(L \) is the congruence \(\sim_L \) on \(A^* \) defined by \(u \sim_L v \) if and only if for every \(x, y \in A^*, xuy \in L \) if and only if \(xvy \in L \). We can show that \(\sim_L \) is the coarsest congruence saturating \(L \). The syntactic monoid of \(L \) is the quotient monoid \(M(L) = A^*/\sim_L \).

Let \(S \) and \(T \) be semigroups. We say that \(S \) is a quotient of \(T \) if there exists a surjective morphism \(\varphi : T \rightarrow S \) and we say that \(S \) divides \(T \) \((S \prec T) \) if \(S \) is a quotient of a submonoid of \(T \). The division relation is transitive. The syntactic monoid of a language. \(L \) is the smallest monoid recognizing \(L \), where smallest is taken in the sense of the division relation.

A variety \(V \) is a class of semigroups closed under division and products. By the well-known theorem of Birkhoff such a variety is defined by equations that must hold for all elements of semigroups in \(V \). Thus equations give rise to varieties.

An S-variety is a class of finite semigroups closed under division and finite products and an M-variety is a class of finite monoids closed under division and finite products. Equivalently, a class \(V \) of finite monoids is an M-variety if \(V \) satisfies the following two conditions:

- if \(T \in V \) and \(S \prec T \), then \(S \in V \);
- if \(S, T \in V \), then \(S \times T \in V \).
Eilenberg has shown the existence of a bijection between the \(M \)-varieties and some classes of languages called the \(* \)-varieties of languages.

A class \(\mathcal{V} \) is a \(* \)-variety of languages if

- for every alphabet \(A \), \(A^* \mathcal{V} \) is a set of recognizable languages over \(A \) closed under boolean operations;
- if \(\varphi : A^* \to B^* \) is a free monoid morphism, then \(L \in B^* \mathcal{V} \) implies \(L \varphi^{-1} = \{ u \in A^* | u \varphi \in L \} \) is in \(A^* \mathcal{V} \);
- if \(L \in A^* \mathcal{V} \) and \(a \in A \), then \(a^{-1} L = \{ u \in A^* | au \in L \} \) and \(La^{-1} = \{ u \in A^* | ua \in L \} \) are in \(A^* \mathcal{V} \).

If \(\mathcal{V} \) is an \(M \)-variety and \(A \) is an alphabet, we denote by \(A^* \mathcal{V} \) the set of recognizable languages over \(A \) whose syntactic monoid is in \(\mathcal{V} \). Equivalently, \(A^* \mathcal{V} \) is the set of languages of \(A^* \) recognized by a monoid of \(\mathcal{V} \). If \(\mathcal{V} \) is a \(* \)-variety of languages, we denote by \(\mathcal{V} \) the \(M \)-variety generated by the monoids of the form \(M(L) \) where \(L \in A^* \mathcal{V} \) for some alphabet \(A \).

A result of Simon enables us to describe the \(* \)-variety of languages corresponding to the \(M \)-variety of \(\mathcal{J} \)-trivial monoids denoted by \(\mathcal{J} \).

A word \(a_1 \ldots a_i \in A^* \) is a subword of a word \(u \) of \(A^* \) if there exist words \(u_0, u_1, \ldots, u_i \in A^* \) such that \(u = u_0 a_1 u_1 \ldots a_i u_i \). For each integer \(k \geq 0 \), we define an equivalence relation \(\sim_k \) on \(A^* \) by \(u \sim_k v \) if and only if \(u \) and \(v \) have the same subwords of length less than or equal to \(k \). We can verify that \(\sim_k \) is a congruence on \(A^* \) with finite index. Note that \(u \sim_1 v \) if and only if \(u \) and \(v \) have the same letters. The set of letters that occur in a word \(u \) will be denoted by \(u\alpha \).

A language \(L \) over \(A \) is called piecewise testable if it is a union of classes modulo \(\sim_k \) for some integer \(k \), or equivalently if it is in the boolean algebra generated by all languages of the form \(A^* a_1 A^* \ldots a_i A^* \) where \(i \geq 0 \) and \(a_1, \ldots, a_i \in A \). Simon [24] has proved that a language is piecewise testable if and only if its syntactic monoid is \(\mathcal{J} \)-trivial. For every alphabet \(A \), we will denote by \(A^* \mathcal{J}_k \) the boolean algebra generated by all languages of the form \(A^* a_1 A^* \ldots a_i A^* \), where \(0 \leq i \leq k \) and \(a_1, \ldots, a_i \in A \). One can show that \(\mathcal{J}_k \) is a \(* \)-variety of languages and we will denote by \(\mathcal{J}_k \) the corresponding \(M \)-variety. The \(M \)-variety \(\mathcal{J} \) is the union of the \(M \)-varieties \(\mathcal{J}_k \).

1.2 Product of varieties of semigroups

Let \(S \) and \(T \) be semigroups. To simplify the notation we will represent \(S \) additively (without necessarily supposing that \(S \) is commutative) and \(T \) multiplicatively.

vol. 29, n° 3, 1995
An action of T on S is a function

$$T \times S \rightarrow S$$

$$(t, s) \mapsto ts$$

satisfying for every $t, t' \in T$ and $s, s' \in S$:

- $t(s + s') = ts + ts'$;
- $t(t's) = (tt')s$.

Given an action of T on S, the semidirect product $S \rtimes T$ is the semigroup defined on $S \times T$ by the multiplication

$$(s, t)(s', t') = (s + ts', t't).$$

The multiplication in $S \rtimes T$ is associative. Thus $S \rtimes T$ is a semigroup.

In this paper, we only consider semidirect products $S \rtimes T$ given by actions of T on S that are described by monoid homomorphisms $\varphi : T^1 \rightarrow \text{End } S$ from T^1 into the monoid of endomorphisms of S. In the terminology adopted by Eilenberg [15], this means that we only consider left unitary actions, that is actions of T on S that satisfy $1s = s$ for every $s \in S$. Here T^1 denotes the semigroup $T \cup \{1\}$ obtained from T by adjoining an identity if T does not have one, and $T^1 = T$ otherwise.

If V and W are varieties of semigroups, the product $V \star W$ is the variety generated by all semigroups of the form $S \rtimes T$ with $S \in V$ and $T \in W$. The product of two S-varieties (or M-varieties) is defined analogously. The operation \star defined on varieties is associative.

There remain many problems to be solved on products of S-varieties (or M-varieties). The most important of these is the following. Given two decidable S-varieties (or M-varieties), is the product decidable? A particular case of this problem is well known in the theory of semigroups. Karnofsky and Rhodes [18] have established the decidability of the M-varieties $A \star G$ and $G \star A$. Here, A denotes the M-variety of aperiodic monoids and G the M-variety of groups.

This paper deals in particular with products of the form J_1^k. It is known that $\bigcup_{k \geq 0} J_1^k$ is the M-variety R of all finite R-trivial monoids (Stiffler [25]) and that J_1^k is decidable (Pin [21]).
1.3 Equations on products of varieties of semigroups

Let \(A^+ \) be the free semigroup over a denumerable alphabet \(A \) and let \(u, v \in A^+ \). We say that a semigroup \(S \) satisfies the equation \(u = v \) or the equation \(u = v \) holds in \(S \) (and we write \(S \models u = v \)) if for every morphism \(\varphi : A^+ \to S, u \varphi = v \varphi \). This means that, it we substitute elements of \(S \) for the letters in \(u \) and \(v \), we reach equalities in \(S \). For example, \(S \) is idempotent if it satisfies the equation \(x = x^2 \) and \(S \) is commutative if it satisfies the equation \(xy = yx \). For a sequence \(\mathcal{E} \) of equations and an equation \(u = v \), \(\mathcal{E} \vdash u = v \) (and we say \(u = v \) is deducible from \(\mathcal{E} \)) means that for every semigroup \(S \), if \(S \models \mathcal{E} \), then \(S \models u = v \).

Let \(V(u, v) \) be the class of finite semigroups \(S \) satisfying the equation \(u = v \). It is easy to show that \(V(u, v) \) is an S-variety.

Let \((u_i, v_i)_{i>0} \) be a sequence of pairs of words of \(A^+ \). Consider the following S-varieties:

\[
W = \bigcap_{i>0} V(u_i, v_i)
\]
\[
W' = \bigcup_{I>0} \bigcap_{i \geq I} V(u_i, v_i).
\]

We say that \(W \) is defined by the equations \(u_i = v_i (i > 0) \). This corresponds to the fact that a finite semigroup is in \(W \) if and only if it satisfies the equations \(u_i = v_i \) for every \(i > 0 \). We say that \(W' \) is ultimately defined by the equations \(u_i = v_i (i > 0) \). This corresponds to the fact that a finite semigroup is in \(W' \) if and only if it satisfies the equations \(u_i = v_i \) for every \(i \) sufficiently large.

The arguments above apply equally well to M-varieties. We only need to replace \(A^+ \) by \(A^* \) throughout.

Eilenberg and Schützenberger [16] have proved the following result. Every nonempty M-variety is ultimately defined by a sequence of equations, or every S-variety containing the trivial semigroup is ultimately defined by a sequence of equations. If \(V \) is the S-variety ultimately defined by the equations \(u_i = v_i, i > 0 \), then the same equations ultimately define the M-variety consisting of all the monoids in \(V \). Also every M-variety generated by a single monoid is defined by a (finite or infinite) sequence of equations.

Equational characterizations of all the M-varieties \(J_k \) are known [23], [5], [6], [10], [11]. In particular,
the M-variety J_1 is defined by the equations $x = x^2$ and $xy = yx$, so J_1 is the M-variety of idempotent and commutative monoids;

- the M-variety J_2 is defined by the equations $xyzx = xyxzx$ and $(xy)^2 = (yx)^2$;

- the M-variety J_3 is defined by the equations $xzyxvxwy = xzxyxvxwy$, $ywxvxyzx = ywxvxyzx$ and $(xy)^3 = (yx)^3$.

Definition 1.1: Let $k \geq 1$ and let $A = \{x_1, x_2, \ldots\}$ be a denumerable alphabet of variables including x ($x = x_1$).

E_k is the sequence of all equations (over A) of the form

$$u_1 \ldots u_i v_1 \ldots v_j = u_1 \ldots u_i x v_1 \ldots v_j$$

where

$$\{x\} \subseteq u_1 \alpha \subseteq \ldots \subseteq u_i \alpha$$

$$\{x\} \subseteq v_1 \alpha \subseteq \ldots \subseteq v_j \alpha$$

and where $i + j = k$.

Theorem 1.1 [10]: Let $k \geq 1$. The M-variety J_k is defined by E_k.

These results lead to the following question. Can the M-varieties J_k be defined by a finite sequence of equations? This question has been answered in [11]. The M-varieties J_k can be defined by a finite sequence of equations if and only if $k = 1$, 2 or 3.

Equations are known for the product of the S-variety of semilattices, groups, and R-trivial semigroups by the S-variety of locally trivial semigroups [15]. These results have important applications to language theory [14], [15].

Pin [22] has shown that the M-variety $J_1 \ast J_1$ is defined by the equations $xux = xux^2$ and $xuyvyx = xuyvyx$. A result of Irastorza [17] shows that the M-varieties $J_1 \ast (Z_k)$ are not defined by finite sequences of equations. Here, (Z_k) denotes the M-variety generated by the cyclic group Z_k of order k which is defined by the equations $x^k = 1$ and $xy = yx$. Almeida [3] has shown that J^k_1 is defined by a finite sequence of equations if and only if $k = 1$ or 2. Ash [4] has shown that $J_1 \ast G = \Inv$ is defined by the equation $x^\omega y^\omega = y^\omega x^\omega$. The M-variety of groups G is defined by the equation $x^\omega = 1$, and \Inv denotes the M-variety generated by the inverse semigroups.
2. ON A COMPLETE SEQUENCE OF EQUATIONS FOR $J_1 \ast J_k$

In this section, in order to simplify the notation, we will denote also by J_k the S-variety generated by J_k. It will be convenient to denote by J_0 the S-variety defined by the equation $x = y$. In this section, we work essentially with semigroups.

Our results follow from an approach to the semidirect product that was introduced in Almeida [1].

The free object on the set X in the variety generated by an S-variety (or M-variety) V will be denoted by $F_X V$. We will also write $F_i V$ as an abbreviation for $F_{\{x_1, \ldots, x_i\}} V$. For every $i \geq 1$ and $k \geq 1$, the free object $F_i (J_k)$ can be viewed as a set of representatives of classes modulo \sim_k of words over $\{x_1, \ldots, x_i\}$. This set is finite. For $i \geq 1$ and $k \geq 1$, let $p_i, k : \{x_1, \ldots, x_i\}^+ \to F_i (J_1 \ast J_k)$ be the canonical projection that maps the letter x_j onto the generator x_j of $F_i (J_1 \ast J_k)$, and let $q_i, k : \{x_1, \ldots, x_i\}^+ \to F_i (J_k)$ be the canonical projection that maps the letter x_j onto the generator x_j of $F_i (J_k)$. If $u \in \{x_1, \ldots, x_i\}^+$, then $u q_i, k$ can be viewed as a representative of the class modulo \sim of u.

Definition 2.1: Let $k \geq 1$ and $u \in \{x_1, \ldots, x_i\}^+$.
$u \alpha_{i, k}$ is the set of all pairs of the form
\[(u' q_{i, k}, x) \in (F_i (J_k))^1 \times \{x_1, \ldots, x_i\}\]
where $u = u' x u''$ for some $u', u'' \in \{x_1, \ldots, x_i\}^*$.

In the case of $k = 0$, $(F_i (J_0))^1 = \{1\}$ and so $u \alpha_{i, 0} = \{1\} \times u \alpha$.

The following lemmas will help us give an equational characterization of $J_1 \ast J_k$. Lemma 2.1 provides an algorithm to decide when an equation holds in $J_1 \ast J_k$.

Lemma 2.1: Let $k \geq 0$ and $u, v \in \{x_1, \ldots, x_i\}^+$. Then
\[J_1 \ast J_k \models u = v\]
if and only if $u \alpha_{i, k} = v \alpha_{i, k}$.

Proof: For $k = 0$, we have that $J_1 \models u = v$ if and only if $u \alpha = v \alpha$. Since $F_i (J_k)$ is finite for every $i \geq 1$ and $k \geq 1$, a representation of free objects for a semidirect product of S-varieties obtained in [1] implies that $F_i (J_1 \ast J_k)$ is also finite for every $i \geq 1$ and $k \geq 1$. Moreover, there
is an embedding of $F_i (J_1 \star J_k)$ into $F_Y (J_1) \star F_i (J_k)$ that maps x_j into $((1, x_j), x_j)$. Here $Y = (F_i (J_k))^1 \times \{x_1, \ldots, x_i\}$ and the action in the semidirect product of the free objects is given by $x_j (s, x_j^r) = (x_j s, x_j^r)$ for $s \in (F_i (J_k))^1$. The word $x_j \ldots x_j^r$ is mapped into

$$((1, x_j) + (x_j, x_j^2) + \ldots + (x_j \ldots x_j^r, x_j), x_j \ldots x_j^r).$$

Suppose that $J_1 \star J_k \models u = v$, or that $u p_i, k = v p_i, k$. This is equivalent to the two conditions $u \alpha_i, k = v \alpha_i, k$ and $J_k \models u = v$. Observe that $J_k \models u = v$ if and only if $u q_i, k = v q_i, k$. The result follows since $u \alpha_i, k = v \alpha_i, k$ implies $u q_i, k = v q_i, k$.

Let $k \geq 1$. Let $u, v \in \{x_1, \ldots, x_i\}^+$ be such that $u \alpha_i, k = v \alpha_i, k$. Let $x \in u \alpha$ and consider the first occurrence of x in u.

Case 1. If x is the last letter occurring for the first time in u, then there is a factorization $u = u_1 x u_2$ with $u_1, u_2 \in \{x_1, \ldots, x_i\}^*$, $x \not\in u_1 \alpha$ and $u_2 \alpha \subseteq (u_1 x) \alpha$. In such a case, since $u \alpha_i, k = v \alpha_i, k$, there is also a factorization $v = v_1 x v_2$ with $v_1, v_2 \in \{x_1, \ldots, x_i\}^*$ and $x \not\in v_1 \alpha$.

Case 2. If x is not the last letter occurring for the first time in u, then there is a factorization $u = u_1 x u_2 y u_3$ with $u_1, u_2, u_3 \in \{x_1, \ldots, x_i\}^*$, $x \not\in u_1 \alpha$, $u_2 \alpha \subseteq (u_1 x) \alpha$ and $y \not\in (u_1 x u_2) \alpha$. In such a case, since $u \alpha_i, k = v \alpha_i, k$, there is also a factorization $v = v_1 x v_2 y v_3$ with $v_1, v_2, v_3 \in \{x_1, \ldots, x_i\}^*$, $x \not\in v_1 \alpha$ and $y \not\in (v_1 x v_2) \alpha$.

Lemma 2.2: In Case 1 and Case 2, $u_2 \alpha_i, k-1 = v_2 \alpha_i, k-1$.

Proof: Let $u_2 = u'_2 z u''_2$ with $z \in \{x_1, \ldots, x_i\}$. Consider the pair $(u'_2 q_i, k-1, z)$ in $u_2 \alpha_i, k-1$. The pair $((u_1 x u'_2) q_i, k, z)$ is in $u \alpha_i, k$. Since $u \alpha_i, k = v \alpha_i, k$, there is a factorization $v = v' z v''$ with $(u_1 x u'_2) q_i, k = v' q_i, k$. It follows that the \sim_k-class of $u_1 x u'_2$ is equal to the \sim_k-class of v' and hence $x \in v' \alpha$ and, in Case 2, $y \not\in v' \alpha$. Therefore, the chosen occurrence of z in $v = v' z v''$ must be in v_2. There is then a factorization $v_2 = v'_2 z v''_2$ such that $v' = v_1 x v'_2$. Hence $(u'_2 q_i, k-1, z) = (v'_2 q_i, k-1, z)$ and the pair $(u'_2 q_i, k-1, z)$ is in $v_2 \alpha_i, k-1$. Then inclusion $u_2 \alpha_i, k-1 \subseteq v_2 \alpha_i, k-1$ follows. The reverse inclusion is similar.

Definition 2.2: Let $k \geq 1$ and let $A = \{x_1, x_2, x_3, \ldots\}$ be a denumerable alphabet of variables including x and y ($u = x_1$ and $y = x_2$).

C_k is the sequence of all equations (over A) of the form

$$u_k \ldots u_1 x = u_k \ldots u_1 x^2.$$

Informatique théorique et Applications/Theoretical Informatics and Applications
where

\[\{x\} \subseteq u_1 \alpha \subseteq \ldots \subseteq u_k \alpha \]

\(D_k\) is the sequence of all equations (over \(A\)) of the form

\[u_k \ldots u_1 xy = u_k \ldots u_1 yx \]

where

\[\{x, y\} \subseteq u_1 \alpha \subseteq \ldots \subseteq u_k \alpha. \]

We define \(C_0\) as the sequence consisting of the equation \(x = x^2\) and \(D_0\) the sequence consisting of \(xy = yx\).

Let \(J_k\) denote the variety of all semigroups that satisfy all the equations in \(E_k\). The variety \(J_k\) is locally finite, or every finitely generated semigroup in \(J_k\) is finite. For a class \(C\) of semigroups, we denote by \(C^F\) the class of all finite semigroups of \(C\). The equality \(J_k = (J_k)^F\) holds. By [1], if \(k \geq 1\), then the equality \((J_1 * J_k)^F = J_1 * J_k\) holds and \(J_1 * J_k\) is locally finite. Hence \(J_1 * J_k\) is generated by \(J_1 * J_k\) and so \(F_i(J_1 * J_k)\) is the free object on \(\{x_1, \ldots, x_i\}\) in the variety \(J_1 * J_k\).

Theorem 2.1: Let \(k \geq 0\). The variety \(J_1 * J_k\) is defined by \(C_k \cup D_k\).

Proof: We first want to show that \(J_1 * J_k \models C_k \cup D_k\). Let \(u, v \in \{x_1, \ldots, x_i\}^+\) be such that \(u = v\) is an equation in \(D_k\) (the case of equations in \(C_k\) is similar). By Lemma 2.1, it suffices to show that \(u \alpha_{i,k} = v \alpha_{i,k}\). Let \(u = u_k \ldots u_1 xy\) and \(v = u_k \ldots u_1 yx\) be such that \(\{x, y\} \subseteq u_1 \alpha \subseteq \ldots \subseteq u_k \alpha\). Note that

\[((u_k \ldots u_1) q_{i,k}, x) = ((u_k \ldots u_1 y) q_{i,k}, x) \]

since the words \(u_k \ldots u_1\) and \(u_k \ldots u_1 y\) are \(\sim_k\)-equivalent. Note also that

\[((u_k \ldots u_1 x) q_{i,k}, y) = ((u_k \ldots u_1) q_{i,k}, y) \]

The equality \(u \alpha_{i,k} = v \alpha_{i,k}\) follows.

Conversely, we want to show that if \(u, v \in \{x_1, \ldots, x_i\}^+\) are such that \(u \alpha_{i,k} = v \alpha_{i,k}\), then \(C_k \cup D_k \vdash u = v\). So, assume that \(u \alpha_{i,k} = v \alpha_{i,k}\). Let \(x \in u \alpha\) and consider the first occurrence of \(x\) in \(u\) and \(v\). As in Lemma 2.2, we denote by \(u_1\) (respectively \(v_1\)) the longest prefix of \(u\) (respectively \(v\)) in which the letter \(x\) does not occur, and we denote by \(u_2\) (respectively \(v_2\)) the longest segment of \(u\) (respectively \(v\)) following the first occurrence of \(x\) in \(u\) (respectively \(v\)) that does not involve any new letters. By Lemma 2.2, the equality \(u_2 \alpha_{i,k-1} = v_2 \alpha_{i,k-1}\) holds. By the inductive hypothesis on
k, we conclude that the equation \(u_2 = v_2 \) is deducible from \(C_{k-1} \cup D_{k-1} \).
By a result of [3] (Proposition 2.3), since \(C_{k-1} \cup D_{k-1} \vdash u_2 = v_2 \) and \(u_2 \alpha \subseteq (x_1 x) \alpha \), then \(C_k \cup D_k \vdash u_1 xu_2 = u_1 xv_2 \).

Let \(z \in \{x_1, \ldots, x_i\} \). Let \(u' \) (respectively \(v' \)) be the longest prefix of \(u \) (respectively \(v \)) before the first occurrence of \(z \). We show that the equation \(u' = v' \) is deducible from \(C_k \cup D_k \). If \(z \) is the first letter in \(u \) (and so also the first letter in \(v \)), then the equation \(u' = v' \) becomes \(1 = 1 \). We assume that it is true for the first occurrence of \(z = x \) (as in Lemma 2.2), or \(C_k \cup D_k \vdash u_1 = v_1 \). Here \(u_1 xu_2 = u_1 xv_2 = v_1 xv_2 \) is deducible from \(C_k \cup D_k \). If \(x \) is the last letter occurring for the first time in \(u \) (as in Case 1 of Lemma 2.2), we obtain that the equation \(u = v \) is deducible from \(C_k \cup D_k \). Otherwise, the induction step allows us to proceed until the first occurrence of another letter, say \(z = y \) (as in Case 2 of Lemma 2.2). After every letter of \(u \) has been found, we obtain the deducibility of the equation \(u = v \) from \(C_k \cup D_k \).

Since \(J_1 \ast J_k = (J_1 \ast J_k)^F \), any sequence of equations for \(J_1 \ast J_k \) is also a sequence of equations for \(J_1 \ast J_k \).

Corollary 2.1: Let \(k \geq 0 \). The S-variety \(J_1 \ast J_k \) is defined by \(C_k \cup D_k \).

Note that if two words \(u \) and \(v \) form an equation \(u = v \) for \(J_1 \ast J_k \), then \(u \sim_{k+1} v \). Equations for other S-varieties generalizing the S-varieties \(J_k \) have been built from properties of congruences generalizing the congruences \(\sim_k \) (see [7], [8], [9], [12]).

Pin has given the equational characterization of \(J_1 \ast J_1 \) of Theorem 2.2 and Almeida the characterization of \(J_1^k \) of Theorem 2.3.

Theorem 2.2. (Pin [22]): The S-variety \(J_1 \ast J_1 \) is defined by \(C_1 \cup D_1 \) or equivalently by the two equations \(xux = xux^2 \) and \(xuyuy = xuyvyx \).

Theorem 2.3 (Almeida [3]): Let \(k \geq 0 \). The S-variety \(J_1^{k+1} \) is defined by \(C_k \cup D_k \).

From the preceding results, we deduce the following corollary.

Corollary 2.2: Let \(k \geq 0 \). The S-varieties \(J_1 \ast J_k \) and \(J_1^{k+1} \) are equal and hence the S-variety \(J_1 \ast J_k \) is decidable.

A result of Almeida [3] implies the following.

Corollary 2.3: The S-variety \(J_1 \ast J_k \) is defined by a finite sequence of equations if and only if \(k = 1 \).

Informatique théorique et Applications/Theoretical Informatics and Applications
As mentioned at the beginning of this section, we have worked essentially with semigroups in section 2. As explained in [3], since the \(S \)-variety generated by the \(M \)-variety \(J_k \) is monoidal, results such as Theorems 2.2 and 2.3, and Corollaries 2.1, 2.2 and 2.3 can be translated to results on the \(M \)-varieties \(J_1 \ast J_k \) and \(J_1^{k+1} \).

3. ON A CONJECTURE OF PIN

Theorem 3.1 gives a new proof that a conjecture of Pin concerning tree-hierarchies of \(M \)-varieties is false (another proof was given in [13] using different techniques). Let \(M_1, \ldots, M_k \) be finite monoids. The Schützenberger product of \(M_1, \ldots, M_k \), denoted by \(\mathcal{Q}_k (M_1, \ldots, M_k) \), is the submonoid of upper triangular \(k \times k \) matrices with the usual multiplication of matrices, of the form \(x = (x_{ij}) \), \(1 \leq i, j \leq k \), in which the \((i, j) \)-entry is a subset of \(M_1 \times \ldots \times M_k \) and all of whose diagonal entries are singletons, that is

1. \(x_{ij} = \emptyset \) if \(i > j \);
2. \(x_{ii} = \{(1, \ldots, 1, m_i, 1, \ldots, 1)\} \) for some \(m_i \in M_i \) (here, \(m_i \) is the \(i \)th component in the \(k \)-tuple);
3. \(x_{ij} \subseteq \{(m_1, \ldots, m_k) \in M_1 \times \ldots \times M_k \mid m_1 = \ldots = m_{i-1} = 1 = m_{j+1} = \ldots = m_k\} \)

(here, 1 is the identity of \(M_1, \ldots, M_k \)).

Condition (2) allows to identify \(x_{ii} \) with an element of \(M_i \) and Condition (3) \(x_{ij} \) with a subset of \(M_i \times \ldots \times M_j \). If \(\bar{m} = (m_i, \ldots, m_j) \in M_i \times \ldots \times M_j \)
and
\(\bar{m}' = (m_i', \ldots, m_j') \in M_i' \times \ldots \times M_j' \),
then \(\bar{m} \bar{m}' = (m_i, \ldots, m_{j-1}, m_j m_i', m_{i'+1}, \ldots, m_j') \) if \(j = j' \), and is undefined otherwise. This multiplication is extended to sets in the usual fashion; addition is given by set union.

We will denote by \(T \) the set of trees on the alphabet \(\{a, \bar{a}\} \). Formally, \(T \) is the set of words in \(\{a, \bar{a}\}^* \) congruent to 1 in the congruence generated by the relation \(a\bar{a} = 1 \). Intuitively, the words in \(T \) are obtained as follows: we draw a tree and starting from the root we code \(a \) for going down and \(\bar{a} \) for going up. For example,
is coded by \texttt{aa\ldots aa} (where each \texttt{a} is coded by \texttt{a}). The number of leaves of a word \(t\) in \(\{a, \bar{a}\}^*\), denoted by \(l(t)\) is by definition the number of occurrences of the factor \(a\bar{a}\) in \(t\). Each tree \(t\) factors uniquely into \(t = at_1 \bar{a}at_2 \bar{a} \ldots at_k \bar{a}\) where \(k \geq 0\) and where the \(t_i\)'s are trees. Let \(t\) be a tree and let \(t = t_1 at_2 \bar{a}t_3\) be a factorization of \(t\). We say that the occurrences of \(a\) and \(\bar{a}\) defined by this factorization are related if \(t_2\) is a tree. Let \(t\) and \(t'\) be two trees. We say that \(t\) is \textit{extracted} from \(t'\) if \(t\) is obtained from \(t'\) by removing in \(t'\) a certain number of related occurrences of \(a\) and \(\bar{a}\). We now give Pin's tree hierarchy construction using Schützenberger's product.

To each tree \(t\) and to each sequence \(V_1, \ldots, V_{l(t)}\) of \(M\)-varieties is associated an \(M\)-variety \(\diamond_t (V_1, \ldots, V_{l(t)})\) defined recursively by:

1. \(\diamond_1 (V) = V\) for every \(M\)-variety \(V\);
2. if \(t = at_1 \bar{a}at_2 \bar{a} \ldots at_k \bar{a}\) with \(k \geq 0\) and \(t_1, \ldots, t_k \in T\),
 \(\diamond_t (V_1, \ldots, V_{l(t)})\) is the \(M\)-variety of monoids that divide some
 \(\diamond_k (M_1, \ldots, M_k)\) with \(M_1 \in \diamond_{t_1} (V_1, \ldots, V_{l(t_1)}), \ldots, M_k \in \diamond_{t_k} (V_{l(t_1)} + \ldots + l(t_{k-1}) + 1, \ldots, V_{l(t_k)} + \ldots + l(t_k))\).

 When \(V_1 = \ldots = V_{l(t)} = V\), we denote simply by \(\diamond_t (V)\) the \(M\)-variety
 \(\diamond_t (V_1, \ldots, V_{l(t)})\). More generally, if \(T\) is a language contained in \(T\), we
 denote by \(\diamond_T (V)\) the smallest \(M\)-variety containing the \(M\)-varieties \(\diamond_t (V)\)
 with \(t \in T\).

Let \(I\) denote the trivial \(M\)-variety. In [21], the following equalities are shown:
\(\diamond_{(a\bar{a})}^+ (I) = J_k\) and \(\diamond_{(a\bar{a})} (I) = J\). Also, it is shown there that if \(V\) is an arbitrary \(M\)-variety, then \(\diamond_{(a\bar{a})}^2 (V, I) = J_1 \ast V\).

Among the many problems concerning these tree hierarchies, is the comparison between the \(M\)-varieties inside a hierarchy. More precisely, the problem consists in comparing the different \(M\)-varieties \(\diamond_t (V)\) (or even \(\diamond_T (V)\)). A partial result and a conjecture on this problem was given in Pin [21]. It was shown that for every \(M\)-variety \(V\), if \(t\) is extracted
from t', then $\diamondsuit_t(V) \subseteq \diamondsuit_{t'}(V)$, and it was conjectured that if $t, t' \in T'$, $\diamondsuit_t(I) \subseteq \diamondsuit_{t'}(I)$ if and only if t is extracted from t'. Here, T' denotes the set of trees in which each node is of arity different from 1.

Theorem 3.1: The above conjecture is false.

Proof: To see this, let $k > 1$ and let $t = a_{k+1}(\bar{a}a\bar{a})^{k+1}$ and $t' = a(a\bar{a})^{k+1} \bar{a}a\bar{a}$. The equalities $\diamondsuit_t(I) = J_1^{k+1}$ and $\diamondsuit_{t'}(I) = \diamondsuit_{(a\bar{a})^2}(J_k, I) = J_1 \ast J_k$ hold. But $J_1 \ast J_k = J_1^{k+1}$ by Corollary 2.2 (M-variety version), and it is easy to verify that the tree t is not extracted from the tree t'. □

REFERENCES