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ON PARALLEL DELETIONS APPLIED TO A WORD (*)

by Lila KARI (*), Alexandru MATEESCU C1),
Gheorghe PAUN (2) and Arto SALOMAA (l)

Communicated by J. BERSTEL

Abstract. - We consider sets arising front a single word by parallel deletion ofsubwords belonging
to a given language. The issues dealt with are raiher basic in language theory and combinatorics
ofwords. We prove that every finite set is a parallel deletion set but a strict hierarchy results from
k-bounded parallel deletions. We also discuss decidability, the parallel deletion number associated
to a word and a certain collapse set of a language, as well as point out some open problems.

Résumé. - Nous considérons les ensembles produits à partir d'un mot par l'effacement en
parallèle de facteurs appartenant à un langage donné. Ces problèmes sont de nature fondamentale
dans la théorie des langages et en combinatoire des mots. Nous prouvons que tout ensemble fini est
un ensemble obtenu par effacement parallèle, et qu'il existe une hiérarchie stricte en se bornant à k
effacements parallèles. Nous examinons également la décidabilité, le nombre d'effacement parallèle
associé à un mot, et un certain ensemble d'écroulement d'un langage. Nous mentionnons aussi
quelques problèmes ouverts.

1. INTRODUCTION

The deletion of spécifie subwords from a word is an opération basic in
language theory,

Left and right derivatives are special cases of this opération. Examples
of the wide range of applications of this opération are bottom-up parsing
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130 L. KARI et al.

(a subword is deleted and replaced by a nonterminal), developmental Systems
(deletion means the death of a cell or a string of cells) and cryptography
(decryption may begin by deleting some "garbage" portions in the cryptotext).
A systematic study of various types of deletion opérations was begun in [1].

The reader is referred to [3] for unexplained notions in formai language
theory. The empty word is denoted by À and the length of a word w by \w\.
Following [1], we define the deletion and parallel deletion of a language
L Ç y* from a word w G y* by

(*) (w —• L) — {u\U2 I U\VU2 — ttf, V G L}

(**) (w => L) = {uiU2 . . . wn+i| n > 1, ui E V* 1 < i < 7i + 1, 1 < i <

for ^ G L, 1 < i < n,

and ut- £y*(L

Sets of the forms (•) and (••) are referred to as deletion (D-) sets, [2],
and parallel deletion (PD-) sets, respectively. Clearly, sets of the forms (*)
and (*•) are always finite.

The opérations of deletion and parallel deletion are naturally extended, [1],
to the case where w is replaced with a language, but in this paper attention
is restricted to (•) and (*•). We investigate problems arising from sets (**)
and their modifications, sometimes making comparisons with sets (*).

2. UNIVERSALITY OF PARALLEL DELETION SETS

Most of the finite sets are not deletion sets. For instance, it is easy to see
that neither {a, 6, c} nor {aa, a6, 6a, bb} is a deletion set. Characterizations
of deletion sets and algorithms for deciding whether or not a given set is
a deletion set were given in [2]. It is somewhat unexpected that parallel
deletion sets are universal in the sense that every finite language can be
viewed as a parallel deletion set.

THEOREM 1: Every finite language is a parallel deletion set, that is, can be
represented in the form (••).

Proof: If V = {a}, and F = {a*1, a '2 , . . . , a*"}, then we dénote

p — max {ij | 1 < i < n},

Informatique théorique et Applications/Theoretical Informaties and Applications



ON PARALLEL DELETIONS APPLIED TO A WORD 1 3 1

and we define

As only one string of L can be deleted from w, we obtain (w =» L) — F,

Consider now V with card (V) > 2 and take

F = {si, X2,. . . , a;n}.

We construct

-i#n-i)2 ar„#
„,

. . . (ar n- l#n-l) 2 a:n#n| 1 < J < n - 1},

where # i , . . . , # ^ are new symbols not in F .
From the form of tu and of strings in L, it is clear that in every deletion

we have to erase either #n or a string

as well as all the remaining substrings (xi#i)2, 1 < i < j — 1. This implies
ail symbols # i , 1 < i < n, are erased and only a string XJ remains,
1 < J < w. In conclusion, (w => L) = F .

Now, take a, b G V, a ̂  b (remember that card (V) > 2) and dénote

k — max {\xi\ \ 1 < i < n}.

We replace each occurrence of # j in w and in strings of L by bak+lb,
1 < i < n. We dénote by «/, L' the string and the language obtained in this
way, respectively. As no string in F can contain a substring a*~*~\ 1 < i < n,
the strings bak+lb behave exactly as the markers #{, 1 < i < n, hence again
we have (u/ =>- L7) = F , which concludes the proof. D

3. A GENERAL UNDECIDABILITY RESULT

Because not every finite set is a deletion set, we face a décision problem
that was settled in [2], An analogous problem does not exist for parallel

vol. 29, n° 2, 1995



132 L. KARI et al.

deletion sets. Ho we ver, we can fix the nonempty finite set F in the équation

(w^L) = F,

and ask for an algorithm deciding for a given context-free language L
whether or not a solution w exists. If such an algorithm exists, we say
that F is CF-decidable, otherwise CF-undecidable. Similarly, we fix F
in the équation

(tü => L) = F

and speak of CF-p-decidable ("p" from "parallel") and CF-p-undecidable
sets F.

It was shown in [2] that F = {X} is the only CF-decidable set. Moreover,
{À} is "CF-universal" in the sensé that, for any (nonempty) context-free
language L, there is a word w such that (w —> L) = {X}. Obviously, the
same result holds for parallel deletion as well. In fact, we have

THEOREM 2: The set {X} is CF-p-universal and this is the only CF-p-
universal set.

Proof: Given L context-free, we obtain (w => L) — {X} for w one of the
shortest strings in L, therefore {À} is universal.

Moreover, no set F / {A} can be CF-p-universal, because for any w we
have (w =» V*) = {X} ^ F, U

In spite of the fact that parallel deletion sets coincide with finite sets, we
obtain the same undecidability result as for sequential deletion.

THEOREM 3: Every finite nonempty set F ^ {À} is CF-p-undecidable.

Proof: Let F Ç V* be a finite language, F = {xi> a^-*-) #n}> with
k = max {\xi | 1 < i < n} > 1. If V — {a}, then we add the symbol b
to V (we still dénote by V the obtained alphabet), therefore, without loss of
generality we may assume card (V) > 2.

We now proceed as in the proof of Theorem 1 when dealing with alphabets
V with card (V) > 2, namely we construct the string vJ and the language
L' such that (wf => L') = F.

Take now an arbitrary context-free language LQ Ç V+ and consider two
new symbols c, d, not in V. We construct the context-free language

M = L"U {c}

Informatique théorique et Applications/Theoretical Informaties and Applications



ON PARALLEL DELETIONS APPLIED TO A WORD 133

where LH is obtained from L1 by substituting the rightmost string bak+nb
corresponding to the marker # n in the construction of Theorem 1, by
{c} V* {cd}. More exactly, Ln — a (L) where a is the substitution defined
by:

a ( # n ) — {c} V* {c<i}, a (a) = a otherwise.

Then there exists a string w such that (w =>> M) = F if and only if
Q JL V* (which is not decidable for arbitrary context-free languages).

Indeed, if V* — LQ ̂  0, then take z G V* - LQ and consider the string

(JU \Jb\l)U/ Ui . . • IX|J \ULL " J Jb y% K*/Cr islt *

Now, the role of the rightmost marker #n is played by czcd. As no
string of {c} LQ {C} appears as a substring of w9 in view of the proof of
Theorem 1, we obtain (w => M) = F.

Assume now that LQ — V* and suppose that there is a string w such
that (w => M) = F.

We distinguish more cases:

(i) w contains at least one occurrence of d. Note that all occurrences of
d from w have to be deleted, as otherwise we obtain in (w => Af) words
which do not belong to F. As d can be deleted only by words from L", we
deduce that the subwords of w containing d have to be of the form ycvcd,
y, v G V*. But, in this case, we can also erase from w the word cvc, which
leads us to a word in (w =>> M) still containing a letter d- a contradiction
with the form of the strings in F.

(ii) w contains no occurrence of d but contains occurrences of c. Then we
can delete from w only strings of {c} LQ {C} and strings in Ln containing no
occurrence of c (the strings in L" containing c contain d, too). If w contains
an odd number of occurrences of c, then the strings in (w ^ M) contain
an odd number of occurrences of c, contradicting the form of strings in F.
If w contains at least 4 occurrences of c, w = uicu2cu^cu4cus, u\9 U2,
U3, U4 G V*, us G ({c}u7)*, then we can remove cu$c as belonging to
{c} LQ {C}, and irrespective of other deletions, the first occurrence of c in
w remains. Hence we obtain a string not in F.

vol. 29, n° 2, 1995



134 L. KARI et al

If w — U1CU2CU3, ui,U2,u$ G V*, then in order to obtain strings in F we
have to remove CU2C (and this can be done). This implies w is of the form

w = yo {xtlbak+%1b)2 V\ {xi2bak+i2b)2 y2 . . . (xtjbak+ijb)2 yjcu2c
2 ...ys (xis+lbak+is+1b)2

with 1 < it < n, 1 < t < s, and 2/02/1 • • • Vs+i € F .
However the strings bak+%tb precisely identify the strings in LN used

in such deletions of substrings in w (in yoyiy2 * • -2/s+i we cannot have
substrings afc+\ « > 1) hence only one deletion is possible, that is (w => M)
contains only one string. The case F = {x}, x ^ À, is handled below.

(iii) w contains no occurrence of c and d. Then, as in the last part of the
previous case, we infer that card (w => M) = 1.

For the case F — {x}, x 7̂  À, take again LQ Ç V* (for V assumed to
contain at least two symbols) and construct

M = {c} y* {c} u y* {c} Lo {C} v*.

If y* ^ Lo, then for z G y* - Lo we obtain

M) = {x}.

If Lo = y*, then every w with (IÜ =^'M) = {x} must contain an even
number of occurrences of c, w = u\cu2C... cv,2t+i, t > 1. By deleting
strings in V* {c} LQ {C} V* from w we can obtain À G (w => M),
contradicting the relation x ^ A. D

4. THE PARALLEL DELETION NUMBER OF A WORD

The deletion number, [2], associated to a word w equals the cardinality of
the largest deletion set arising from w, that is

d (w) = max {card ( i u ^ L ) | L ç y * } .

The parallel deletion number is defined analogously,

pd (w) = max {card (w => L) | L Ç y*}.

Informatique théorique et Applications/Theoretical Informaties and Applications



ON PARALLEL DELETIONS APPLIED TO A WORD 135

Upper bounds for d (w), best possible in the gênerai case, were deduced
in [2]. For instance, if card (V) = s and n = r (mod 5), then

r 7 / x 1 1 1 Ï , (s -l)n2 - sr + r2

max {d (w) \ \w\ = n} = n + 1 + — .

It is clear that d (w) = card (w —> V*). An analogous resuit does not hold
for parallel deletion because, for every w, (w => V*) — {A}.

We now begin our investigation conceming the number pd (w). For the
alphabet with only one element, pd (w) can be computed, but for the gênerai
case the question seems not to be simple at all.

THEOREM 4: If w• = an, n > 1, then pd (w) = n.

Proof: For w = a we have

card (a =$> {A}) — card (a => {a}) = card (a => {À, a}) — 1.

For w = a72, n > 2, consider

L = {A, a2, a 3 , . . . , an}.

Because we can write an — aAaA...aAa we obtain an G (w => L).
Moreover, for each a\ 2 < i < n, we have an — aAaA...aAa? which
implies an~% G (tu => L) for ail 2 < i < n. In conclusion,

(w ^ L) = {A, a, a 2 , . . . , an~2, a n } ,

that is card (w =ï L) = n. •
The previous proof makes essentially use of the existence of the empty

string in L (and the non-existence of a in L). Ho wever, if we do not allow
A to be in L then Computing card (w =^ L) is much more difficult. As an
illustration of this, let us consider the following particular case: w = an,
L = {a2}, The reader can verify that we obtain

(an =* a2) - i

{A, a , a , . . . , a }, il n = DL, t > 1,
| C t . t / ; . . . . . (X f ». IJL I lf ' VJl/ |" J. « (/ **̂  X *

{ \ a 2 , a 4 , . . . , f l 2 t } , if n = 6* + 2, t > O,
if n — 6t + 3, .* > O,

{A, a2, a 4 , . . . , a 2 t + 2 } , if n ^ 6t + 4, * > O,
[{a, a 3 , . . M o 2 t + 1 } , if n ^ 6 £ + 5, t > 0.
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card {an => a2) = <

(we delete a certain number of substrings a2 from an and two consécutive
substrings a2 are either neighbouring or they are separated by one occurrence
of a; if ar is in (an => a2), then also ar~2 is in (an =̂> a2) because we
can arrange the deleted substrings a2 in such a way as to delete two more
symbols a bounding them.)

In the case of arbitrary alphabets with at least two symbols we obtain the
following surprising result.

THEOREM 5: If card (V) > 2, then there is no polynomial ƒ such thatfor
every w G V* we have pd (w) < ƒ (|w|)-

Proof: It suffices to show that, given a polynomial ƒ (in one variable),
there are strings w such that pd (w) > ƒ (\w\).

Take a polynomial ƒ of degree n > 1 and consider the strings

Moreover, take

and evaluate the cadinality of (wn,m =^ Lm).
As each string in Lm contains at least one occurrence of a and one

occurrence of b, we can delete from wn^m exactly n strings of Lm, which
implies

(™n, m => Lm) ={am-ilbm~jlam-i2bm-j2... am-inbm-in

I 1 £ is, js £' "T- — 1, 1 £ s < n}.

Consequently,

card (wn, m => Lm) = (m - l)2n.

Informatique théorique et Applications/Theoreticaï Informaties and Applications



ON PARALLEL DELETIONS APPLIED TO A WORD 137

Clearly, because 2n is a constant, for large enough m we have

pd (wntm) > (m - l ) 2 n > ƒ (2nm) = ƒ ( K , m | ) ,

which complètes the proof. D

5. THE COLLAPSE SET OF A LANGUAGE

We observed in the previous section that, for every word w,
{w => V*) = {À}. We can express this by saying that every word collapses
to the empty word when subjected to parallel deletion with respect to V*. We
speak also of the collapse set of F*. Thus, the collapse set of V* equals V*.

In gênerai, we defîne the collapse set of a nonempty language L Ç V* by

es (L) = {w €-V* \(w^L) = {A}}.

This language is always nonempty because it contains each of the shortest
words in L.

We give first some examples.
(1) es ({anbn \n> 1}) = (a&)+,
(2) es ({a, bb}) = a*bb (a+66)* a* U a+, (hence es (L) can be infinité

for finite L),
(3) es ({ab} U {anbmap\ n, m, p > 1}) = {ab}, (hence es (L) can be

finite for infinité L),
(4) es ({canbn\n > 1}) = {canbn\n > 1}+, (hence cs(L) can be nonlinear

for linear L).
Moreover, we have

THEOREM 6: There is a linear language L such that cs(L) is not context-free.

Proof: Take

L = {ddanbmcn\ n, m > 1} U {d^fe"1^! n, m, p > 1, m > p}.

Clearly, L is linear. Moreover, we have

es (L) n d2a+6+c+ = {dV& m c n | 1 < m < n}

and this is not a context-free language (mark the occurrences of 6 and use
Ogden's lemma).

vol. 29, n° 2, 1995



138 L. KARI et al

The equality follows from the next three remarks:
(i) all the strings in es (L) H d2a+b+c+ are of the form d2anbmcn,

n, m > 1;
(ii) for m > n > 1, we have

hence d2anbmcm is not in es (L) H d2a
(iii) for 1 < m < n, we have

(d2anbmcn => L) = (d2anbmcn => {d2anbmcn}) = {A}. •

THEOREM 7: Le* L Ç y* fe an arbitrary language. Then

es (L) = L+ - M,

M = (y*L U {A}) (F+ - FUV*) (LF* U {A}).

- "Ç" Take x G es (L). Clearly, a: G L + . Suppose a: G M, hence
we can write

X = X\UVWX2

with

rci n = A or xi G F*, tt G L,

= A or w G L, X2 G F*.

As v 7̂  A and v contains no subword of L, there is a string in (x => L)
containing the substring v, which implies x ^ es (L), a contradiction.

"D" Take a ; 6 l + - M and assume x $. es (L). Therefore there is 2 7̂  A,
z G (# ^ L). Consequently, we can write z — z\Z2z%, Z2 ̂  A, 21, 22 € V*>
22 containing no substring in L and

X = X1UZ2VXZ)

with xiw = A or x\ G V*, u G i ,

= A or u G L, ^ G F * ,

Informatique théorique et Applications/Theoretical Informaties and Applications



ON PARALLEL DELETIONS APPLIED TO A WORD 139

such that ziz%z$ G (x => L), z\ G (x\ => L), z$ G (#3 => L). In conclusion,
x G M, hence x £ L + - M, a contradiction. D

COROLLARY 1: IfL is regular (context-sensitive), then es (L) is also regular
(respectively context-sensitive).

Proof: Obvious, from the closure properties of the families of regular and
context-sensitive languages. D

THEOREM 8: For LÇV* we have es (L) = V* if and only ifVU {A} Ç L.

Proof: In gênerai, es (L) Ç V*. If V Ç L, then for every w G V+ we
have (w=>L) = {A}, hence V+ Ç es (L). If A G L then (A =• L) = {A},
too. In conclusion, es (L) = V*.

Conversely, if cs(L) = y*, then VU {A} Ç cs(L). For a G V we can have
(a => L) = {A} only if a G L, therefore 7 C L , Similarly, (A => L) = {A}
only if A G L (if L Ç F+, then (A =* L) = 0), D

6. /c-PARALLEL DELETION

Another natural way to define a deletion opération, intermediate between
the sequential and the parallel ones, is to remove exactly k strings, for a
given k. Namely, for w G V*, L Ç V*, k > 1, write

u* G V*, 1 < i < fe + 1,
= U\ViU2V2 - • • ̂ Ar^lifc+i, for Uj G L, 1 < î <

Sets of this form will be referred to as k-deletion sets; for given k > 1 we
dénote by E^ the family of &-deletion sets.

THEOREM 9: For ail k > 1, E\~ C £^+i, sm'c* inclusion.

Proof: Take F G E^ F = (iy => ^L) and construct

L' = {vw24tzw\v \v G L, lu = ^ i r a ^ } U

We obtain

Indeed, each string in L', excepting $, contains one symbol # , hence deleting
k + 1 strings means to remove & strings vw2#w\v and $. When deleting

vol. 29, n° 2, 1995



140 L. KARI et al

from . . . #wivw2#wivw2# . . . , we get . . . #1^1 w%# . . . , hence
(between the neighbour # ) exactly the result of removing v, The previous
erasing removes the symbol # in the left of w\ and a prefix of w\, the
next erasing removes the symbol # in the right of W2 and a suffix öf w<i.
What remains corresponds to the removing of fc subwords which belong to
L, hence we obtain a string in F. The converse inclusion is clearly true,
hence F € ü^+i.

Consequently, Ek Ç Ek+i.
This inclusion is proper. In order to prove this, consider the language

We have Lk — (u>=>& L) for

W =

(removing any fc symbols from IÜ we get a one-symbol string, in all
possibilities).

Assume L& G 2?fc_i; let w, L be such that Lj- = (w=>k-i L).
In order to obtain a symbol au 1 < i < k + 1, we have to write

lü = Zi . . . ZniOiZni+i . . . Zjb_! , ^j € L, 1 < j < & - 1.

for some n8- > 0. Consider writings of w of this form (hence décompositions
in k — 1 strings in L and one symbol a )̂ for all z, 1 < % < k H- 1. By
changing the subscripts of the specified symbols at-, we may assume that
these distinguished occurrences of a i , . . . , a&+i appear in w in the natural
order,

W = ^101^202 • • • Wk+iak+iWk+2>

for Wi e V*, 1 < i < k + 2, V being an alphabet including {a i , . . . , a/b+i}.
Therefore, for each a ,̂ 1 < i < k + 2, we can décompose w\a\ . . . tuj in

rit ^ 0 strings in L and Wi+\ai+2 • • • Q>k+iwk+2 in fc — 1 — n̂  strings in L.
If ni > nt-+i, then n; + fc - 1 — n$+i > fc — 1. Removing t strings from the

ni strings in the left of ai and 5 strings from the fc — 1 — rit+i strings in the
right of aj+i, with t + s — k — 1 (this is possible, because we have at least
fc — 1 strings at our disposai), we get a string of the form yiajii/j+iaj+iy2>
yi> 2/2 £ ^*, which must be in £&, a contradiction.

Informatique théorique et Applications/Theoretical Informaties and Applications
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Consequently, ni < nj+i, 1 < i < k + 1 . As ni > 0, we obtain n&+i > k.
The set L cannot contain the string À, otherwise by erasing k — 1

occurrences of À we get the string w, a contradiction. Therefore, the string
w\a\ ...wjç+i can be decomposed into n^+i > k — 1 non-empty strings
in L. By removing the first k — 1 of them, we obtain a string of the form
yak+iWk+2* U £ L, y ^ À. Such a string is not in L&, a contradiction.
Consequently, L& ^ ^fc-i- D

Remark: The extra symbols in the first part of the proof cannot be
avoided. For instance, consider the set

F = {<j\l<i<k + l), k > 1.

We have F = (w=>k L) for

L = {a, aa},

hence F £ E^.
However, there is no w G a*, L Ç a* such that F = (w =>j L) for j > A;.
Indeed, assume that such tu, L exist and dénote

M — max {i | a* G L},

m = min {i \ a1 G L}.

By removing j times aM we must get the shoitest string in F , that is a;
by removing j times am we get the longest string, a^+1. Therefore

\w\ = M * j + \'= m • j + k -\- 1.

Thus (M — m) - j — k, which is impossible as j > k and M — m is a
natural number.

On the other hand, F = (w=>k-\-j L), j > 1, for

L= {a*fc |O< i < A;},

hence using one extra symbol we get F G E^+j for ail j > 1.

THEOREM 10: For every finite set F , J/iere w a fe .swcft tóar F G

vol. 29, n° 2, 1995



142 L. KARI et al

Proof: If card (F) = 1, F = {x}, take w = x, L = {A}, and we have
O =» jfei) = F G Ek for all fc > 1.

Assume now

F — {x\, X2,. . . , £&}, fc > 2,

and construct

w =

i - {*i#t, #*a?i+i I 1 < i < fc - I j-

We have

F = (w^k^ L).

Indeed, we have to remove k — 1 substrings of w\ each string of L contains
a symbol # j , hence all of them are removed from w\ together with #« either
xi or xi+i is removed too, hence what remains is a complete string XJ,
1 £ j ' < fc* Consequently, F G ^ - î -

For

m = max {\xi\ \ 1 < i < fc},

we can replace the new symbols # t by bam+lb, 1 < i < k. As such
strings appear only once in w and they identify the strings x\t, x%+\ in pairs
Xibam+lb, 6am+26xi_j_i, we obtain (IÜ=^^_I L) — F for the modified iw,
L too. D

In conclusion, we obtain an infinité hierarchy of families of finite
languages, lying in between the deletion sets and the parallel deletion sets,

D - sets = Ei C E2 C . . . C ( J Ei = PD - sets = FIN.

Therefore, we can define a complexity measure for finite languages, say
: FIN -> N, by

From the previous theorem, if card (F) > 2, then Del (F) < card (F) — 1
and Del (F) = 1 for card (F) = 1.

In view of the next theorem, Del (F) is computable.
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THEOREM 11: Given a set F and a natural number k, it is decidable
whether F E Ej~ or not.

Proof: For given F and fc, dénote

m = card (F),

l = max{|t;| | v E F}.

It is enough to show that if F is in Ek, then it can be obtained from a string
w whose length is at most (l + 1) (2km + 1) by fc-parallel deletion.

To show this, assume F is obtained from a string w whose length is
greater than (l + 1) (2km + 1) by deleting some language L.

Claim: There is a sub word u of w with \u\ — l + 1 such that every word
in F can be obtained from w by a deletion in which u is a subword of
one of the deleted words in L,

Indeed, if we divide w into blocks of length l + 1, we get at least 2km + 1
blocks. Choose for each word in F an arbitrary way it can be obtained from
w and mark each block that contains either a prefix or a suffix of a deleted
L-word. In this way at most 2k blocks will be marked for each word in F ,
which means that altogether at most 2km blocks will be marked. Therefore
at least one block remains unmarked. This is the looked for u, hence we have
the claim. (Note that u has to be either completely deleted or not deleted at
ail - the latter is impossible because u is longer than any of the words in F.)

Now, we can change w into wf by replacing u by a new symbol # .
Simultaneously we add to L ail words obtained from words of L by replacing
one occurrence of u by # . Let L1 be this new set. It is clear that the k -parallel
deletion of L' from w' gives F: Every word in F is obtained because we
can do the same deletion as above except that when deleting the word that
removed the block u we use the word containing # instead.

No more words are obtained. Any deletion that removes # from w1 can
be done also with w and F; any deletion that does not remove # from vJ
uses only words of L! not containing # , which means that the same deletion
can be done in w, leaving u in the resuit - a contradiction with the f act that
the words of F are shorter than u.

So F can be obtained from a shorter word w1'. The shortest word from
which F can be obtained has to be at most (l + 1) (2km + 1) symbols long.
Consequently, there are only finitely many strings w to be checked, hence
the problem whether F — (w = ^ L) or not for some w is decidable (L must
be included in the set of subwords of w, hence it is also finite). D
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7. FINAL REMARKS

Besides A;-parallel deletion, we can define (< fc)-deletion, (> &)-deletion,
and (/c, kl)-deletion, removing at most k strings, at least k strings, and at
least k but at most kf strings, respectively. We leave the study of such
cases to the reader.

Another possibility is to define the fc-parallel deletion in the following
"forced" way: for a string w and a language L, write

(üJ =ïf
k L) ={U1U2..- Uk+i | W =

Vi G L, 1 < i < k,

ui 0 F* (L - {A}) V\ 1 < i < k + 1}

(the remaining strings U{ do not contain substrings in L — {A}).
Dénote by E'k, k > 1, the families of sets obtained in this way.
For a finite set

F = {xi, x 2 ) . . . , xn}, n > 2,

define

L = {# ix i . . . # i_ i a ; i_ i# i | l < % < n}

U { # i | l < z < n - f 1}.

We have F = (w ̂ 2 L) (no symbol #t- can remain, hence we must remove
a prefix #\x\ . . . # i# i and a suffix #^+1^+1 . . . a;n#n+i, hence we obtain
the string arj+i). Therefore, F E Ef

2.lf F = {x}, then we can put w = x# ,
L = {#} , and we obtain F e E[.

In conclusion, there is no hierarchy in this case.
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