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ON MORPHICALLY GENERATED
FORMAL POWER SERIES (*)

by Juha HONKALA (*)

Communicated by J. BERSTEL

Abstract. - We define morphically generaled formai power series and study their properties. These
series are obtained by interpreting varions L Systems as mechanisms to generale power series. The
wellknown classes of rational and algebraic power series are obtained as a special case.

Résumé. - Nous définissons les séries formelles engendrées par morphismes, et étudions leurs
propriétés. Ces séries sont obtenues en interprétant divers L-systèmes comme mécanismes de
génération de séries formelles. Les classes bien connues des séries formelles rationnelles et
algébriques s'obtiennent comme cas particuliers de cette construction.

1. INTRODUCTION

Formai power series play an important rôle in many diverse areas of
theoretical computer science and mathematics [1], [9], [10], [20]. The
classes of power series studied most often in connection with automata,
grammars and languages are the rational and algebraic series. It is wellknown
that each regular (resp. context-free) language is the support of a rational
(resp. an algebraic) series. However, the rational series are able to model
also nonregular phenomena. So the transition from regular languages to
rational power series constitutes a very essential generalization. It is also
wellknown that many problems concerning parallel rewriting and L Systems
lead to rational series [11], [12]. Rational series are also widely used in
combinatorics and nonlinear control theory.

In language theory formai power series often provide a powerful tool
for obtaining deep decidability results [9], [20], A brilliant example is
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106 J. HONKALA

the solution of the équivalence problem for finite deterministic multitape
automata given by Harju and Karhumaki [5].

In this paper we search for a common generalization to the théories of
formai power series and L Systems. Our approach sheds new light on both
théories and opens up new interesting avenues for further research. We are
going to define and study formai power series obtained by morphic itération.
These series are generated by suitably modified L Systems. We give a simple
example.

Suppose A is a semiring and E is a finite alphabet. Dénote the semiring
of formai polynomials over E with coefficients in A by A (S*) and assume
that h : A (S*) —> A{E*) is a semiring morphism. Such a morphism
necessarily satisfies h(X) = A. We suppose also that h (a • À) = a • À
holds for every a E A, Finally, assume UJ G A (S*). Now define the
séquence r& (i > 0) by r<°) "= a;, r(2+1) = h(r^). Then limr-W, if it
exists, is a morphically generated series. Of course, we have to specify the
convergence used in the limit process. In our work we allow also more
complicated itération. Instead of r^+ 1) = /i(rW) we might have, e.g.,
r(*+1) = a/ii (rW) + h2 (rW) h$ (rW), where a is a letter and hi, h2, h$
are, not necessarily distinct, morphisms of A{E*}.

Hence, to define a morphically generated series we have to specify the
semiring A {(S*)), the convergence, the mode of itération, the morphisms
used in the itération and the initial point. Therefore we consider 5-tuples
(A{{E*)), 2?, P, y?, u) referred to as Lindenmayerian séries generating
Systems. Hère V spécifies the convergence, P is a polynomial specifying the
mode of itération and (p gives the morphisms.

A brief outline of the contents of the paper follows. In Section 2 we
define Lindenmayerian series generating Systems, shortly, LS Systems, and
LS series. In Section 3 we study fixed point properties of LS series and
the possibilities to generate LS séries monotonically. Both issues are very
important in the theory of LS series. In Section 4 we define ELS series
which are of the form r 0 char (A*) where r is an LS series. We establish
basic closure properties of ELS series and show that algebraic series are
ELS series. In Section 5 we study decidability questions concerning LS and
ELS series.

This paper is essentially self-contained. Only the rudiments concerning
formai languages (see [19]), power series (see [1], [9], [20]) and L Systems
(see [12]) are assumed. However, the motivation of our work might be easier
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ON MORPHICALLY GENERATED FORMAL POWER SERIES 107

to grasp if the reader has more extensive previous knowledge about formai
power series, L Systems and their applications (see also [13], [14]).

Our work has close connections to earlier work concerning language
équations (see [2]-[4], [7], [15]-[18], [6]).

2. DEFINITIONS AND EXAMPLES

It is assumed that the reader is familiar with the basics of the théories of
semirings and formai power series (see [1], [9]). Notions and notations that
are not defined are taken from [9].

If A is a semiring and S is an alphabet, not necessarily finite, the semiring
of formai power series with coefficients in A and (noncommuting) variables
in E is denoted by A {(E*)). If r G A ((S*)) we dénote

r = V^ (r, w) w, rn — Y^ (r, w)w (n > 0)
\w\<n

and
supp(r) = {w\(r, w) ^ 0}.

The set supp(r) is called the support of r. The subsemiring of A ({£*))
consisting of the series having a finite support is denoted by A (E*). The
éléments of A (E*) are referred to as polynomials.

In the sequel we use the notion of convergence introduced in [9]. We
dénote by V^ — (jD^,limrf) the convergence in A {(E*)} which is obtained
when the discrete convergence in A is transferred to A ((E*)) as explained
in [9]. Also Vd is called the discrete convergence. It is easy to see that V^
is multiplicative (see [8]).

Suppose A is a commutative semiring and h : E* —» A (E*) is a monoid
morphism. (Hère A (E*) is regarded as a multiplicative monoid.) Then we
extend h to a semiring morphism

h: A(£*) -> A (E*)

by

^2PJw)h(w)1 P€A<E*>.

Notice that the assumption of commutativeness is needed in the vérification
that indeed h(rir2) = h(ri)h(r2) for n , r2 G A (S*). In the sequel
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108 J. HONKALA

we always tacitly extend a morphism h G Hom (S*, A (E*)) to a
semiring morphism h : A (E*) —> A (S*) as explained above. Notice that
Hom (S*, A (S*)) can be identified with the set

{h : A (S*) —» A (S*)| h is a semiring morphism

and /i (a • À) = a • A for any a G A}.

Suppose r G A ((S*)) and that V — (D, lim) is a convergence in
A«E*)). If h : A (S*) -+ A (S*) is a morphism, we say that h(r) is
defined if and only if lim/i (rn) exists. Then we dénote, of course,

h(r) = lim h(rn).

In what follows X is a denumerably infinité alphabet of variables.
Furthermore, E will always be a finite alphabet.

DÉFINITION 2.1: Suppose A is a comrnutative semiring and E is a finite
alphabet. An interprétation ip over (A, S) is a mapping from X to
Hom (S*, A (S*)).

DÉFINITION 2.2: A Lindenmayerian series generating System, shortly, an LS
system, is a 5-tuple G = (A ((S*)), V, P, cp, UJ) where A is a commutative
semiring, E is a finite alphabet, V is a convergence in A ((S*)), P is a
polynomial in A{(X U S)*), y? is an interprétation over (A, S) and u is
a polynomial in A (S*).

The series generated by an LS system is obtained by itération. Before the
précise définition we need a notation.

Suppose P(xu . . . , xn) G A((XUE)*} and s^\ . . . , *(n) G A((E*}},
where A is a commutative semiring. Then the series P (s^\ . . . , s^) is
defined recursively as follows:

a e A,

(Pi + Pz) (5
(1), .. •, 5

( n ) ) - Pi C^1), . . . , 5
( n ) ) + P2

(Pi P2) (5W, - . . , s<n>) - Pi (^W, . . . , 5 W) • P2 (5
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ON MORPHICALLY GENERATED FORMAL POWER SERIES 109

DÉFINITION 2.3: Suppose G - (A<(2*>), P , P(a?i, . . . , x n ) , <p, a/) is
an LS system. Dénote /i^ — tp{xi) for 1 < i < n. Define the séquence
(r0*)) (j = 0, 1, . . . ) recursively by

rO'+i) =

exists we dénote

r<°> == U)

j > 0.

If lim Aiï

and say that S (G) is the series generated by G, The séquence (rW) is the
approximation séquence associated to G, A series r is called an LS series
if there exists an LS system G such that r = S (G). A series r is an LS
series with eu = 0 if there exists an LS System G = (A ((S*)), £>, P, <£, 0)
such that r = S (G).

Example 2A: Suppose Gi — (S, H, a>) is a TOL system (see [12]).
Suppose H = {/zi, . . . , Zifc}. For each z define the morphism 7ï̂  by

hi (a) — char (/ii (a)) for every a G S.

Define the LS system G by G = (B {(S*)), Pd, w + s i + • • • + a*, tp, 0)
where (f(xi) — hi. Then 5 (G) exists and equals the characteristic series of
the TOL language generated by G\.

Example 2.5: Suppose G\ — (S, g, ui) is a DOL system (see [12])
such that L(G\) is infinité. Dénote the Parikh vector of a word u G S*
by Pr (u). Choose a letter c ^ E U l . Dénote by A the semiring of square
matrices of order card(S) with entries in N and by A\ the subsemiring
of A generated by the growth matrix M of G\. Define the morphism
g : (SUc)* -> Ai((SUc)*> by

g(o-) = g (er), er € 2 , <j (c)

Define the LS system G by G = (Ai {{(E U c)*)>, X>d, P (x), y?, 0) where
P ( x ) = c(i; + a; and <p(x) — g. Furthermore, dénote TT — Pr (o;) and
r, = (1, . - . , 1 ) T . Then

n>0
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1 1 0 J. HONKALA

and

n>0

This example shows that the coefficients of an LS series can record much
more than just the multiplicities with which the éléments are obtained in a
generating process. This is an applicationwise important property of formai
power series in gênerai.

Example 2.6: Dénote E = {a, &}, P (x) = a + x2 and define (p(x) by
(f (x) (a) = b, (p (x) (b) — a. Define an LS System G by

It is not difficult to see that S (G) equals the unique quasiregular solution
of the équation

r = a + bb + br2 + r2 b + r4.

In gênerai, if G is an LS System, S (G) does not necessarily exist.

Example 2.7: Dénote S — {a, b} and P (x) = x. Define <pi(x)
by if\ (x) (a) — 6, tpx (x) (b) = a and ^2 (x) by <̂2 (^) (a) = a,
^2 (^) (&) — 2b. Furthermore, dénote a;i = a + 6 and 0J2 — a. Define
the LS system Gij by

G0- = (N«E*>>, Vd, P, <pi9 u>j)

(1 <hj< 2). Then S (Gn) = a + b, S (G12) and S(G2 i) do not exist
and S(G22) = a.

In Examples 2.5-2.7 the Systems G, G -̂ are deterministic in the sensé that
for each a G S, cp (x) (a) is a monomial. Such Systems can be considered
as generalizations of DT0L Systems (see also [6]).

We conclude this section with an example showing that the existence
of the series generated by an LS system dépends on the choice of the
convergence and the axiom.

Example 2.8: A séquence a G RN is called an Euler séquence if and

( n / \ \
V^ ( . ! a(j)/2n ) is a Cauchy séquence (see [9]).
*^ V 7 / /Define the limit fonction on the set D% of Euler séquences by

lini£ a = lim V ( " J a (j)/2n.
; =

Informatique théorique et Applications/Theoretical Infonnatics and Applications
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Dénote T>E — (D^lirn^). Transfer this convergence to R {(£*}) and
dénote also the resulting convergence by T>E- Define the LS system G
by G = (R ((£*}}, VE, P(z), V?, 0) where E = {a} and P (x) = a + x
and tp(x) (a) = —a. Then the approximation séquence ( r ^ ) is given by

r(2«)= 0 > r(2«+l)= a > n>0 .

Therefore limr^) = 2~l a and 5 (G) exists. If the Euler convergence were
replaced by Vd, S (G) would not exist On the other hand, if also the
axiom 0 were replaced by 2 ' 1 a, the series 5 (G) would exist.

3. FIXED POINT PROPERTIES OF LS SERIES

In this section we show that in many cases the series generated by an
LS system can be characterized as the minimal solution of a polynomial
équation involving morphisms. We also study the possibilities to generate
LS series monotonically. Both questions are of fundamental importance in
the theory of LS series.

DÉFINITION 3.1: Suppose G = (A {{S*}), V, P{x\, ..., xn), <P, w) is an
LS system. The series r £ A ((S*)) is a. fixed point of G if <p{xi){r) is
defined for 1 < i < n and

r = P(<p(xx)(r), ...,*> (xn)(r)) .

There are LS Systems having infinitely many fixed points and there
are LS Systems having no fixed points at all. Indeed, consider the LS
Systems Gi - (N <(£*», Vd, Pi (x), (p, 0), Î = 1, 2, where Px (x) - x,
P2(x) = a + 2x and <p(x) is the identity morphism (a E S). Clearly
any r G N {(S*)) is a fixed point of G\ whereas G2 has no fixed points.
If G3 = (Z <(£*)), Vd, P2 (x), if, 0) then G3 has the unique fixed point
r — - a .

By définition, the LS system G - (A {{£*)}, P , P(xi, . . . , xn), (p, LU)
is nonerasing if ((p (x{) (a), A) = 0 for every i (1 < i < n) and a G S.

THEOREM 3.2: Suppose G = (A ((S*)), Vd, P (xu . . . , xn), (p, u) is a
nonerasing LS system. If S (G) exists, it is a fixed point of G.

Proof: Let (rW) be the approximation séquence associated to G. Dénote
hj — <p(xj), 1 < j < n. By the assumption, S (G) = lim rW exists.

2+OO+OO

vol. 29, n° 2, 1995



1 1 2 J. HONKALA

Because (hj (er), À) = 0 for every a G S, lim hj (rW) and hj ( lim
i—»oo i->oo

exist and are equal. Because

and X>̂  is multiplicative, we have

lim r<i+1> - P (h! (lim r « ) , . . . , hn (lim r « ) ) .

This implies the claim. D
The assumption that G is nonerasing is necessary in Theorem 3.2.
Example 3.3: Dénote S = {a, 6, c} and P (ar, y) = x + y. Define

h — <p(x) by /i(a) = a2, /i(6) = À, h(c) = a2 and g — ^p(y) by
<7 (a) = 0, p (6) = b, g (c) = bc. Now define the LS System G by
G = (B ((£*)), Vfa P{x, y), <p, u) where u = a2 + 6c. It is easy to
see that the z + l'th term of the approximation séquence (rW) associated
to G is given by

r(
4) - a2<+1 + a2' + • • • + a4 + a2 + 6 i + 1 c (i > 1).

Therefore r = S (G) = y^tt2^. Because

r is not a fixed point of P.

We show next that for partially ordered semirings the assumption that G
is nonerasing can be replaced by other assumptions.

Suppose A is a partially ordered semiring under <. The relation < is
extended to A {(E*)) by r\ < r<i if and only if (n , w) < (r2, W) holds
for all w e E*. Under this relation A {(S*)) is a partially ordered semiring.
Suppose G = (A ((S*)), P , P ( ^ i , •••, ^n)5 ¥•> w) is a n LS System and
ail £ A (S*). A fixed point r > UJ\ of G is called the minimal fixed point of
G over u)\ if r < r1 whenever r' is a fixed point of G such that r1 > ui.
By définition, an LS System G = (A ((S*)), 2?, P (xi, . . . , xn) , y>, w) with
the approximation séquence (rW) is reduced if for each j ' (1 < j < n) there
exist a nonnegative integer i and w G supp ( r ^ ) such that <p (XJ) (w) / 0.
We say that a partially ordered semiring A preserves strict inequality if a < b
implies a -h c < b + c (resp. ac < èc and ca < cb) for any c G A (resp. for
any c G A, c ^ 0), for every a, b E A,

Informatique théorique et Applications/Theoretical Informaties and Applications



ON MORPHICALLY GENERATED FORMAL POWER SERIES 1 1 3

THEOREM 3.4: Suppose A is a partially ordered semiring and

G = (AHZ*)), •Dd,P{x1,...,xn),<p,u;)

is a reduced LS System. Dénote the approximation séquence of G by ( rW).
If ou < r^\ the séquence (rW) is monotonie, i.e., satisfies

r ( 0 ) < r ( l ) < r ( 2 ) < . . .

Suppose, furthermore, that A preserves strict inequality. Then, if S (G) exists,
it is the minimal fixed point of G over UJ.

Proof: Dénote hj = <p(xj), 1 < j < n.
If a, b G A and a < b, then ap < bp for any p e A (S*). Therefore,

if Pi, P2 E A {E*} and h G Hom (S*, A (S*)), then pi < p2 implies
< h(p2). Hence, if r ^ < r^ + 1 ) , then

< P (tu ( r ^ 1 ) ) , . . . , K (r^+1))) - r(*'+2) (i > 0).

This proves the first claim.
Suppose then that r — S (G) — lim r^ exists. Clearly r^ < r for any i.

i—too

Fix j (1 < j < n). Suppose now that hj (r) does not exist. Then there exists
tu G S* such that the set {v G supp (r)\w G supp (hj (v))} = {vk\ k e N}
is infinité. Furthermore, if we dénote

(r> vk) (hj (ufe), w),
k=0

there exists a growing séquence (at) of nonnegative integers such that

s(at) < s(at+i)

for any t > 0. In f act, because A preserves strict inequality, we can choose
at — t.

Suppose now that ÜQ xtx ... x3•... xtm am is a term of supp (P), where the
a's belong to E*. Choose words u\, •..., iy_i, %+i, . • •, um G supp (r)
such that htf3 (up) ^ 0 for 1 < (3 < m, (3 ̂  j . Dénote by ü) one of the short-
est words in supp(a0 htl ( n i ) . . . /itj._1 (itj_i) aj_i twâ  . . . htrn (um) am) .
Choose a positive integer ZQ such that

wheneveri > io and
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1 1 4 J. HONKALA

Fix i > 2o- Then there exists a positive integer i\ such that

(hj(A%w)<(hj(rM)}w).

But then

which is impossible. Therefore hj (r) exists and

lim hj(rW) = hj(r)

for 1 < j < n. It now follows as in the proof of Theorem 3.2 that r is a
fixed point of G. Clearly o; < r.

Suppose then that r' is a fixed point of G such that ui < r'. It follows
inductively that rW < r ' for any i. Therefore r < r\ •

Note that the condition u> < rW trivially holds if cu = 0.
Theorem 3.4 holds true for many partially ordered semirings which do not

preserve strict inequality. It holds, e.g., for each semiring having no infinité
ascending chains. (If A is a partially ordered semiring, { a i | i £ N } C A i s
an ascending chain if CLQ < ai < a<i < . . . ) . Specially, Theorem 3.4 holds
true for B. If, in Theorem 3.4, the LS system G is nonerasing, Theorem 3.4
holds for any partially ordered semiring A,

We state the converse of Theorem 3.4 for N, although, again, the same
argument applies to many other cases.

COROLLARY 3.5: Suppose G — (N ((E*)), % , P (#1, . . . , xn), (f, u) is
a reduced LS system such that

U) < P {(f ( X l ) ( w ) , . . . , < / ? (xn) ( w ) ) .

Then G has a minimal fixed point over w if and only if S (G) exists, Ifboth
do exist, they are equah

Proof: Suppose s G N {(S*)} is the minimal fixed point of G over w.
If (rW) is the approximation séquence associated to G, then rW < 5 for
each i. Hence S (G) exists. By Theorem 3.4, S (G) is the minimal fixed
point of G over LU. Therefore s — S{G). D

Corollary 3.5 shows that for the class of (reduced) LS Systems G =
) , X>d, P (xi, . . . , xn), (f, o;) satisfying

Lu < P {if (Xl) {Lu), . . . , (p (Xn) (tu))

Informatique théorique et Applications/Theoretical Informaties and Applications



ON MORPHICALLY GENERATED FORMAL POWER SERIES 1 1 5

the limit approach and the fixed point approach coincide. The same
observation holds true in many other cases. It will be seen below, however,
than in gênerai the limit approach is préférable.

It is an interesting question whether every LS series can be generated
rnonotonically. More specifically, if r — S (G) where G is an LS System,
does there exist an LS System Gf such that the approximation séquence
associated to Gf is monotonie and S (G) = S (G1). The answer turns out
to be négative in gênerai.

Example 3.6: Dénote £ = {a, b, d, e}, P (x) — x and define h = <p(x) by
h (a) = a, h (b) = 6, h (d) = ab + adb and h (e) — ba + bea. Furthermore,
dénote G = (N ({E*}), V^, P, y?, d + e). Then the approximation séquence
(r(n)) associated to G is given by

n

r(n) = J2 (a1 bl + V aï) + an dbn + bn ean

i=l

(n > 0). Therefore

We show that r = S (G) cannot be generated monotonically. Suppose on
the contrary that S (G) = S (Gf) where

is a reduced LS System such that the approximation séquence (s^)
associated to Gf is monotonie. First, because s^ < S (Gf) = S (G) for ail
n, we suppose without loss of generality that Ei — {a, b}. By Theorem 3.4
we have

(r) , . . . , ¥ ? ! (xm) ( r)) .

Clearly Pi is linear in X. Therefore,

A 0 supp O i (XJ) (a)) U supp (tpi (XJ) (b)) (1 < j < m),

Hence each word in supp (<p\ (XJ) (a)) (resp. supp ((pi (XJ) (b))) is a
positive power of a letter. Also, ip\ (XJ) (a) (resp. ipi (x.j) (b)) is a monomial
and Pi (x\, . . . , xm) = PQ + x\ + .... + xm where Po < r is a polynomial.
Furthermore, for each j there exists a positive integer e(j) such that

vol. 29, n° 2, 1995



1 1 6 J. HONKALA

(pi(xj)(a) = &1 and ip\(xj)(b) — a^ where {<JI, 02} — {a, &}.
But then necessarily m = 1 and r = Po + ^1 (#1) (O- Hence e (1) — 1 and
Po = O- Because this is impossible, 5 (G) cannot be generated monotonically.

Notice that S (G) is indeed a fixed point of G. However, so is every series
in N(({a, &}*}}• Therefore, this example shows that the limit approach is
often préférable to the fixed point approach.

We conclude this section by a topological condition on the set of fixed
points of an LS System G guaranteeing that S (G) can be generated
monotonically.

THEOREM 3.7: Suppose A is a partially ordered semiring such that for
no a E A there is an infinité chain {aj} such that CLJ < a for all j .
Furthermore, suppose G — (A ((S*)), V^ P ( x i , . . . , #m ) , y>, u)) is a
nonerasing LS System such that S (G) exists. Then S (G) can be generated
monotonically if there does not exist a séquence s (n) of fixed points of G
such that lim s (n) = 5 (G) and s (n) < S (G) for each n. In particular,
if G has only finitely many fixed points smaller thon S (G), then S (G) can
be generated monotonically.

Proof: Suppose that there does not exist a séquence s (n) of fixed points
of G such that lim s (n) — S (G) and s(n) < S (G) for each n. Dénote

T - S (G), rk = ^2 (r> w)w

\w\<k

and
, Vd, P ( x i , . . . , xm), <p, rk)(k>0).

By Theorem 3.2, 5 (G) is a fixed point of G. Therefore, because G
is nonerasing, rk < P{(p{x\) (r*.), . . . , (f(xm)(rk)) for each k. By
Theorem 3.4, the approximation séquence sW associated to Gk is monotonie.
Clearly fl(0 < S (G) for each %. Therefore S (Gk) exists, S (Gk) < S {G)
and S (Gk) is a fixed point of G for any k. Because 5 (Gk) > rk we have
limS'(Gfc) = S (G). By the assumption there exists an integer t such that
S(Gt) = S (G). This implies the claim. D

4. ELS SERIES

In this section we define and study ELS Systems and series. An ELS
series is of the form r 0 char (A*) where r G A {(S*)) is an LS series and
A C E . This generalization is well motivated for many reasons. Intuitively,

Informatique théorique et Applications/Theoretical Informaties and Applications
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it means that we pay less attention to the way the series is generated and
more attention to what the series can teil us. Therefore, the generalization
is very désirable applicationwise. The introduction of the Hadamard product
corresponds to the use of nonterminals in language theory. Notice, ho we ver,
that in a sense, it is possible to use nonterminals already in connection with
LS series (see Example 3.6). Intuitively, only "vanishing" nonterminals are
available in LS Systems, whereas ELS Systems have also "nonvanishing"
nonterminals.

DÉFINITION 4.1: An ELS system is a construct

>, 2>, P, tp7u>, A)

consisting of the LS system U (G) = (A {{£*)}, V, P, <p, u) called the
underlying system of G and a subset A of S. If S (U (G)) exists, G
générâtes the series

S(G) = S(*7(G))0char(A*).

A series r is called an ELS series if there exists an ELS system G such that
r — S (G). A series r is called an ELS series with u = 0 if there exists an
ELS system G = (A {(S*)), P , P, tp, 0, A) such that r = S (G).

Example 4.2: Suppose L Ç S* is an ETOL language (see [12]). By an
obvious modification of Example 2.4 one can show that char (L) E B ((S*)}
is an ELS series with u = 0.

Example 4.3: Dénote E = {a, 6, â, 6, c, J} and P ( x , y) — a& 4- cd+

âxb + cyd + z. Define y?(x) and tp(y) by

<r it j = a or cr = o

0 otherwise,

f a if a = c or a = d

) = i n +u .
I 0 otherwise,

Define <p (z) by â —> a, 6 —> 6, c -*f 6, J —> a, a —• 0, 6 —• 0. Define the ELS
system G by G = (N ((S*)), X>d, P, y>, 0, {a, b}). Then the approximation
séquence (An^) associated to U (G) is given by
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Therefore S (G) = ^ (a* b* + 6* a2'). Hence r = J ^ (o^ 6* + 6* a%) is an
*>i t>i

ELS series with OJ — 0. It was shown in Example 3.6 that r is not an LS
series with u = 0.

In what follows we pay special attention to LS and ELS series with UJ — 0.
Many series interesting from L Systems point of view belong to this class
(see Examples 2.4, 2.5 and 4.2). It has already been seen that the series of
this class have many nice properties not possessed by LS and ELS series
in gênerai (see Theorem 3.4).

In the définition of an LS system and the approximation séquence
associated to an LS system only one polynomial is used. This is no restriction
in the framework of ELS series.

DÉFINITION 4.4: A vector of LS Systems of dimension k > 1 is a fc-tuple
Gr = ((A ((£*}), X>, P%{X\\, . . . , Xifc, . . . , Xnl, . . . , Xnk), (pu Ui))l<i<k Of
LS Systems. The approximation séquence ( ( r ^ i , . . . , ^j5fc))j>o associated
to G is defined recursively by

,*;)), 1 < 5 < A;.

If lim Tj s exists for every 1 < s < k, we dénote

S (G) = (lim rj-,1, . . . , lim rjik)

and say that 5 (G) is the (v^c^ör o/) series generated by G.

In connection with ELS Systems and series we want to emphasize that
when we consider a polynomial P(x\, . . . , xn) we do not assume that
each Xi actually has an occurrence in P .

For each i € N, suppose EW is an isomorphic copy of S and
that copy^ : S —• E^) is a bijective mapping. Furthermore, suppose
S(0 n EO') = 0 for i ^ j . Also, suppose that for each i G N, X® is
an isomorphic copy of X and that XW Pi JÏ"W = 0 if i ^ j . Furthermore,
assume (X U ( J x W ) n (E U ( J E ^ ) = 0 . Extend the mapping copy,- from

E U X to E ^ U l W such that the restriction copy^ : X -> X^ is bijective.
The mapping copy2- is extended in the natural way from A ( ( ( S u X ) * ) ) to
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UX«)*>>. Hence, if r G A ((S*)}, c o p y ^ r ) G A « ( E « ) * ) > i s

the isomorphic copy of r over £W.

THEOREM 4.5: Suppose G = ((A {(S*)), î>^, P,-(o;ii, . . . , x i^ , . . . ,
#TI1) - . . , Xnk), (Pii <^))i<Kfc w « vector of LS Systems such that
S (G) = (rW, . . . , r ^ ) extó-s and rW, . . . , r ^ are quasiregular. Then
r(5) /.s an £L5 series for any s. If, furthermore, A is partially ordered and
u)\ = - • • — Uk = 0, ?/î w r̂ 5^ w an £L5 5en^5 w/r/z a; = 0, /or any s.

Proof: Dénote the approximation séquence associated to G by
(0%i, . . . , 7*t,jb)). We suppose without loss of generality that (rt ;5, A) = 0
for any t > 0, 1 < s < k. If necessary, we change u)\, . . . , a;̂ . It suffices
to show that there is an LS System G such that

k

5 - 1

Define the System G = (A «(X^1) U • • • U £(*))*)), P d ) ^ V, w) as follows.
First,

5 = 1

and
k

u = ^T copys((js).
5=1

Furthermore,

_ ƒ copy5 (ifs (Xij) (a')) if a = copy^ (a') G

~ 1 0 if a 0 £0)

1 < 5 < fc, 1 < i < n, 1 < j < Jb.
Dénote now the approximation séquence associated to G by ( g ^ ) . It

follows inductively that

5=1

This implies the first claim.
If A is partially ordered and UJ\ = • • • = u;*; = 0, the approximation

séquence associated to G is monotonie. Hence the assumption concerning
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rW, . . . , rW implies that ( r M , X) = 0 for any t > 0, 1 < s < k. Therefore
at the beginning of the proof we do not have to change the axioms and so
u = 0. D

In what follows we consider also vectors of LS Systems which have
different E's in their first components. This is merely a notational
simplification.

In the rest of this section we always use the convergence I V

LEMMA 4.6: If r, s G A ((A*)) are quasiregular ELS series, then so are
r + s and rs. If furthermore, A is partially ordered and r and s are ELS
series wiîh LO = 0, so are r + s and rs.

Proof: We prove the claim for rs. The other case is similar. Suppose

r = 5(Gi)0char (AÎ) ,

s = 5(G2)0chax(A5)

where

Gl - (A«EÎ>>, Vdi PL

and

G2 - (A {(S^>), Vd, P2

are LS Systems. Define the 3-dimensional vector of LS Systems G by
G = (Gi, G2) G3) where

Hère P3 (3:31, X32) — ^31^32 and ^3 (x^i) (&) ~ a if a e Ai and
^3 (#3ï) (cr) — 0 otherwise (i = 1,2). Then the approximation séquence
associated to G is (r^\ 3^\ (r^"1) 0 char (A^)) (5Ü-1) 0char(A|)))
where (r^)) and (5^)) are the approximation séquences associated to G\
and C?2, respectively. By Theorem 4.5, the series rs an is ELS series. •

The easy proof of the following claim is omitted. Notice, however, that
Lemma 4.7 is not a particular case of Lemma 4.6.

LEMMA 4.7: Suppose r € A ((A*)) is a quasiregular ELS series and a G A.
Then ar is an ELS series. If furthermore, A is partially ordered and r is an
ELS series with u = 0, so is ar.

THEOREM 4.8: Suppose R(x\, . . . , xn) e A ((X U E)*) is a quasiregular
polynomial If n , . . . , rn G A ((S*)) are quasiregular ELS series, so is
i? ( n , . . . , rn). If furthermore, A is partially ordered and each ri is an ELS
series with LÜ — 0, so is R{r\, ..., rn).
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Suppose r G A ((S*)) is an ELS series. Consider the series f which is
obtained from r by replacing each occurrence of a by an ELS series ra

for each a G X. It is an open question what conditions on the series r and
ra (a G S) guarantee that f is an ELS series. Theorem 4.8 is the special case
where r is a quasiregular polynomial. Below we consider the case where
each ra is a polynomial.

THEOREM 4.9: Suppose G = (A ((S*)), Vd) P, 99, UJ, A) w arc
System such that S (G) exists and is quasiregular. Furthermore, suppose
h : A* —>• A (Ap w a morphism such that (h (a), À) = 0 for every a G A.
77ien h (S (G)) is an ELS series. If furthermore, A is partially ordered and
S (G) is an ELS series with cv = 0, so is h (S (G)).

Proof: Dénote by (r^)) the approximation séquence associated to U (G).
Extend h to a morphism from S* to A (Ap by h (a) — 0 if a G S — A.
Then \imh(A^) exists and equals h (S (G)).

Dénote P — P ( x n , . . . , xn\) and P2 (^21) = #21- Derme a two-
dimensional vector of LS Systems by G — (U(G), G2) where G2 =
(A <((EuAi)*>>, 25^^ ,^2 ,0 ) . Hère ^2(a?2i) = /i2 where/12 (a) = h(a)if
a G E and /12 (c) — 0 otherwise. Now the approximation séquence associated
to G is (rü), ^(rü" 1 ) ) ) . By Theorem 4.5, h (S (G)) = limh(r^~^) is
an ELS series. D

The following theorem is a direct conséquence of Theorem 4.5 and the
définition of an algebraic series (see [9]).

THEOREM 4.10: Ifre Aalg ((S*)) w quasiregular, then r is an ELS series
with u) — 0.

To conclude this section we show that erasing is a necessary facility in
ELS sytems. This should be contrasted with the fact that £ (ET0L) =
C (EPTOL) (see [12]). By définition, an ELS System G is nonerasing if the
LS System U (G) is nonerasing.

LEMMA 4.11: Suppose G = (N«£*)), Vd, P ( x i , . . . , x m ) , tp, 0) w a
nonerasing LS System such that r — S (G) exists and (r, À) — 0 . Then there
exists a real number 6 > 0 such that

(r, w) < 26^2

for every w G S*.
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Proof: We sketch the basic ideas of the proof; the details are left to the
reader.

We suppose without loss of generality that

P{x\, . . . , xm) = n\ x\ H h nk Xk + P\ {x\, . . . , xm)

where the support of no term of Pi belongs to X and ni, . . . , njt are positive
integers. Dénote h{ = y>(xi) for i = 1, . . . , m and H = {/ii, . . . , h^}.
Because r = S (G) exists, for each word w G supp (r) there exists a positive
integer M (w) such that if i > M (w) and g\, . . . , Q{ G H then

This implies that there do not exist w G supp (r) and g\, . . . , g3 e H
such that w G supp {g\ .. .gj (W)). Therefore M (w) < |S|ISI for all
w G supp (r). Now the claim can be shown inductively. D

THEOREM 4.12: There exists an LS series r with u = 0 such that if G\ is a
nonerasing ELS system with UJ = 0 then S (Gi) ^ r.

Proof: Dénote G = (N «£*)}, Vd, P, 99, 0) where E = {a, ö, 6, c},
P (x) — bc (a + â) + x and ip{x) — h is defined by /i (a) — (a + â)2 + À,
/i(ö) = À, /i(6) = 6, /i(c) = 6c. Dénote the approximation séquence
associated to G by (r(n)). It is seen inductively that there exists a séquence
(*(*)) G (N«E*)))N such that

r(n+l) = r(n) + &n+l ^(n)

for all n > 0. Therefore r — S (G) exists. It is easily seen that

6 n + 1 c(a + ö)2Tl <r

for all n > 0. Therefore

(r, ^ + 2 c ) > 2 2 n .

Hence the claim follows by Lemma 4.11. D

5. DECIDABILITY QUESTIONS

In this section we briefly discuss decidability questions concerning LS
and ELS series.
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By the définition due to Eilenberg, a semiring A (with 0 7̂  1) is positive,
if for ail a, b E A the following conditions are satisfied.

(1) If a + b = 0 then a = b = 0.
(2) If a6 = 0 then a = 0 or b = 0.

If A is a positive semiring, then the mapping ty : A —> B defined by

i if a / 0

0 if a = 0

is a semiring morphism. This implies the following lemma. In the statement
of the lemma i[) stands for the unique extension

<ƒ>: A<(XuS)*)->B<(XuS)*>

satisfying ij) (w) = w for all w £ (X U S)*.

LEMMA 5.1: Suppose A is a positive semiring and

G = (A«E*», Vd,P,<p, 0)

zs an LS System such that S (G) exists. Dénote

G" = (B <(£*)), P d , P', v', 0)

Pf = ij; (P) and y?; (x) (er) = tp (tp (#) (a)) /ör anj x E X, a E S.
5(G') existe an^ 5 ( 0 ' ) = char (supp (5 (G))).

THEOREM 5.2: Suppose A is a positive semiring and

G = (A((Z*)),Vd,P,<p,0)

is an LS system such that S (G) exists. Then supp (S (G)) is a recursive set.

Proof: By Lemma 5.1 we assume without restriction that A = B.
By the assumption r = £(G) is the least fixed point of G. Define
F - {(u, A)\u e E* and A Ç E}. If ƒ = (u, A) E F, the length of
ƒ equals |u|. We say that w E E* has form (u, A) E F if w = u\ ... crm,
u = a^ ... (Tik (0 < k < ra, 1 < ij < m) and {ay | j ^ {ii, . . . , ik}} ^ ^<
Here the a's are letters of E. We say that f E F holds if supp(r) has a
word of the form f.lffi, . . . , fs hold we say that ƒ1 A • • • A fs holds.

To prove the theorem it suffices to show that it is decidable, given
ƒ = (u, A) E F , whether or not ƒ holds. We proceed inductively on \u\
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and suppose that we already know the answer if u = À. We proceed with the
assumption that P (0, . . . , 0) does not have a term of the form ƒ. Because
r is the least fixed point of G, there exist fn, . . . , fikl, . . . , fn, • • •, ftkt

of length at most | / | such that ƒ holds if and only if at least one of
/ i l A . . . A fik^ . • •, /ti A . . . A jfifct holds. By induction, we can décide
all / a ' s with length less than | / | . For each fa we also check whether
the fact that fa holds follows from the fact that P (0, . . . , 0) has a term
of the form fa. If we do not find an expression which holds we are left
with a set d C {ƒ' e F\ \f\ = \f\} such that ƒ holds if and only if
Ci has an element which holds. Next we repeat the process with each
f' E Ci. Unless we find an element of Ci which holds we are left with a
set C2 Ç {ƒ' G F\ \f\ = | / |} and we have to décide whether C2 has an
element which holds. Now we continue in the same way. If the same set C
is obtained twice, ƒ does not hold. D

CoROLLARY 5.3: Suppose A is a positive semiring and

G - ( A ((S*)), Vd,P,ip, 0, A)

is an ELS System such that S (G) exists. Then supp (5 (G)) is recursive.

THEOREM 5.4: Suppose A is a positive semiring and

is an LS System such that S (G) exists and tp (x) (a) ^ 0 for ail x and a E E.
Then it is decidable whether or not supp (S (G)) is infinité.

Proof: By Lemma 5.1 we suppose without restriction that A = EL The
claim was proved in [6], provided that tp (x) (a) G £* for any x and u G E.
No essentially new ideas are needed to prove Theorem 5.4. D

We show next that every property which is undecidable for context-free
languages is undecidable for LS series, too.

LEMMA 5.5: Suppose L Ç E * is a context-free language. Then
char (L) G B {(S*)) is an LS series.

Proof: Suppose L — L(G) where G = (Y, £, i2, LJ) is a context-free
grammar in the Greibach normal form. Without restriction we suppose
Y C\X = 0. Define the LS System Ga = (B«Y*)), Và% P (x ) , <p, ui)
by P (x) — x and (p (x) = h where h (a) = a for a G E and
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h (y) = 71 -1 1- In for y G Y - E where y -> 71, . . . , y —> 7n are the
productions for y in G. It is not diffîcult to see that S (G\) — char (L). D

The following theorem lists some of the most basic undecidability results
concerning LS series.

THEOREM 5.6: Suppose r = S (G\) and s — S (G2) are given LS series
where Gi = (B ((£*)}, Vd, Pi, (fi, u)i) are LS Systems (i = 1,2). It is
undecidable whether or not

(i) r = s,

(ii) r < s,

(iii) r 0 5 = 0,

(iv)r - char (S*),

(v) supp (r) is regular.

Proof: The claims foliow from Lemma 5.5 and wellknown undecidability
results concerning context-free languages. D

Theorem 5.6 (i) and (ii) can also be deduced from the undecidability of
language équivalence for DTOL Systems by Example 2.4. This shows that
(i) and (ii) are undecidable even if Pi are supposed to be linear and u>i — 0
(i = 1,2). However, we do not find it very interesting to translate various
undecidability results of language theory to LS series. On the other hand, it is
of interest to search classes of LS Systems for which new decidability results
can be shown. It turns out that these restricted classes often still allow a very
large spectre of truly morphic behaviour and do not necessarily restrict the
mode of itération at ail. An example is provided by the following theorem.

An LS System G = (A ( (S* ) ) , V, P(xi, . . . , x n ) , cp, eu) is every where

growing if for every Xi (1 < i < n) and a G S the length of the shortest
word in supp (cp (xi) (a)) is at least two and <p (xt) (a) / 0.

THEOREM 5.7: Suppose G = (Q+ {(S*)}, Vdj P(xu . . . , xn)7 tpy 0) is
an everywhere growing LS System and s G <Q+ ((E*)) is a Q-rational series.
If (P, À) = 0 or no term of P belongs to X+ then S (G) exists and it is
decidable whether or not S (G) = s.

Proof: The existence of S (G) is seen inductively. By Theorem 3.4, 5 (G)
is the minimal fixed point of G. Suppose r' G Q+ {(S*)) is a fixed point of
G such that (S(G), A) - (r', A). It follows inductively that S (G) = r1.
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Therefore S (G) = s if and only if {S(G), A) = (5, À) and s is a fixed
point of G. Hence 5 (G) = 5 if and only if

(P, A) = (s, A)

and

P(<p(xi)(s), . . . , <p(xn)(s)) = s.

The decidability of the first condition is clear; the decidability of the second
follows by the closure and decidability properties of rational series. G
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