J.L.LAMBERT

The local catenativity of DOL-sequences in free commutative monoids is decidable in the binary case

Informatique théorique et applications, tome 26, n° 5 (1992), p. 425-437

<http://www.numdam.org/item?id=ITA_1992__26_5_425_0>

© AFCET, 1992, tous droits réservés.

L'accès aux archives de la revue « Informatique théorique et applications » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE LOCAL CATENATIVITY OF DOL-SEQUENCES IN FREE COMMUTATIVE MONOIDS IS DECIDABLE IN THE BINARY CASE (*)

by J. L. LAMBERT $(^1)$

Communicated by C. CHOFFRUT

Abstract. – Given a matrix $A \in \mathbb{Z}^{2 \times 2}$ and a vector $V_0 \in \mathbb{Z}^2_{m-1}$ we determine if there exists an integer m and m positive integers $a_{m-1} \dots a_0$ such that $A^m V_0 = \sum_{i=0}^{m-1} a_i A^i V_0$. When such an m exists, we compute the smallest one and m positive integers $a_{m-1} \dots a_0$ that satisfy the relation.

Keywords : DOL-Sequences; Commutative monoids.

Résumé. – Étant donnés une matrice $A \in \mathbb{Z}^{2 \times 2}$ et un vecteur $V_0 \in \mathbb{Z}^2$ on détermine l'existence d'un entier m et de m autres entiers positifs $a_{m-1} \dots a_0$ tels que $A^m V_0 = \sum_{i=0}^{m-1} a_i A^i V_0$. Quand un tel m existe, on calcule le plus petit ainsi que les entiers $a_{m-1} \dots a_0$ qui satisfont la relation.

INTRODUCTION

The DOL sequences were introduced by Lindenmayer [3]. They are defined in a free monoid Σ^* (Σ being a finite alphabet) by a morphism $h: \Sigma^* \to \Sigma^*$ and an axiom $w \in \Sigma^*$; the DOL sequences is then the sequence w, h(w), $h^2(w), \ldots h^n(w), \ldots$ Such a sequence in Σ^* is said locally catenative if there exists an integer m and some positive integers $i_0 \ldots i_r$ smaller than m such that:

$$h^{m}(w) = h^{m-i_{0}}(w) \dots h^{m-i_{r}}(w)$$

^(*) Received April 1991, revised October 1991.

A.M.S. 15A24, 15A36, 15A39, 20M14, 68Q45.

C.R. F.4.3.

This work was realised under the auspices of CNRS PRC Mathématiques et Informatique.

^{(&}lt;sup>1</sup>) Université de Paris-Nord, Centre Scientifique et Polytechnique, Département de Mathématiques et Informatique, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.

Informatique théorique et Applications/Theoretical Informatics and Applications 0988-3754/92/05 425 14/\$3.40/@ AFCET-Gauthier-Villars

C. Choffrut proved in [1] that when card $(\Sigma) = 2$, then the local catenativity of DOL sequences is decidable since it is equivalent to $h^{3}(w) \in \{w, h(w), h^{2}(w)\}^{*}$. The problem of deciding if a given DOL sequence is catenative or not is still open.

In a free commutative monoid, the definition is easily extended. The morphism is given by a matrix $A \in \mathbb{N}^{n \times n}$ and the axiom is a vector $x \in \mathbb{N}^n$. The problem is then to determine if there exist an $m \in \mathbb{N}$ and m positive integers a_{m-1}, \ldots, a_0 such that

$$A^m x = \sum_{i=0}^{m-1} a_i A^i x$$

The problem is then a decidability result concerning matrices with entries in \mathbb{N} ([4]).

In this article we will prove the decidability of this property when n=2 (the binary case). We will actually solve the more general problem:

Problem 1:

Instance: $V_0 \in \mathbb{Z}^2$, $A \in \mathbb{Z}^{2 \times 2}$

Question: Do there exist an integer $m \in \mathbb{N}$ and m positive integers a_{m-1}, \ldots, a_0 such that

$$A^m V_0 = \sum_{i=0}^{m-1} a_i A^i V_0$$

We will prove that this problem is decidable and will compute the smallest m for which some integers a_{m-1}, \ldots, a_0 satisfying the property exist.

1. TURNING THE PROBLEM INTO A PROBLEM CONCERNING POLYNOMIALS

In this section, we will express our initial problem 1 into a more suitable form and study it in any dimension. It is first clear that we can rewrite and

generalize the problem under the following form:

Problem 2:

Instance: $V_0 \in \mathbb{Z}^n$, $A \in \mathbb{Z}^{n \times n}$

Question: Does there exist a polynomial $P \in \mathbb{Z}[X]$ of degree m such that $P = X^m - \sum_{i=0}^{m} a_i X^i$ where $a_i \in \mathbb{N}$ for $0 \le i \le m-1$ and $P(A) V_0 = 0$?

We just recall that for a polynomial $P(X) = \sum_{i=0}^{m} a_i X^i$ and a matrix A, P(A)

is the matrix given by:

$$P(A) = \sum_{i=0}^{m} a_i A^i$$

A polynomial P of degree m such that $a_m = 1$ is said monic. We will denote by $\mathbb{Z}_1[X]$ the set of monic polynomials with coefficients in \mathbb{Z} .

We prove here that the monic polynomials of $\mathbb{Z}[X]$ that satisfy $P(A) V_0 = 0$ are the multiples of a computable monic polynomial P_0 of degree at most n. This property is a consequence of the classical Gauss' lemma on integer polynomials and Hamilton-Cayley theorem ([2]).

LEMMA 1 (Gauss' Lemma): Let P and Q be two polynomials in $\mathbb{Z}[X]$ and denote by C(P) the GCD of the coefficients of P then

$$C(P.Q) = C(P).C(Q)$$

LEMMA 2 (Hamilton-Cayley Theorem): Let $A \in \mathbb{Z}^{n \times n}$ and let $K_A(X)$ be the characteristic polynomial of A:

$$K_A(X) = \text{Det}(A - XI)$$

then $K_A(A) = 0$.

We will use Gauss' lemma under the following more convenient form:

LEMMA 3: Let $P \in \mathbb{Z}[X]$ a monic polynomial. Then if $P = Q \cdot R$ where Q and *R* are monic polynomials of $\mathbb{Q}[X]$ then $Q \in \mathbb{Z}[X]$ and $R \in \mathbb{Z}[X]$.

Proof. - Let $Q' = \lambda Q$ and $R' = \mu R$ where λ and μ are the least positive integers such that Q' and R' have integer coefficients. Then since Q is monic, C(Q') divides λ (λ is the highest degree coefficient of Q') and then C(Q') = 1

since λ is minimal. Similarly, C(R') = 1. Now

$$C(\lambda \mu P) = \lambda \mu = C(Q') C(R') = 1$$

Thus $\lambda = \mu = 1$ and Q = Q', R = R'. \Box

We are in position to prove the first proposition:

PROPOSITION 1: Let $V_0 \in \mathbb{Z}^n$, $A \in \mathbb{Z}^{n \times n}$. Define the set

$$I = \{ P \in \mathbb{Z}_1 [X] / P(A) V_0 = 0 \}$$

Then we can compute a monic polynomial of degree at most $n: P_0 \in \mathbb{Z}[X]$. Such that:

$$I = P_0 \cdot \mathbb{Z}_1[X]$$

Proof: - Let $I' = \{P \in \mathbb{Q}[X]/P(A) V_0 = 0\}$. Then I' is an ideal over $\mathbb{Q}[X]$ which is a principal ring then there exists a monic polynomial $P_0 \in \mathbb{Q}[X]$ such that $I' = P_0 \mathbb{Q}[X]$.

By lemma 2, the monic polynomial $(-1)^n K_A(X)$ is in I' thus

$$(-1)^n K_A(X) = P_0 Q$$

which implies by lemma 3 that $P_0 \in \mathbb{Z}_1[X]$. Since P_0 is a divisor of $K_A(X)$, it is clear its degree is at most *n* and that there exist only a finite set of values for P_0 which can easily be computed.

Finally, Let $P \in I$, since $I \subset I'$:

 $P = P_0 Q$

but since P is monic, $Q \in \mathbb{Z}_1[X]$ and $I = P_0 \mathbb{Z}_1[X]$. \Box

With the help of proposition 1, one can see that problem 2 is decidable if the following one is:

Problem 3:

Instance: A polynomial $P_0 \in \mathbb{Z}[X]$ of degree at most n

Question: Does there exist a polynomial $Q \in \mathbb{Z}_1[X]$ such that

$$P_0 \cdot Q = X^m - \sum_{i=0}^{m-1} a_i X^i \quad \text{where} \quad a_i \in \mathbb{N}$$

We now solve problem 3 in the case n=2.

2. SOLVING PROBLEM 3 FOR n=2, THE EASY CASES

Except in one case which is the most interesting one, problem 3 when n=2 is easy to solve. In this case the polynomial P_0 of proposition 3 has degree 1 or:

$$P_0(X) = X^2 - \text{Tr}(A) X + \text{Det}(A)$$

In this latter case the discussion will concern the signs of Tr(A) and Det(A). In the remainder of the paper a and b are positive integers.

1st case: P_0 has degree 1:

This means that V_0 is an eigenvalue of A.

If $P_0 = X - a$, let Q = 1 else if $P_0 = X + a$, then Q = X - a works.

2nd case: $P_0 = X^2 - a X - b$:

Q = 1 is clearly suitable

3rd case: $P_0 = X^2 + a X + b, a \neq 0$:

Then for any large enough $\lambda \in \mathbb{N}$:

$$(X-\lambda) P_0 = X^3 + (a-\lambda) X^2 + (b-a\lambda) X - b\lambda$$

has the convenient form. Thus $Q = X - \lambda$ is suitable.

4th case: $P_0 = X^2 + a X - b, a \neq 0, b \neq 0$:

PROPOSITION 2: Let $P_0 = X^2 + a X - b$ where $(a, b) \in (\mathbb{N} - \{0\})^2$. Then there exists no polynomial $Q \in \mathbb{Z}_1[X]$ such that

$$P_0 \cdot Q = X^n - \sum_{i=0}^{m-1} \lambda_i X^i \quad \text{where} \quad \lambda_i \in \mathbb{N}$$

Proof. - Let
$$Q = X^n + a_{n-1} X^{n-1} + \dots + a_0$$
. Then
 $P_0 \cdot Q = (X^2 + a X - b) (X^n + a_{n-1} X^{n-1} + \dots + a_0)$
 $= X^{n+2} + (a + a_{n-1}) X^{n+1} + (a_{n-2} + aa_{n-1} - b) X^n + \sum_{i=0}^{n-3} (a_i + aa_{i+1} - ba_{i+2}) X^{i+2}$

 $+(aa_0-ba_1)X-ba_0$

Now we want

$$-ba_0 \leq 0$$

$$aa_0 - ba_1 \leq 0$$

$$a_i + aa_{i+1} - ba_{i+2} \leq 0 \quad \text{for} \quad i = 0, \dots, n-3$$

This implies directly that $a_0 \ge 0$ (since b > 0) and then $a_1 \ge 0$. By induction one has:

$$a_i \ge 0$$
 and $a_{i+1} \ge 0 \Rightarrow a_{i+2} \ge 0$

and thus $a_{n-1} \ge 0$ which gives $a + a_{n-1} \ge a > 0$. A contradiction. \Box

We now deal with the interesting case $P_0 = X^2 - aX + b$.

3. **PROBLEM 3: THE CASE** $P_0 = X^2 - aX + b, b \neq 0$

3.1. The main result

PROPOSITION 3: Let $P_0 = X^2 - aX + b$, $a \in \mathbb{N}$, $b \in \mathbb{N} - \{0\}$. Then there exists $Q \in \mathbb{Z}_1[X]$ such that

$$P_0 \cdot Q = X^n - \sum_{i=0}^{n-1} \lambda_i X^i$$

with $\lambda_i \in \mathbb{N}$ iff P_0 has no root in \mathbb{R} .

Proof. — We first prove that the problem is equivalent to the existence of a non fully negative solution to a certain regular system of inequations. To check this existence, we use an easy criteria concerning the signs of the coefficients of a matrix. We compute that matrix and show that those coefficients are given by a linear recursion formula which the discussion is based on.

Let us look at a polynomial $Q = X^n + a_{n-1} X^{n-1} + \ldots + a_0$ then

$$P_0 \cdot Q = (X^2 - a X + b) (X^n + a_{n-1} X^{n-1} + \ldots + a_0)$$

= $X^{n+2} + (a_{n-1} - a) X^{n+1} + (a_{n-2} - aa_{n-1} + b) + \sum_{i=0}^{n-3} (a_i - aa_{i+1} + ba_{i+2}) X^{i+2} + (ba_1 - aa_0) X + ba_0$

We have to determine if there exists an integer n such that the system of inequation (I):

(I)
$$ba_{0} \leq 0 \\ -aa_{0} + ba_{1} \leq 0 \\ a_{0} - aa_{1} + ba_{2} \leq 0 \\ \vdots \\ a_{i} - aa_{i+1} + ba_{i+2} \leq 0 \\ \vdots \\ a_{n-2} - aa_{n-1} + b \leq 0 \\ a_{n-1} - a \leq 0$$

has a solution a_0, \ldots, a_{n-1} in \mathbb{Z} .

We claim that this is equivalent to the existence of an integer n such that the system of equation (II):

(II)

$$bx_{0} \leq 0$$

$$-ax_{0} + bx_{1} \leq 0$$

$$x_{0} - ax_{1} + bx_{2} \leq 0$$

$$\vdots$$

$$x_{i} - ax_{i+1} + bx_{i+2} \leq 0$$

$$\vdots$$

$$x_{n-2} - ax_{n-1} + bx_{n} \leq 0$$

. .

has a solution $(x_0, \ldots, x_n) \in \mathbb{Z}^{n+1}$ satisfying:

$$\exists i/x_i > 0.$$

First it is clear that if (a_0, \ldots, a_{n-1}) is a solution of (I), then $x = (a_0, \ldots, a_{n-1}, 1)$ is a solution of (II) with $x_n > 1$.

Conversely, let (x_0, \ldots, x_n) be a solution of system (II) that satisfies $x_i > 0$. Since $bx_0 \le 0$ and b > 0 one has $x_0 \le 0$. Let x_{n_0} be the first x_i such that $x_{n_0} > 0$. By the previous remark, $n_0 > 0$.

Now we just have to check that $a_0 = x_0, \ldots a_{n_0-1} = x_{n_0-1}$ is a solution of system (I). The $n_0 - 1$ first inequations are satisfied and since

$$a_{n_0-2} - aa_{n_0-1} + b \leq x_{n_0-2} - ax_{n_0-1} + bx_{n_0} \leq 0$$

and

$$a_{n_0-1} - a \leq x_{n_0-1} \leq 0$$

all inequations of (I) are satisfied. This states the claim.

We will thus solve the latter problem. Let us define

$$A_{n} = \begin{pmatrix} b & & \\ -a & b & \\ 1-a & b & \\ & \ddots & \\ & 1-a & b \end{pmatrix} \in \mathbb{Z}^{(n+1) \times (n+1)}$$

and for two vectors x, y in \mathbb{Z}^{n+1} :

$$x \leq y \Leftrightarrow \forall i, \qquad 0 \leq i \leq n, \quad x_i \leq y_i$$

We have to determine if

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{Z}^{n+1}, \qquad A_n x \leq 0 \Rightarrow x \leq 0$$

But this is clearly equivalent to

$$\forall n \in \mathbb{N}, A_n^{-1}$$
 is positive

Now we easily compute that

$$A_n^{-1} = \begin{pmatrix} \frac{\alpha_0}{b} & & \\ \frac{\alpha_1}{b^2} & \frac{\alpha_0}{b} & \\ & \ddots & \\ \frac{\alpha_n}{b^{n+1}} & \cdots & \frac{\alpha_1}{b^2} & \frac{\alpha_0}{b} \end{pmatrix}$$

where $\alpha_0, \ldots, \alpha_n$ is an integer sequence given by $\alpha_0 = 1$, $\alpha_1 = a$ and the recursion formula:

$$\alpha_n = a \, \alpha_{n-1} - b \, \alpha_{n-2}$$

The characteristic equation of the recursion is $P_0(X) = 0$.

We now have three cases.

1st case: P_0 has two distinct real roots. Let $\lambda_1 > \lambda_2 > 0$ be these roots. An elementary computation leads to the formula:

$$\alpha_n = \frac{(\lambda_1)^{n+1} - (\lambda_2)^{n+1}}{\sqrt{\Delta}} \quad (\Delta = a^2 - 4b)$$

and $\alpha_n > 0$ for every *n*, the problem has no solution.

2nd case: P_0 has an unique double root $\lambda = a/2$. The new formula is

$$\alpha_n = (n+1)(a/2)^n$$

then $\alpha_n > 0$ for every $n \in \mathbb{N}$, there is no solution either.

3rd case: P_0 has no root in \mathbb{R} then P_0 has two roots in $\mathbb{C}:\lambda$ and $\overline{\lambda}$, we get the new formula:

$$\alpha_n = \frac{(\lambda)^{n+1} - (\bar{\lambda})^{n+1}}{i\sqrt{-\Delta}}$$

Let $\lambda = \rho e^{i\theta}$ then $\rho = \sqrt{b}$ and $\theta = \operatorname{Arctan}(\sqrt{(4b/a^2) - 1})$ (if a = 0 then $\theta = \pi/2$) and

$$\alpha_n = \frac{2\sqrt{b^{n+1}}}{\sqrt{-\Delta}}\sin(n+1)\theta$$

and $\alpha_n < 0$ as soon as $(n+1)\theta > \pi$ then for $n = [\pi/\operatorname{Arctan}(\sqrt{(4b/a^2)-1})]$ (where [x] is the integer part of x) the problem has a solution of degree n. \Box

3.2. Some examples

Let A be $a2 \times 2$ integer matrix such that Det(A) > 0 and Tr(A) > 0. When the matrix is positive, there is no solution since the characteristic equation has real roots. If we do not restrict the matrix A to be positive it is notable that even for matrices with coefficients of small size then the polynomial Q of proposition 3 can have a relatively high degree and surprisingly large size coefficients.

Before introducing some explicit examples, we note that it is easy to compute a polynomial Q satisfying the conclusion of proposition 3. Let X

be such that:

$$A_n X = \begin{pmatrix} -b^{n+1} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

since one has

$$A_n^{-1} = \begin{pmatrix} \frac{\alpha_0}{b} & & \\ \frac{\alpha_1}{b^2} & \frac{\alpha_0}{b} & \\ & \ddots & \\ \frac{\alpha_n}{b^{n+1}} & \cdots & \frac{\alpha_1}{b^2} & \frac{\alpha_0}{b} \end{pmatrix}$$

we get

$$X = \begin{pmatrix} -\alpha_0 b^n \\ -\alpha_1 b^{n-1} \\ \vdots \\ -\alpha_i b^{n-i} \\ \vdots \\ -\alpha_n \end{pmatrix} \in \mathbb{N}^n \times (-\mathbb{N})$$

Now following the argument of proposition 3, the vector:

$$X' = \begin{pmatrix} -\alpha_0 b^n \\ -\alpha_1 b^{n-1} \\ \vdots \\ -\alpha_i b^{n-i} \\ \vdots \\ -\alpha_{n-1} b \\ 1 \end{pmatrix} = X + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 + \alpha_n \end{pmatrix}$$

is a solution of system (I), the coefficients of $P_0 \cdot Q$ are then given by:

$$A_n X' = \begin{pmatrix} -b^{n+1} \\ 0 \\ \vdots \\ 0 \\ (1+\alpha_n) b \end{pmatrix}$$

Informatique théorique et Applications/Theoretical Informatics and Applications

434

and $a_{n-1} - a = -\alpha_{n-1}b - a$. Thus we get:

$$P_0 \cdot Q = X^{n+2} - (a+b\alpha_{n-1})X^{n+1} + (1+\alpha_n)bX^n - b^{n+1}$$

Note that the computation of that polynomial is reduced to the computation of α_n and α_{n-1} by a simple linear recursion formula !

Now we can give some examples. We note that for matrices of the form:

$$A = \left(\begin{array}{cc} a & -1 \\ 1 & a \end{array}\right)$$

The characteristic polynomial is $X^2 - 2aX + a^2 + 1$ which discriminant is $\Delta = -4$. Thus the degree of the polynomial Q of lowest degree is:

$$n = \left[\frac{\pi}{\operatorname{Arctan}\left(\sqrt{1/a^2}\right)}\right] \ge [\pi a]$$

For example, if a=1, the degree of Q is 4 since:

$$\alpha_0 = 1, \alpha_1 = 2, \alpha_2 = 2, \alpha_3 = 0, \alpha_4 = -4$$

The polynomial $Q = X^4 - 8X^2 - 16X - 16$ and

$$(X^4 - 8 X^2 - 16 X - 16) (X^2 - 2 X + 2) = X^6 - 2 X^5 - 6 X^4 - 32$$

The size of the polynomial grows rapidly with a. For a=3 for example, the formula gives $n \ge 9$. In fact n=9 is the lowest degree as one can see by computing the sequence:

$$\alpha_0 = 1$$

 $\alpha_1 = 6$
 $\alpha_2 = 26$
 $\alpha_3 = 96$
 $\alpha_4 = 316$
 $\alpha_5 = 936$
 $\alpha_6 = 2456$
 $\alpha_7 = 5376$
 $\alpha_8 = 7696$
 $\alpha_9 = -7584$

Q is then a polynomial of surprisingly large size while $P_0 = X^2 - 6X + 10$:

$$Q = X^9 - 76\,960\,X^8 - 537\,600\,X^7 - 2\,456\,000\,X^6 - 9\,360\,000\,X^5 - 31\,600\,000\,X^4$$
$$- 96\,000\,000\,X^3 - 260\,000\,000\,X^2 - 600\,000\,000\,X - 1\,000\,000\,000$$

and we get by the proved formula:

$$(X^2 - 6X + 10)$$
. $Q = X^{11} - 76966X^{10} - 75830X^9 - 100000000000$

The size of the obtained polynomials is the most surprising fact. If a=5 then the degree of the polynomial is at least 15 with very big coefficients, for the following polynomial

$$X^2 - 200 X + 10001 (a = 100)$$

We must search for a polynomial of degree at least 314!

4. CONCLUSIONS

We now easily express the results of section 3 in terms of problem 1.

THEOREM 1: Problem 1 has a solution except if V_0 is not an eigenvector of A and

i) Tr (A) < 0, Det (A) > 0

or

ii) Tr (A)>0, Det (A)>0 and A has eigenvalues in \mathbb{R} .

Moreover the smallest value m satisfying the property can be determined in each case. If V_0 is an eigenvector of A then it is 1 if the eigenvalue is positive, 2 otherwise. If V_0 is not an eigenvector then the results are summed up in the following tableau:

	Det $(A) > 0$	Det $(A) < 0$	Det (A) = 0
$\operatorname{Tr}(A) > 0$	<i>n</i> or 1mp.	2	2
Tr (A) < 0	3	imp.	3
$\mathrm{Tr}(A)=0$	4	2	2

where
$$n = \left[\frac{\pi}{\operatorname{Arctan}(\sqrt{(4 \det (A)/\operatorname{Tr} (A)^2) - 1})}\right] + 2$$

In the case where A and V_0 are positive, the result is greatly simplified:

THEOREM 2: In a commutative free monoid, a Dol sequence given by a matrix A and an axiom V_0 is locally contenative iff V_0 is an eigenvector of A or Det $(A) \leq 0$. In both cases one has:

$$A^2 V_0 \in \{A V_0, V_0\}^*$$

CONCLUSION

The technique involved to solve the problem in the binary case can be in part generalized to solve the other cases. But the analysis of the sequence α_n will not be possible in the same way (but perhaps the decidability will remain true) and principally the particularity of sign that permits to deduce from a suitable non monic polynomial another monic polynomial with the same quality will not remain valid. The generalization is then not so clear.

ACKNOWLEDGEMENTS

I thank the anonymous referees for their help in improving the presentation and C. Choffrut who made me know about this problem.

REFERENCES

- 1 C. CHOFFRUT, Iterated substitutions and locally catenative systems: a decidability result in the binary case, *private communication*.
- 2 S. LANG, Algebra, Addison Wesley 1965.
- 3 A. LINDENMAYER, G. ROZENBERG, Developmental systems with locally catenative formulas, *Acta Informatica*, 2, 1973, pp. 214-248.
- 4 WEBER, SEIDL, On finite generated monoids of matrices with entries in N, RAIRO, Inf. Theor. Appl., 25, 1991, pp. 19-38.