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ON CODES HAVING NO FINITE COMPLETION (*)

by NGUYEN HUONG LAM (*)

Communicated by J. BERSTEL

Abstract. - For each natural number n > 5 and n / 6,we propose a class offiniîely incompleîable
codes that contain an on a binary alphabet {a, b}. The construction is essentially based on
unambiguous pairs unembeddable to a factorization of Zn .

Résumé. - On présente une technique pour construire une famille de codes finiment incompletables
contenant le mot an pour tout n > 5 et n ^ 6 sur un alphabet {a, b}. Cette construction est basée
sur la notion de paires nonambigües incompletables en une factorisation de Zn.

1. INTRODUCTION

In this article, we deal with the notion of maximal code, which plays an
important rôle in the theory of variable length codes. For background we
refer to the book of Berstel and Perrin [1].

A typical resuit about codes is that every code is embedded into a maximal
one Le., a code any proper superset of it is no longer a code. Proving existence
of such a maximal code is a standard technique by application of Zorn's
lemma. Similarly, the problem of embedding a code into a maximal one
is raised for special families of codes, which often requires more elaborate
constructions than a simple application of Zorn's lemma. We mention two
major results. First, Ehrenfeucht and Rozenberg proved that each regular
code is embedded into a maximal code which is also regular [5], Second,
for the family of regular codes with finite deciphering delay, V. Bruyère,
Limin Wang and Liang Zhang have recently showed that every such code is
included in a regular maximal code with the same delay [2].

For finite codes, the situation is different. In [10], Restivo proposed a
class of finite codes not contained in any finite maximal code. As the
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146 NGUYEN HUONG LAM

smallest among them one can take the code {a5, a2 6, 6a, 6} on a binary
alphabet {a, 6}. The very same example can be found in an earlier work
of AL A. Markov [9], Further, some extensions and other constructions are
presented in [4]. All of them are codes in a* Ua* 6u6a*, containing {an, 6},
but the constructions work only in case n is a prime larger than 3 or n ~~ 1
is a composite larger than 6. In this paper, basing on simple multiplication
properties of integers, we propose some constructions yielding finite codes
with no finite completion covering all the existing classes in [9], [10], [4].
In f act, we prove that for any integer n > 5 and n / 6 , there exist a
code in a* U a* 6 U 6a* containing {a™, 6} having no finite completion. The
cases of n = 2, 3, 4, 6 remain open. Codes of the form a* U a* 6 U 6a*
are closely connected with the notion of factorization of the group Zn

of residues modulo n, so we investigate a special class of factorizations
of Zn called elementary factorizations. Those factorizations are helpful in
generating codes having no finite completion to our purpose.

2. NOTATIONS AND MAIN RESULTS

Let A = {a, 6} be a binary alphabet and A* the set of words on A with
the catenation as product. A subset C of A* is a code if a word is expressed
as a product of words from C, it is so uniquely Le., whenever

C\ ...Cn = Cj . . . C m

then m — n and c\ = c^,..., cm = c^. A code is said to be maximal if it
is not a proper subset of any other code. An application of Zorn's lemma
shows that every code is contained in a maximal one, called a completion
of it. If a code has a finite completion, we say also it ïsfinitely completable;
otherwise, we say that it is finitely incompletable. For some background
information and définitions we refer to [1].

Let dénote N the set of nonnegative integers and for n > 1,

Zn the residue class group modulo n. We recall a notion from [11]. A pair
(H, K) of subsets of N is called an unambiguous pair provided, whenever

h + k = ti + k'

for h, hf G H and fc, kf G K, then h — h!, k = kf. More specifically, we say
that (iJ, K) is an unambiguous pair for a subset S if it is an unambiguous
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ON CODES HAVING NO FINITE COMPLETION 147

pair and H + K = {i + j : i E H, j £ K} Ç S. Likewise, we introducé
the following

DÉFINITION 1: The pair (iï, K) of subsets of Zn is called an unambiguous
pair of Zn if for any s G S there exist at most one pair (i, j) G (Hy K)
such that s = i + j .

The classical notion of factorization of Zn [6] is that of unambiguous
pair such that H + K = Zn .

Since Nn is a complete residue System to the modulus n, we usually
identify each element of Zn by its représentative in N n . By this convention,
every unambiguous pair of Zn is an unambiguous pair and, vice versa,
every unambiguous pair for N n can be viewed as that of Zn . In particular,
an unambiguous pair (H, K) for N n with H + K — Nn is obviously a
factorization of Zn and is called in [11] an elementary factorization of Zn .

From now on, for our purposes, the summands of unambiguous pairs
of Zn are supposed to contain 0, if we do not specify otherwise. We say
that an unambiguous pair is nontrivial if each summand contains more than
one element.

For any subset C Ç 4*, we define the pair of subsets of N [11]

L(C) = {i:b+alnC^ 0}, R(C) = {j : a3 b+ n G / 0}.

and for any pair of subsets (L, R) of Zn let define the following language

C (L, R) = {an, b} U {ba% : % G L} U {aJ 6 : j G i?}.

The following assertion is straightforward [11].

PROPOSITION l: If C Ç. A* is a code such that {an, 6} Ç C, n > 1,
(i) (L (C), i2 (C)) is an unambiguous pair of Zn;

(ii) for any unambiguous pair (L, R) ofZn, C — C (L, R) is a code and
L(C) = L, R(C) - R.

The following statement is simple but important for our considération [11].

PROPOSITION 2: Let C be a code such that {an, b} Ç C then C has a
finite completion only if there exists a factorization (iî, K) ofZn such that
L(C) Ç H and R(C) Ç K,

Proof: Suppose that C has a finite completion X. Clearly, L (C) Ç L (X),
R(C) Ç R(X). To prove that (L(X), JR(X)> is a factorization of Zn,
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by Proposition 1, it suffices to show that for any s G Zn , there exist
(i, j) G (L(X), R(X)) such that 5 = z + jmodn . Let d be any integer
larger than the maximal length of the words of X and congruent to s
modulo n. Consider the word w = bd adbd. Since X is maximal, it is
complete [1], hence there are u, v G A*, x\,..., xm G X such that

Let p be the largest and q the smallest integer such that

\ubd\ < \xi. . .a;p| < |üfedad| < \x! . . .rcQ|.

Since d > \xq\ we have

Xp € 6* a*, iCp+i = . . . = xq-i — an, xq G o? b*

and thus s = d = i + j mod n. By Proposition 1, (L(X), i ï (X)) is a
factorization of Zn . The proof is complete.

Now we attend to the construction of finitely incompletable codes. The
following observation is crucial: for any factorization (iï, K) of Zn ,
\H\ \KI = n, where \H\ dénotes the cardinality of H. The argument in
[4] and [10] requires the existence of a nontrivial factorization of Zn_i that
is possible only in case n — 1 is a composite number, in particular, that
is the case when n = p is a prime > 5. Ho we ver, we have the following
proposition which will give rise to a construction yielding the desired code
for all n > 5 and n / 6.

PROPOSITION 3: Let n, d,t, j be integer s such that d does not divide n and
n = td-\- j with t > 2, 0 < j < d — 1. If (L, R) is an unambiguous pair of
Tin such that \R\ = t and either of the following conditions

(i) t \ j and \L\ = d,
(ii) {0, 1,..., d- 1} = L and d G R

holds then C (L, R) has no finite completion.

Proof: Suppose on the contrary that C (L, R) has a finite completion,
therefore L Ç H, R Ç K for some factorization (# , K) of Zn . For |L| > d,
we have |ÜT| = |i?|, otherwise it follows

n = |üf I | F | > (|iï| + 1) \L\ > {t + 1) d > dt + j - n

So in both cases (i) and (ii), K — R.

Let now (i) hold. Since n = \H\\K\ = (|JT| - d)t + dt, it follows
j = (|i7| ~ d)t which contradicts the assumption t \ j . Therefore, C (L, i2)
has no finite completion in this case.
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ON CODES HAVING NO HNITE COMPLETION 149

Next, suppose that (ii) holds. Let K — R — {ko, fci,..., fct-i}. where
&0 = xo d + jo, —Î fet-i = xt-l d + j t - i with 0 < jn,..., j t - i < d and
#0 < x\ < •- < #t-i < £• Since {0, 1,..., d — 1} = L and (L, JR) is an
unambiguous pair, we have

0 < xo < xi < ... < xt_i < t.

If xt_i = t, as kt-i < n, then j t - i < j , which implies

0 = n — kt-i + (j - jt-i) mod n

that is impossible, since 0 ^ j — jt-i G L and kt-i G iî. Consequently,
we have

xo = 0, xi — 1,..., xt-i = t - 1.

As is supposed 0, d G -R, hence jo — 0, j i — 0. It can be seen also that

0 < h < h < - < Jt-i < j.

In fact, for example, j$ < J2 implies

with 0 < d-(J2 — J3) < d that contradicts the uniqueness of the présentation
L + R. Further, if jo — Ji = ••• = 3t-\ = 0, any element of H — L must
have the form td + ƒ , ^' < j . Hence the congruence

td + ƒ + d = d - j + ƒ modn

with 0 < d — j + ƒ < d implies that (i/, K) is not a factorization:
a contradiction. Thus, otherwise, let 5 be the minimal number such that
j s 7̂  0, hence t — 1 > 5 > 2. Consider the number sd. Clearly sd 0 K] sd
cannot belong to H, since sd + d = sd + j 5 + (d — j 5 ) with d — j s E L Ç H
and d G if. Consequently, sd = h + k, h e H - {0}, k e K - {0}. We
show that this possibility also leads to a contradiction. We have two cases

(l) sd = h + k => k < sd => k = ld (Q < l < s) => h = md (m > 0).
As d G K, we have m > 1, which implies Z < s — 1. But then

(5 + 1) d = sd + J s + (d-js) = md+ (l + 1) d,

where / + 1 <s=>(l + l)dçK that violâtes the assumption.

(2) sd + n = Zi + &. Set h = xd + f=>x<t (by convention /*, < n),
A; - id + ji => 0 < i < t - 1. We have

(s + t) d + j = (x + i) d + ( ƒ + ji).
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Since ji < j9 then j = ƒ + j i , x + % — t = s . Hence 0<i —
and ƒ + j ; _ 5 + i < ƒ + ji - j . Bu t then

= d - j + ƒ + ii-5+i mod n

with O < d — j + f + ji-5+i < d. This is a contradiction with the assumption
(#, i£) a factorization of Zn , since xd + ƒ > 0, (z — s + 1) d + ji-s+i > 0.
This concludes the proof.

It turns out that, for all n > 5, n ^ 6, we can find a pair (L, R) satisfying
(i) or (ii) of Proposition 3:

If n is odd, we have n = . 2 + 1, where d = > 1, t = 2, j — 1

and 11 j and any nontrivial unambiguous pair (L, i?) with IL| = d will do
n — 2

(for instance L = {0,..., d - 1 } , iï = {0, d}). If n is even, n = .2+2;

d = ^ - ^ > 3 (as n > 6), t = 2, j = 2. We set L = {0, 1,..., d - 1},
i? = {0, d} and see that (L, ü) , being a nontrivial factorization of Zn ,
satisfies (ii) of Proposition 3. Thus, we have proved

THEOREM 1: For all n > 5, n ^ 6 there exists a code containing {an. b}
having no finite completion.

Example 1: Let n = 8, we choose d = 3, £ = 2, j = 2 and set
L = {0, 1, 2}, i* = {0, 3}; so C (L, E) = {a8, 6a, 6a2, a3 6, 6} is finitely
incompletable. For n — 10, beside d = 4, t = 2, jf = 2, we can take
also d = 3, t = 3, j = 1. As t f j for L = {0, 1, 2}, R = {0, 3, 7},
C (L, i£) = {a10, 6a, 6a2, a3 6, a7 6, 6} is finitely incompletable.

For some values of n, the argument is simpler as direct conséquences
of Proposition 2. First, if n — p is a prime number, there is no nontrivial
factorization of Zn. So, we have [11].

COROLLARY 1: Let p be a prime and (L, R) a nontrivial unambiguous pair
of Tip, then C{L, R) has no finite completion.

Remark: In particular, when (L, R) is a nontrivial unambiguous pair for
Np_i (p > 5), we obtain the class of codes of Restivo [10], [11].

Proof: If C = C (L, i?) has a finite completion then there is a factorization
(Jï, if) of Zp suchthatL = L(C) Ç H, R = R(C) Ç K,byProposition 2.
Then |ff| > \L(C)\ > 2, |X| > |B(C)| > 2 and p = |ZP | = |/f| | # | ,
which is impossible as p is prime.
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Example 2: For a prime p > 3 (H = {0, 1}, K = {0, 2}) is a nontrivial
unambiguous pair of Zp. Then C (H, K) — {ap, ba, a2 b, b} is a finitely
incompletable code. If we take H = {0, p + 1}, K = {0, p - 2}, ( # , if)
is again a nontrivial unambiguous pair of Zp, thus {ap, 6ap+1 , ap~2 6, 6}
has no finite completion.

Exploiting once again Proposition 2, we have the following assertion for
odd composite numbers > 5.

COROLLARY 2: Let n > 5 be an odd composite then there exists a code
containing {an, b} and hoving no finite completion.

Proof: Let p be the least prime divisor of n, say, n = ps. As n is
odd composite, p, 5 are odd and n > s > p > 3. Consider L = {0, 1},
i2 = {0, 2,..., .2s}. Evidently, (L, iî) is an unambiguous pair of Z n . If
(L, iî) could be completed to a factorization (iî, üf) of Zn , then \H\ > \L\
and |JEf | be a divisor of n, which imply \H\ > p. Since \K\ > |i?| = s + 1,
we get n — |iï | |ÜT| > p (s + 1) > ps — n, which is a contradiction showing
that C (L) R) is finitely incompletable.

In the following proposition, we extend the construction of and [4].

PROPOSITION 4: Let (L, R) be an unambiguous pair of Zn such that
min{|L|, \R\} > n - \L\ \R\ > 0. Then the code C {L, R) has no finite
completion.

Proof: Suppose on the contrary that C (L, R) has a finite completion. By
Proposition 2, L C if, iî Ç K for some factorization (if, K) of Zn. Since
|L| \R\ < n, either \H\ > \L\ or |/f| > |JÎ|. Say, \H\ > \L\, then

= \L\ \R\ + \R\ > \L\ \R\ + n - |L| \R\ = n : a contraction.

Remark: For any nontrivial unambiguous pair (L, iî) of Zn with
|iî| |JL| = n - 1, as (L, R) is an unambiguous pair for the set S = {i + j :
i G L, j G iî} = {0, 1,..,, n — 1} \ t modulo n for some t : 0 < t < n — 1,
we get the Corollary 2.3 of [4].

Example 3: (a) Let n be an odd integer > 5, n — 1 is even and > 4.
It is easy to obtain a nontrivial unambiguous pair for N n - i , for instance,
let n - 1 = 2 s, s > 2, we set H = {0, 1}, K = {0, 2,..., 2 (5 - 1)}.
Therefore, the code C (H, K) has no finite completion. It is another proof
of Corollary 2.
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(6) For some even integers, the construction of Proposition 4 is straight-
forward. Let n = 14, the subsets H = {0, 1, 2} and K = {0, 3, 6, 9}
constitute an unambiguous pair of Z u with \K\ > \H| = 3 > 14 — 12 — 2.
Analogously proceeded for n — 18.

Note that when n = 2, 3, 4 or 6, the existing methods fail. For many other
values of n, Proposition 4 cannot be applied readily as above, the smallest
one is n = 8, then Theorem 1 comes in handy (Example 1).

3. FACTORIZATIONS OF N n

In the previous section, factorizations of Zn play an important role in
our considération. It is of an interest to search for a method to generate
them. Determining all factorizations of Zn is very difficult and is still an
open question (see [6] and [8] for further référence). In this part, as an
appendix, we describe completely the structure of elementary factorizations
of Z n . As a matter of fact, this is an established result (e.g. [3], [7]). Our
approach is direct.

Let (if, K) be any elementary factorization of Zn . Obviously, 0 G H
and 0 G K. There exists uniquely a biggest integer d = d (H, K) such that
either {0, 1,..., d - l } Ç i î o r {0, 1,..., d - 1} Ç K. We always say by
convention that {0, 1,..., d — 1} Ç K, hence 1,..., d — 1 0 H. Define

H \ d = {i : id E H}7 K \d = {i : id G K}.

The theorem below gives a récurrent method for constmcting all elementary
factorizations of Z n ; (i) and (ii) were proved in [7], (iv) in [3],

THEOREM 2: Let (H, K) be an elementary factorization ofZn, then
(i) H conttains only multiples of d.

(ii) For all j G N, either {jd, jd + 1,..., jd + d - 1} Ç K or
{jd, jd + 1,..., jd + d - 1} n K = 0.

(iii) d(H, K) is a divisor of n : d(H, K)\n,

(iv) (H \ d, K\d) constitutes a factorization ofZq, where q = ——-.
d{H, K)

Proof: Actually, (i) and (ii) can be reformulated respectively as follows:

A(r) : Vr > 0, 0 < Vs < d : rd + s G H => s = 0;

and

B ( r ) :Vr > 0, 0 < V z , j < d : rd + i G # =̂> rd + j G ÜT,
Infonnatique théorique et Applications/Theoretical Informaties and Applications



ON CODES HAVING NO FINITE COMPLETION 153

which we handle by induction on r. A (0) and B (0) hold trivially. Suppose
now A (r), B (r) hold for ail r < l we prove them valid for r — l + 1.

If (/ + 1) d -f- s G H for some 0 < s < d, then clearly n > d and de H.
As 5 G K, we have (l + l)d & H. Further, the equality

(/ + 1) d + d = (ï + 1) d + 5 + (d - s)

withd, ( J+ l )d+s G H-{0} and d - s G -^-{0} shows that (/ + 1) d g K.
Thus, we have the représentation

(l + ï)d=h + k, h>0, h e H, k>0, k E K,

We write h = rd + 1 , 0 < t < d, r > 0. Since / i< (/ + 1) d, we have r < l
and by A (r), t = 0, hence k = rf d. Since k < (l + 1) d, r' < l, by B (r')
we get r' d + 5 G if. But then the equality

with h, (l +1) d+s G # - {0} and r' d+5 G K - {0} yields a contradiction.
Thus 5 = 0 and A(l + 1) holds.

Next, we prove B(l + 1). Suppose that 0 < i, j < d such that
(/ + 1) d + i G K,(l + l)d + j & K. Indeed n > d and d G if. In a
similar manner as above, from

and

if z > j , or

(J + 1) d + j + (d - (j - t)) = d + (f + 1) d + i

if j > i, we conclude that

(J + l )d + j g j f f U ü :

and as a conséquence

(l + l)d + j = h + k, h e H, h > 0, fc G if, fc > 0.

Consequently, h = rd + s, fe = r' d + t for

r < / + 1, 0 < 5 < d, r7 < i + 1, 0 < t < d.
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As h > 0 then r > 0 thus h > d and r' < L By B ( / ) , r' d + i G K
that lead to

that is quite a contradiction. So B (/ + 1) holds and (i) and (ii) are proved.

(iii) By (ii) d is a divisor of d\K \ d\ = \K\ that divides \H\ \K\ = n.
So d\n.

(iv) For every 0 < i < q — —, id is represented uniquely in the form
d

id = rd + ld, rd e H, Id G K.

Hence i has a unique représentation
i = r + l, r<EH\dy leK\d

that means (H \d, K\ d) is an elementary factorization of Zq. The proof
is completed.

The theorem shows that each elementary factorization of (iî, K) is
uniquely determined by d — d(H, K) and (H \ d, K \ d). Given any
proper divisor d of n and an elementary factorization (Hy K) of Z i with
1 E K, a simple direct vérification shows that (dif, dH + {0, 1,..., d — 1})
is the unique elementary factorization of Zn with

(dK \d,dH + {0, 1,..., d~l}\d) = (H, K)

and

{0, 1,..., rf-l}) = d.

Thus, ail elementary factorizations of Zn can be recurently found.

Example 4: We détermine ail elementary factorizations of Zg. Clearly,
Zi possesses only one elementary factorization: Ho — {û}, KQ — {0} and
N2 possesses only one elementary factorization: H\ = {0, 1}, K\ = {0};
Z4 has two elementary factorizations: H2 = {0,1, 2, 3}, î 2 = {0} and
Hz = {0, 1}, if3 = {0, 2}. Therefore Z8 has the following elementary
factorizations: {H, K) = ({0}, {1, 2, 3, 4, 5, 6, 7}), ({0, 4}, {0, 1, 2, 3}),
({0, 2, 4, 6}, {0, 1}), ({0, 2}, {0, 1, 4, 5}) withrespectively d - 8, 2, 2, 2
and (H\d,K\d) = (Ho, Ko), (Hu Kx\ (fT2, * 2 ) , (#3, ^ s ) .

Afote Added in the Final Version. For the case n — 6, the code
{a6, &a, a2 bay a

éba^ a3 6, 6} is finitely incompletable. Detailed argument
will appear elsewhere.
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