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ENUMERATING DAVENPORT-SCHINZEL SEQUENCES (*)

by D. GARDY (X) and D. GOUYOU-BEAUCHAMPS(1)

Communicated by J. BERSTEL

Abstract. — Davenport-Schinzel séquences of order s are words with no subsequence ababa... of
length s + 2. We give enumerating results for the case s = 2. In particular, we relate some of these
séquences to Catalan and Schröder numbers.

Résumé. - Nous étudions les suites de Davenport-Schinzel d'ordre!; ce sont des mots sans sous-
suite abab. Nous obtenons la fonction génératrice de dénombrement de ces suites, suivant la
longueur d'un mot et le nombre de lettres distinctes qu'il contient. En particulier, certaines de ces
suites sont énumérées par les nombres de Catalan pu de Schröder.

1. INTRODUCTION

Davenport-Schinzel séquences are words with forbidden subsequences,
which were first defined by Davenport and Schinzel [6] in connection with
the gênerai solution of a (homogeneous) linear differential équation with
constant coefficients, of order 5+1:

F(D)f(x) = 0. (1)

Hère D dénotes the derivative operator, and F is a polynomial of degree
s+1. If we suppose that F(D) has real coefficients, and that the roots of
F(k) = 0 are ail real, not necessarily distinct, the form of any solution is:

f(x) = P1 (x) e^x + . . . + Pk (x) ex*x. (2)

(*) Received April 1991, revised September 1991.
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3 8 8 D. GARDY, D. GOUYOU-BEAUCHAMPS

The Xl9 . . ,,Xk are the distinct roots of F(X) = Q, of respective multiplicities
mu . . .,iwk, so that w ^ . . . +mk = s+l; i ^ (x), . . . , P k ( x ) are polynomials
of degrees at most m1 — \9 . . ., w t — 1. Let

be rc distinct (but not necessarily independent) solutions of (1). For each real
number x, apart from a finite number of exceptions, there will be just one of
the functions(3) which is greater than all the others. So we can dissect the
real line into N intervals:

( - c o ^ ) , ^ , ^ ) , . - .,<>*_!, co) (4)

such that inside any one of the intervals (xj^iixJ) a particular one of the
functions (3) is the largest, and that this largest function is not the same for
two consécutive intervals.

The problem is to find how large N can be, for given s and givenrc. If we
remark that any function of type (2) has at most s distinct zéros, the problem
can be transformed into the following purely combinatorial problem: Find
the maximal length of a word on the alphabet A = {a1, . . .9an} with no
immédiate répétition and which contains no subword (x) of the form:

abab... with s + 2 letters and a^b. (5)

This number is usually denoted by Xs(n). Much work has been devoted to
Xs(n); we recall the main results below:

• s = l : X1 (n) = n (Davenport and Schinzel [6]).

• s — 2: X2(n) = 2n~ 1 (Davenport and Schinzel [6]).

• s = 3: Xs (n) is of order &(na (n)), with a («) the functional inverse of the
Ackermann function (Davenport and Schinzel [6], Davenport [5], Szeme-
rédi [20], Hart and Sharir [10], Komjâth [12], Wiernik [21]). This is more
than linear, but a (ri) is less than 4 for all purposes.

• s = 4: XA (n) is of order 0 (n 2a (n)) (Szemerédi [20], Sharir [16], Agarwal [1],
Agarwal, Sharir and Shor [2]). As in the case s = 3, it is theoretically superli-
near, but almost linear for all realistic values of n.

(x) We recall that the letters of the subword can be intertwined with other letters. For example,
the word w = abcadb contains the subword abab, although abab is not a factor of w.

Informatique théorique et Applications/Theoretical Informaties and Applications



ENUMERATING DAVENPORT-SCHINZEL SEQUENCES 389

• s ̂  5: The exact order of Xs (n) is not yet known; Agarwal, Sharir and
Shor [2]) have proved that

*2,+2 («) = O (« 2a (n)S (1 +°a))) and X2 s + 3 (n) = O {n 2* <«>s (1 +0 (1)) lo* « <">).

Again this is slightly more than linear.

It is of little surprise that these séquences have found a new field of
application in combinatorial and computational geometry. The most classical
application provides a combinatorial characterization of the lower envelope
of continuous functions, in the following manner. Let fu . . . , ƒ„ be n continu-
ous real functions, such that any two functions intersect in at most s points;
the séquence of indices of functions which form the lower bound of the
graphs is a Davenport-Schinzel séquence of order (n,s).

The papers of Sharir [17] and Sharir et al. [18] review recent results in
computer graphies, motion planning and computational geometry, that are
based on Davenport-Schinzel séquences. For example, hère are some prob-
lems where Davenport-Schinzel séquences appear:

• preprocessing of 2-D polyhedral terrain so as to support fast ray shooting
queries from a fixed point [4];

• determining whether two disjoint interlocking simple polygons can be
separated from one another by a séquence of translations [15];

• determining whether a given convex polygon can be translated and
rotated so as to fît into another given polygonal région [13];

• motion planning for a convex polygon in the plane amidst polygonal
barriers [11];

• analysis of the combinatorial complexity of the lower envelope of a
collection of bivariate pieeewise linear functions, whose graphs consist of n
faces altogether [14];

• finding the boundary of any région in a subdivision of the plane induced
by a set of n ray s [3].

For all these algorithme, the worst case complexity requires constructing
extremal configurations of a lower envelope, that force the algorithms to
perform a large number of opérations. This gives a worst-case complexity
expressed in terms of Xs(n), which is typically only slightly more than linear.
Our main objective is to find the average-case complexity of these algorithms.
This leads us to study parameters of Davenport-Schinzel séquences such as
average length of words or average number of distinct letters.

This paper présents some results for these parameters in the special case
s = 2. It is organized as follows: We give in Section 2 a formai définition
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of Davenport-Schinzel séquences, and we compute the generating function
enumerating séquences according to their length and to the number of distinct
letters they contain. Conséquences are given in Section 3; in particular we
show that séquences on a given number of letters are enumerated by Schröder
numbers, and that séquences of maximal length 2n— 1 are enumerated by
Catalan numbers. Finally, we indicate in Section 4 why our method fails
when s is at least equal to 3.

2. DECOMPOSITION OF A SEQUENCE

2.1. Définitions

Let s be a positive integer, and A an alphabet of size n:A = {a1, . . . ,an }.
A Davenport-Schinzel séquence of order (n, s) is classically defined as a word
w=u1. . . uk of A + , such that:

1. any two consécutive letters are distinct;

2. w has no subsequence uh . . .uis + 2(l^i1<i2< . - - < *s + 2 = &) o n anY t w o

distinct letters a and b, satisfying:

uh = ui3= • • • = « and "i2 = « i 4 = . . . = 6 .

We first précise the objects we are interested in. In the lower envelope
problem we alluded to in the introduction, the names of the functions (letters)
are arbitrary: Our interest is in the Davenport-Schinzel séquence up to a
renaming of the letters. This seems to hold for all topics where Davenport-
Schinzel séquences appear: The object of interest is not a word, but its
équivalence class when subjected to any renaming of the letters. This leads
us to propose the following notation, which we shall use throughout the rest
of the paper:

A Davenport-Schinzel word on an alphabet A is a word of
A+ satisfying the properties 1 and 2 above ("word" has the
sense usual in formai language theory); a séquence is an
équivalence class ofwords.

For example, ab and ba are two words corresponding to the same séquence.
We shall dénote by Nn>k the number of words of Davenport-Schinzel of
length k on n letters, and by an k the number of séquences up to a renaming
of the letters.

Informatique théorique et Applications/Theoretical Informaties and Applications



ENUMERATING DAVENPORT-SCHINZEL SEQUENCES 391

We defme DS(s) as the set of séquences (équivalence classes of words),
for a fixed s and for all alphabets. Our goal is to fïnd a suitable décomposition
of the séquences of DS (2), from which we can deduce an équation on their
generating function. We shall see that, for s = 2, this is an algebraic équation
of degree two which can easily be solved. We first simplify the problem by
introducing complete words and obtain a simple resuit on the generating
function of complete séquences of DS(l), which we shall need in the sequel.

2 ,2. Complete words

It turns out that the most natural words or séquences, from an enumeration
point of view, are those in which all the letters of the alphabet appear; we
call them complete words. The words on a given alphabet, including those
where some letters are missing, can be enumerated easily once the generating
function of the complete words is known. This leads to the following défini-
tion:

A complete word w on an alphabet A of size n is such that
all letters of A appear in w.

The length k of a complete word for s = 2 on an alphabet of size n belongs
to the set {«, . . ,,2n— 1}. Let Mn k be the number of such words and let
bnk = Mnkjn\ be the number of related séquences. The following relations
hold:

*«.*= I (" W*; (6)
n

* • . . * = ! *flfc. (7)

We define in a similar way complete séquences, as séquences in which all the
letters of A appear at least once.

2.3. Generating fonctions: définitions

Let ^(x^y) be the exponential generating function of the Nnk, where
variables marks the length of a word, and variable;; marks the size of the
alphabet:
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392 D. GARDY, D. GOUYOU-BEAUCHAMPS

Similarly, dénote by E(x,y) the ordinary generating function of the ank:

k, M ^ l

and by O(x,j/) the generating function counting complete séquences:

2 t t - l 2 n - 1 n

n £ 1 fc = n n ^ 1 Jk = »i W -

The relation (6) between the numbers 7Vn> k and M^ k allows us to express O
in terms of the function *¥:

This can also be obtained directly, as ey is the function enumerating the sets
of letters which do not appear in a word.

Now the functions <ï> and H are themselves related and the relation (7)
gives:

\-y

Again this can be obtained directly: 1/(1 —y) is the function enumerating the
séquences of letters that have to be added to the letters of a complete
séquence, to get the whole alphabet.

We sum up these results in the following theorem:

THEOREM 1: The generating functions Ei(x,y) and ^(x.y), enumerating
respectively words and séquences according to their length and to the size of
the alphabet can be expressed using the generating function <D(x, y) enumerating
complete words or séquences:

2.4. Enumeration of complete séquences of

Let gKtk be the number of séquences for s= 1, of length k, and such that
all the letters of alphabet A, of size n, appear in the séquence. From the
définition of DS(\), its séquences have no repeated letter, and there is
basically just one such séquence. This shows that:

if , gn,k ;

Informatique théorique et Applications/Theoretical Informaties and Applications



ENUMERATING DAVENPORT-SCHINZEL SEQUENCES 393

if « = fe, gn,n
=l-

Vefine g(x,y) = £ £„,fc*V; w e h a v e : g(x>y)= Z xTyi = xy/(l -xy).

2.5. Décomposition of a séquence of BS(2)

Let i i /bea séquence of DS (2); w may actually be a séquence of DS(l),
with no repeated letter. If at least one letter is repeated, we décompose w
unambiguously, according to the occurrences of the first such letter, Le. the
leftmost letter in w which will be repeated later on. Let us dénote this letter,
which is repeatedp^2 times, by a. We have:

w=w1aw2. . .wpawp+1.

Each w I(l^f^/>+ 1) defmes a sub-alphabet At c A\{a). The séquence w1

has no repeated letter, and belongs to DS(l); for z'^2, each w£ is a séquence
of DS(2). The wt cannot be empty, except maybe wx or wp+1. Moreover, the
following condition holds:

For \Si<jèp+h AiHAj=0. (8)

This gives the gênerai décomposition of DS (2), with the condition (8) relative
to sub-alphabets:

DS(2) = DS(l)®((e®DS(\)).a.(DS(2).a)+ .(&@DS(2))), (9)

Some letters of the alphabet A may not occur in the séquence w; let B dénote
the set of such letters. A séquence w is a complete séquence if and only if
B=0. We now have a way to partition^, according to the décomposition
of w:

A = {a}®A1®A2@...@Ap®Ap+1®B.

2 .6 . The generating fonction <I> (x, y)

The décomposition (9) given above is valid both on complete and non-
complete séquences. However, if we want to mark the different letters, and
to translate this décomposition on generating functions, we must restrict
ourselves to complete séquences. We recall that x marks the length of a
complete séquence, and y the number of distinct letters in the séquence.
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Equation (9) translates into an équation on the function <b(x,y):

x (£>

Injecting the value of g{x,y), we obtain: x®2 + {xy- l)Q> + xy=0, which is
easily solved:

THEOREM 2: The generating function enumerating the number of distinct
complete séquences according to their length {marked by x) and number of
distinct letters {marked by y) is:

<D (x, y) = (1 - xy - y O - xyY -4x* y)/{2 x).

3. CONSEQUENCES

3 . 1 . Number of séquences of given length

The number of complete séquences of length k on an alphabet of sizew
is simply bnjk = [xkyn]Q>{x,y). We can express it using Catalan numbers
Cn = (2w)!/(w)!(«+l)!. First, l-xy can be factored out of the square root;
the choice between 1 - xy and xy-lis made so that the solution is continuous
at the origin:

2

Define au,- = [xlyj] J\ -4x2y/{\ -xy)2; we have:

bn,k= - -<*k+l,n+-U>k,n

Now we evaluate 0Litj. It can be rewritten as:

Using the equality:

Informatique théorique et Applications/Theoretical Informaties and Applications
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we obtain:

a-o2i-2j

Now [tk] {\/(l-ty} = (k+P~ 1 V and we have:
\ P~l )

if ]<i

= 0 otherwise.

Plugging our évaluations of otk+1 „ and ak n^x into bnk, we get:

* \J k~l \\ = c ( k~l

2n-k-\) \2n-k-2jJ k n\2n~k-\

The number of non-complete séquences, or the number of words, either
complete or non-complete, are easily expressed in terms of b„t k. We sum up
these results in the following theorem:

THEOREM 3: The number of complete séquences of DS(2), of length k on an
alphabet of size n, is:

\2w-fc-l,

The number of séquences of DS (2), of length k on n letters, is:

q=x \2q~k-\J

The number Mn k of complete words and the number NHf k of non complete
words, of length k on n letters, satisfy:

. ^ / k-l
Mnik = n\CkA

\2n — k—\

r o \2n-k- \-2r

vol. 26, n° 5, 1992
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3.2. Séquences of maximal length

The complete séquences of maximal length are obtained for fc = 2«—1.
Their number is bn 5 2 „ -1 = Cn _ x.

Let D be the classical restricted Dyck language on two letters (x and x).
The words w of Z>, or Dyck words, are characterized by the two following
conditions:

1. for any left factor u of w, the number of occurrences of the letter x
in u is greater or equal to the number of occurrences of the letter x in
u (\u\x^\u\à;

2. the number of occurrences of the letter x in w is equal to the number
of occurrences of the letter x in w (| w \x = \ w |-).

It is well-known that the Dyck words of length 2 n are enumerated by the
Catalan number Cn. Thus it is possible to fmd a bijection between complete
séquences of maximal length and Dyck words. We describe below two maps
Bx and B2 that realize this bijection.

Example: The C3 = 5 complete séquences of maximal length on four letters
are given by:

abacada, abacdca, abcbada, abcbdba, abcdcba.

and the C3 = 5 Dyck words of length six are given by:

xxxxxx, xxxxxx, xxxxxx, xxxxxx, xxxxxx.

We first point out some proper ties useful for the sequel. Ever y word (or
séquence) of maximal length is complete. If not, its length could be increased
by adding a letter that does not occur in the word. In a séquence of maximal
length w, the first letter a is always a repeated letter. If not, the letter a could
be concatenated at the end of the séquence and we would obtain another,
longer, séquence. The same argument shows that the last letter of a maximal
séquence is always equal to its first letter,

Using these properties, we can split every maximal séquence w on n > 1
letters as follows:

where wx is not the empty word, is maximal on q>0 letters and does not
contain the letter a, and where aw2 is also a maximal word, on the n — q
letters that do not occur in wx.

Informatique théorique et Applications/Theoretical Informaties and Applications
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We define below the fïrst map B1 from maximal séquences to Dyck words:

DÉFINITION OF Bx:

% if the length of w is one, then Bx (w) = s (the empty word);

• if the length of w is greater than one, then w = a.wt.a.w2 and
Bx(w) = xB1(w1)xB1(aw2).

It is easy to verify that Bx is a bijection (wx and w2 are uniquely defmed)
and that, for each maximal séquence w of DS(2), \Bt (w)\ = \ w\— 1, where
w | dénotes the length of w. We dénote by L the set of words Bx (w) where w

is a maximal séquence of DS (2). The language L satisfies the équation:

L = s© x.L.x.L

which is the classical équation of the restricted Dyck language D.

The second map B2 is defmed non recursively and is obtained in one pass
from left to right over the maximal séquence. We do not code the fïrst letter;
every new letter is coded by x and every already encountered letter (including
the fïrst letter) is coded by x. More formally, we define B2 in terms of some
intermediate operators xÊ, where E is a subset of A which contains the letters
already encountered:

DÉFINITION OF B2: The coding associated to a maximal séquence aw, begin-
ning with a, is B2(aw) — x{a)(w)i with the operators zE defined as follows, for
all EczA:

• T£ (£) = £/

• for aeA,

The two following properties are easy to verify and we leave the proof to
the reader:

1. For any subset E a A and any séquence w, xE (w) ~ xE n Alphabet (VV) (
w)-

2. If we can write a séquence w as awl9 with aeA, a $ Alphabet (wx)9 and
w1^e, then B2(w) = xB2(w1).

We can now state the following resuit:

PROPOSITION: BX and B2 define the same bijection between complete séquences
of maximal length on n>0 letters and Dyck words of length 2n — 2.

vol. 26, n° 5, 1992



3 9 8 D. GARD Y, D. GOUYOU-BEAUCHAMPS

Proof: If n = 1, the resuit is obvious. Now suppose it also holds for 1 f^n < L
Let w dénote a complete séquence of maximal length on / letters. We
have seen before that w — aw1aw2, with a G A, a $ Alphabet (wj and wx=£&.
Moreover wx is a complete séquence of maximal length on q>Q letters, aw2

is a complete séquence of maximal length on /— q letters (0</—#</) and wx

has no letters in common with w2.

Hence we have Bx(w) = xBx(w1)xBx(aw2) and B2(w) = x{a](wxaw2). But
as a $ Alphabet (wx) and Alphabet (wx) C\ Alphabet (w2) = 0, by Property 1
above i{a}(wxaw2) = x{a}{wx)xx{a}(w2\ Le,

By définition ^^(vt^) is equal to B2(awx) and x{a]{w2) to B2{aw2)\ by
induction we obtain that B2(aw1) = Bl(aw1) and B2(aw2) = Bx (aw2). More-
over a $ Alphabet (wx); hence by Property 2 B2(aw1) = xB2(wi). Thus we get

B2 (w) = xB2 (wx) xB2 (aw2) = xBx (wx) xBx (aw2),

i. e. B2 (w) = Bx (w) as desired. •

3 .3 . Séquences on a given number of letters

The total number of complete séquences, for a given size n of alphabets,
is [yn]O(1,y). We have <b(\,y) = (l—y— /l — 6y + y2)j2; this canbe expressed
using the generating function r (t) of Schröder numbers [9]:

for

The Schröder words on the alphabet {x,x,y} are given by the language
équation:

We give below a bijection C bet ween Schröder words and complete séquences,
which extends the bijection Bx given for séquences of maximal length:

• Let w be a word on a single letter: C(w) = e.

• If | w | > 1, and if the first letter of w is not repeated: C(aw') = yyC(wf).

• If the first letter of w is repeated: let w = awxaw2, for a£wx. Then
C{w) = x C(wx)xC(aw2).

Informatique théorique et Applications/Theoretical Informaties and Applications
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Hence the total number of complete séquences on n+1 letters is the
« / j_ \

Schröder number 5fn= £ CA ). The following property can be easily
,=o \2rJ

proved by récurrence on n:

PROPOSITION: Every complete séquence w on n letters is coded by a word
C(w) of length 2n-2.

3.4. Average length and number of letters

The average length of a complete séquence on n letters is:

To compute it, we first evaluate the denominator:

The function y\-> /\—6y+y2 has for dominant singularity
yo = 3 - 2 ^ 2 = 0,17157287...; the other singularity is j 1 = 3 + 2^/2. We can
easily get an asymptotic expression of (yi]<3>(l,j>) by a transfer lemma [8]:

- j ^ o H l - ^ i ) and thus:

\y\<b(l,y)K- i / l - ̂ [yn] II- ^
2V yx V y0

Using the formula [zn] /l — z « — 1/2 n /n n, we obtain:

We next study the coefficient of yn in

We have:

vol. 26, n° 5, 1992
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And using again a transfer lemma, we state:

The formula [zn] {1/^/1 ~~ z } « l/^/71 w gives fmally

Hence the theorem:

THEOREM 4: The average length of a complete séquence on n letters is
asymptotically equal to (1 + l/^2)n= 1.70710677...n.

In the same way, we evaluate the average number of letters in a complete
séquence of length k:[xk]{<b'y(x, 1) }/[xfc] {<I> (x, 1)}. First the singularities of
the function

fl>(x, 1)= ^-(1 - x - / l - 2 x - 3 x ^ ) = J - O - x -
2x v 2x

are — 1 and +1/3. As above, we show that:

Then we evaluate *;(x, 1) = (1/2)(- 1 + yÖ+x) / ( l -3x ) ) . We clearly have:

Finally we establish the following result:

THEOREM 5: 77ẑ  average number of distinct letters in a complete séquence
of length k is asymptotically equal to 2 k/3.

These results also hold for non-complete séquences and words: Informally,
the asymptotic équivalents are determined by the singularity of smallest
modulus of the generating function, and multiplying $ by ey to get Hf adds
no singuîarity. As for H, the factor 1/(1— y) adds the singularity 1, which is
farther than the singularities 3 — 2 /2 or 1/3.

Informatique théorique et Applications/Theoretical Informaties and Applications
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3.5. Probability distribution of the length of a séquence or the number of
letters

We have plotted the curve of the probability distribution of the length of
a complete séquence, when the number n of letters is fixed, and the probability
distribution of the number of letters in a complete séquence of fixed length k.
Empirically, these distributions are found to follow a normal law. This can
be proved either from the expression of the bth k, using the Stirling approxima-
tion for n\, or from results in combinatorial statistics which characterize
classes of fonctions defining normal distributions [19].

4. THE CASE

Our method f ails in the case where s is at least equal to3: We can still
décompose w as in équation (9), but with different conditions on the words wt

and the sub-alphabets they defrne. In particular, these sub-alphabets are no
longer disjoint: Condition (8) does not hold, and we cannot translate the
décomposition into an équation on the bivariate generating function.

Moreover, suppose that the generadng function ƒ 0c) = £ a (n)yn is algebraic
n

{Le. solution of an algebraic équation). Then the singularities of ƒ will be
algebraico-logarithmic and their growth will be infinitely larger than the
growth of a{n) [7]. So we cannot hope to obtain an algebraic generating
function for s>2.

ACKNOWLEDGEMENTS

The authors thank an anonymous référée for pointing out an error in the original paper.

REFERENCES

1. P. AGARWAL, Intersection and décomposition algorithms for arrangements of
curves in the plane. Ph. D., New York University, Courant Institute of Mathemat-
ical Sciences, 1989.

2. P. AGARWAL, M. SHARIR and P. S HOR, Sharp upper and lower bounds on the
length of genera! Davenport-Schinzel séquences. /. Combinat. Theory Ser. A,
52, (2) : 228-274, 1989.

3. P. ALEVIZOS, J. D. BOISSONNAT and F. PREPARATA, An optimal algorithm for the
boundary of a cell in a union of rays. Algorithmica, 5, (4) : 573-590, 1990.

vol. 26, n° 5, 1992



4 0 2 D. GARDY, D. GOUYOU-BEAUCHAMPS

4. R. COLE and M. SHARIR, Visibility of a polyhedral surface from a point. Technical
Report 266, Comp. Science Dept., Courant Institute of Mathematical Sciences,
New York University, December 1986.

5. H. DAVENPORT, A combinatorial problem connectée with differential équations
II. Acta Arithmetica, XVII : 363-372, 1971.

6. H. DAVENPORT and A. SCHINZEL, A combinatorial problem connected with differen-
tial équations. Amer. J. Math., 87:684-694, 1965.

7. P. FLAJOLET, Analytic models and ambiguity of context-free languages. Theoretical
Computer Science, 49, (2): 283-310, 1987.

8. P. FLATOLET and A. ODLYZKO, Singularity analysis of generating fonctions. SI AM
Journal on Discrete Mathematics, 3, (2) : 216-240, 1990.

9. D. GOUYOU-BEAUCHAMPS and B. VAUQUELIN, Deux propriétés combinatoires des
nombres of Schröder. Informatique Théorique et Applications, 22, (3): 361-388,
1988.

10. S. HART and M. SHARIR, Nonlinearity of Davenport-Schinzel séquences and of
generalized path compression schemes. Combinatorica, 6:151-177, 1986.

11. K. KEDEM and M. SHARIR, An efficient algorithm for planning collision-free
translational motion of a convex polygonal object in 2-dimensional space amidst
polygonal obstacles. In ACM Symp. on Computationai Geometry, pp. 75-80, 1985.

12. P. KOMJÂTH, A simplified construction of nonlinear Davenport-Schinzel séquences.
/ . Combin. Theory Ser, A, 49, (2) : 262-267, 1988.

13. D. LEVEN and M. SHARIR, On the number of critical free contacts of a convex
polygonal object moving in 2-dimensional polygonal space. Discrete Comp. Geom.,
2:255-270, 1987.

14. J. PACH and M. SHARIR, The upper envelope of a piecewise linear function and
the boundary of a région enclosed by convex plates: Combinatorial Analysis.
Discrete Comp. Geom., 4, (4): 291-309, 1989.

15. R. POLLACK, M. SHARIR and S. SIFRONY, Separating two simple polygons by a
séquence of translations. Discrete Comp. Geom., 3:123-136, 1988.

16. M. SHARIR, Almost linear upper bounds on the length of gênerai Davenport-
Schinzel séquences. Combinatorica, 7,(1): 131-143, 1987.

17. M. SHARIR, Davenport-Schinzel séquences and their geometrie applications, chapter
Theoretical Foundations of Computer Graphics and CAD, pp. 253-278. Springer-
Verlag, NATO ASI Series, Vol.F-40, R. A. Earnshaw édition, 1988.

18. M. SHARIR, R. COLE, K. KEDEM, D. LEVEN, R. POLLACK and S. SIFRONY, Geometrie
applications of Davenport-Schinzel séquences. In 21 th Symposium on Foundations
of Computer Science, pp. 77-86, Toronto (Canada), 1986.

19. M. SORIA, Méthodes d'analyse pour les constructions combinatoires et les algo-
rithmes. Thèse d'État, L.R.L, Université Paris-Sud (Orsay), Juillet 1990.

20. E. SZEMERÊDI, On a problem by Davenport and Schinzel. Acta Arithmetica,
XXV: 213-224, 1974.

21. A. WIERNIK, Planar realizations of nonlinear Davenport-Schinzel séquences by
segments. In 21th Symposium on Foundations of Computer Science, pp. 97-106,
Toronto (Canada), 1986.

Informatique théorique et Applications/Theoretical Informaties and Applications


