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CHARACTERIZATION RESULTS ABOUT L CODES (%)
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Communicated by Jean BERSTEL

Abstract. — The paper investigates interrelations between codes and L codes, presents characteriz-
ation and decidability results for L codes of bounded delay, as well as discusses some related
notions.

Résumé. — L article étudie les interconnexions entre codes et L codes, présente des propriétés de
caractérisation et de décidabilité pour les L codes a délai borné et discute des notions voisines.

1. INTRODUCTION

L codes, introduced originally in [13], fit into the framework of generaliz-
ations and modifications of codes, an area that has been studied extensively
during recent years. In order to make comparisons, it is useful to view a
code as an injective morphism rather than a set of words, [2]. We return to
this question in Section 2. L codes are obtained by applying a morphism

h: X*¥ X

(not necessarily injective) in the “L way”. This means applying 4 to the first
letter of the argument word, 4% to the second letter, 4> to the third letter,
and so on, and catenating the results. This gives rise to a mapping (that is a
morphism only in special cases)

h: T* 5 T

referred to as the L associate of h. The original 4 is called an L code iff & is
injective. Every code is an L code but not vice versa, [13].

(*) Received November 1990, final version October 1991.
The Academy of Finland and Mathematics Department, University of Turku, 20500 Turku,
Finland.
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288 J. HONKALA, A. SALOMAA

Apart from being a natural extension of the theory of codes, L codes are
linked with the theory of number systems. This interconnection was observed
already in [13]. The line of studies was continued in [7], [4] and [8]. For
closely related work, see [1], [6] and [12]. Similarly as many classical cryptosy-
stems can be viewed as codes, [17], also L codes are interesting from the
point of view of cryptography, [18]. With this aspect in mind, we often use
the term plaintext for the argument w and the term cryptotext for the value
h(w) or h(w).

Needless to say, L codes are closely linked with many problems dealing
with L systems. We want to emphasize also that the related problems dealing
with number systems have so far been investigated for unary morphisms
only, that is, for morphisms whose range is generated by a single letter.

A brief outline of the contents of this paper follows. Section 2 contains
the basic definitions, as well as explanations in case our definition deviates
from the customary one. Technical lemmas needed later on will be established
in Section 3. Section 4 presents the basics of L codes, in particular, the three
different types of bounded delay L codes introduced in [16] and [14]. Two
such types of bounded delay L codes are investigated in Sections 5 and 6:
the family S of strongly bounded delay L codes and the family M of medium
bounded delay L codes. More specifically, a characterization and a simple
decision method are presented for S and a characterization for M. The last
two sections are devoted to a further discussion and generalizations. In
particular, the notion of an LL code is again closely linked with number
systems. The paper is largely self-contained but [15] may be consulted if need
arises.

Additional remark: This paper, together with the paper [10], constitute the
full version of our ICALP-91 paper [11], where practically no proofs were
given. More specifically, this paper is the full version of the “bounded delay”
part of [11], whereas {10] is the full version of the “regularity of ambiguity”
part. This paper contains also material not mentioned in [11], such as
LL codes. The original version of this paper was written about half a year
before [11].

2. MORPHISMS: DEFINITIONS

Consider a nonerasing morphism h:%* — A*, where £ and A are finite
alphabets. We want to emphasize that all morphisms discussed in this paper
are nonerasing, that is, 2(a)#A (the empty word) for every a in X. If A4 is
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injective it is referred to as a code. This definition was used, for instance,
in [15]. For finite codes it is equivalent to the customary definition, [2], in
the following sense. A morphism 4 is a code iff the set {h(a)|aeZ} is a
code, provided h is non-identifying, that is, a#b implies h(a)#h(b). In
cryptographic terms /s being a code means every ‘“‘cryptotext” w’' can be
“decrypted” in at most one way, that is, there is at most one “plaintext” w
such that 2 (w)=w’. The notation C will be used for the class of all codes.

Since morphisms will be iterated in the sequel, we consider only endomor-
phisms, that is, A is included in X.

For a positive integer k£ and a word w, we denote by pref, (w) the prefix
(initial subword) of w of length k. If w is shorter thank, then pref, (w)=w.
The notation first(w) stands for the first letter of a nonempty wordw. A
morphism # is of bounded delay k if, for all wordsu and w, the equation

pref, (h ()= pref, (2 (w))

implies the equation first (1) = first (w). The morphism #% is of bounded delay
if it is of bounded delay %, for some k. The notation B will be used for the
class of all morphisms of bounded delay. (Actually, our definitions concern
bounded delay from left to right. This is the notion needed for L codes.)

When a code is viewed as a set, there are various definitions of bounded
delay, [2, 3]. In particular, Bruyere considers three such definitions and shows
that they are equivalent for finite sets. (This means that they all lead to the
same collection of bounded delay sets, although the minimal value of k can
be different under different definitions for the same set.) In particular, one
of the definitions considered by her defines a set X = £* to be of bounded
delay if, for some k=0, the conditions

X, XpEX, X* and |x; x|>k,

where x,, x,€ X, x€ X* and yeZ*, imply the equation x; = x,.
Assume now that 4 is non-identifying and the set X={h{(a)|acX} is of
bounded delay k. Define k; =k +max{|h(a)|]a in £ }. Then the condition

pref, (h(aw))=pref, (h(bw)), a,beX; u,weX¥,
implies that h(a)=h(b) and, hence, a=b. (If |h(au)|<k;, u and w can be
replaced by longer words.) Conversely, assume that % is of bounded delay k.
Then the conditions
h(@) h(x)y=h(b)h(x,) and (@ h(x)|>k—1,
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290 J. HONKALA, A. SALOMAA

where g, beX and x,x,,yeX*, imply a=b and, hence, h(a)=h(b). Thus, we
have established the following

Observation: A non-identifying morphism /4 is of bounded delay iff the set
{h(a)|aeX} is of bounded delay.

It is easy to prove that B is properly contained in C, [2]. We conclude this
section with a few other definitions. A morphism % is a prefix code if there
are no distinct letters @ and b such that 4 (a) is a prefix of 4 (b). The class of
all prefix codes is denoted by P. A morphism A:Z* — X* is elementary if it
is not simplifiable, that is, no alphabet X, smaller than £ and no two
morphisms i, : X* - Z¥ and 4, : X¥ > Z* exist such that h=h, k,.

For a word w, alph(w) denotes the minimal alphabet such that w is a
word over this alphabet. For a morphism 4 and lettera, we say that a is
growing with respect to 4 if, for every positives, there is an i such that
| A (a)|>s. Similarly, a is stabile with respect to h if |h'(a)|=1 for alli. If &
is understood, we speak simply of growing and stabile letters. Clearly, there
may be letters that are neither growing nor stabile.

3. MORPHISMS: BASIC LEMMAS

The rather diverse lemmas established in this section will be used in the
sequel. The first lemma can be established in various ways using results
concerning DOL systems with the axioma. Our argument does not presup-
pose any knowledge concerning DOL systems.

LeMMA 1: A letter a is growing with respect to h iff there are i and j, j>1i,
such that

(%) | (a)|>| A (a)] and  alph (4 (a))= alph (¥ (a)).
Given h and a, it is decidable whether or not a is growing with respect to h.

Proof: Recall that we consider only nonerasing morphisms. Conditions
(%) imply that

Ihj+(n+1)(j—i)(a)|>Ihj+n(j—i)(a)|’ n=0,

which means that a is growing. Conversely, if the second condition in (%)
always implies that | 4/ (a) | =| k' (a) | then, for any suchi, | A" (a) |<| ' (a)| holds
for all n and, thus, a is not growing. The second sentence of the lemma now
follows because we only have to test whether or not the first condition in
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(*) holds for the smallest number j for which there is an i satisfying the
second condition in (*). O

The next two lemmas will be needed in Section 6. Lemma 2 is from [5] and
Lemma 3 uses also ideas from [9].

LEMMA 2: Assume that h:X* —» Z* is a morphism and j=card (X)— 1. Then,
for all words w and w' over Z,

(*) Y (wy=n*1(w') implies W (w)=Hh (w").

Proof: If h is injective (a condition always satisfied for card (X)=1), then
so are the powers of o. We proceed inductively, assuming that 4:Z* — X* is
not injective and that the lemma holds for alphabets smaller than Z. Since /
is not injective, there are morphisms

hy: X*>2XF and hy,: Z¥->X*

such that h=#h, h,, card (X,)<card () and 4, is injective. Assume that the
first equation in (%) holds. It can be written in the form

hy (hy hz)j (hy (W) =hy(hy hz)j (hy (W)
By the injectivity of 4, and by the inductive hypothesis, we infer successively
(hy ho) (hy (W) = (hy Y (hy (W), By h) ™1 (hy (W) = (hy hp)Y ™ (hy (W1)).

By taking the %,-images of both sides in the second equation, we obtain the
second equation in (*). O

LemMA 3: For all morphisms h:X* — X* and integers n=card (£)— 1, there
are morphisms g, p and q, of which p is elementary and g bounded delay, such
that h™*"=gp™q, for all m=0.

Proof: If h is elementary, we may choose p=h, g=p" and g=identity
because (see [15]) elementary morphisms are of bounded delay and bounded
delay morphisms are closed under composition. We proceed again by induc-
tion on card(Z). Assume that A:Z* - Z* is not elementary and that the
assertion holds for all alphabets smaller thanZ. Consequently, there is an
alphabet X, smaller than ¥ and morphisms

hy: ¥ >3¥F and hy: Z¥FZX*
such that A=A, h, and h, is of bounded delay. We write 2”*" in the form
m+n=h2 (h1 hz)m+n—1 hl'
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292 1. HONKALA, A. SALOMAA

Since n—1=card (Z,;)— 1, we obtain by the inductive hypothesis
(hy )" " =g, pY 4,
where p, is elementary and g, of bounded delay. Consequently,
K"t =gpltyq,

where g=g, h, and g="h, g, is of bounded delay. [

Observe that Lemma 3 leads to an alternative proof of Lemma 2. The last
two Iemmas will be needed in Section 5.

LEMMA 4: Assume that h:Z* —X* is a code and a is in X. Then either (i) a
is growing, or else (i) | A" (a)|=1 for alln.

Proof: Denote by 2, the subset (possibly empty) of X consisting of letters
satisfying (ii). Clearly, if a is in X, then so is #(a). Furthermore, because &
is a code, any two distinct letters a and b of X, satisfy h(a)##%(b). This
means that 4 permutes the set Z,, that is, #(Z,)=X,. Moreover, for every a
in Z; and every integer n=0, there is a (unique) letter o of X, such that
n(a)y=a.

To prove the lemma, we assume the contrary: ae ¥ satisfies neither (i) nor
(ii), that is, there are integers n=1 and m>1 and letters a,, .. .,a, of X,
such that 4#"(a)=a,. . .a,. Consequently, there are letters a;eX; such that
W' (a;)=a; for i=1, ... ,m. But A" is a code because codes are closed under
composition. However,

ha|. . a)=a,...a,=h(a),

a contradiction. [
LemMA 5: If h is a prefix code and & is growing then first (h(a)) is growing.
Proof: The assertion is clearly true if {h(a)|=1. Otherwise, h(a)=bx, for
some letter b and nonempty word x. If b is not growing, the preceding proof
shows that 4 (c)=5, for some c. But this contradicts the assumption of z being

a prefix code. O
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4. L CODES

Given a morphism h:X* — X* its L associate h is defined to be the
mapping of £* into T* such that always

h(a,a,...a)=h(a,)h*(ay). .. h"(a,),

where the a’s are (not necessarily distinet) letters of . (The empty word is
mapped into itself by 4.) The morphism £ is termed an L code if its L associate
is injective, that is, there are no distinct words w, and w, such that

h(w)=h(w,).

The class of L codes is denoted by L. Observe that it is not natural to define
an L code as a set of words. Observe also that 4 is usually not a morphism.
In fact, / is a morphism exactly in case/ is idempotent. Moreover, hh+ hh
with a few trivial exceptions. L codes are not closed under composition. The
problem of deciding whether or not a given morphism is an L code was
solved in [9] for morphisms giving rise to an empty set X,, as defined in
Lemma 4.

The notion of bounded delay for L codes was defined in [16] and [I4]. The
idea is the same as for codes: one has to read k letters of the cryptotext in
order to determine the first plaintext letter. For codes the situation is unal-
tered, after the first plaintext letter « has been removed, as well as 4 (a) from
the cryptotext. The remainder of the cryptotext stilt equals #(w), for some
plaintext w. For L codes, the remainder of the cryptotext equals 4/ (w) rather
than & (w). This means that we obtain different notions of bounded delay
depending on whether we are interested in finding only the first plaintext
letter (weak notion), or the first letter at each stage of decryption (strong or
medium strong notion). The difference between the two latter notions ema-
nates on the condition impesed on the bound of delay: is the bound constant
(strong notion), or is it allowed to grow with the stage of deeryption (medium
strong notion). We are now ready for the formal definitions.

A morphism & is of weakly bounded delay k=1 if, for all words u and w,
the equation

pref, (J (u)) = pref, (7 (w))

implies the equation first (z)= first (w). If for alt /=0 and all u and w, the
equation

prefy (' h (w)) = prefi (A h (w))

vol. 26, n° 3, 1992
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implies the equation first ()= first (w), then 4 is of strongly bounded delayk.
In general, & is of weakly or strongly bounded delay if it is so for somek.
The notations W and S are used for the corresponding classes of morphisms.
Finally, 4 is of medium bounded delay if, for some recursive functionf and
all i=0, u and w, the equation

prefy ;) (W h(u)= prefy ;) (' B (w))

implies the equation first (&) = first (w). The notation M is used for the corre-
sponding class.

Observe that we do not require 4 to be an L code in these definitions.
The situation is analogous to that concerning ordinary codes. However, a
morphism being in B implies that it is in C, [2], whereas L and W are
incomparable. All inclusion relations between the classes introduced are
presented in the following theorem. For the proof we refer to [14].

THEOREM 1: The mutual inclusions between the families P, B, C, S, M, W
and L are as follows:

C-L
7/
S-P-B
N

M->W

Here the arrow denotes strict inclusion, and two families are incomparable if
they are not connected by a path.

5. THE FAMILY S

We now present a simple characterization for the family S. Some related
questions will still be dealt with in Section 7.

THEOREM 2: A morphism h is in S iff, for any distinct lettersa and b,
first (h (@) #first (h (b)).

Proof: Consider the “if’-part. The assumption means that there is a
permutation n of the alphabet X such that, for all q,

first (h (@))=1(a).

Informatique théorique et Applications/Theoretical Informatics and Applications
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Consequently, for all i=0 and a,
first (4 (a)) =7’ (a).
Therefore,
pref, (W ki (a))=first (¢ (@) =n' "1 (a)

uniquely determines q, that is, 4 is of strongly bounded delay 1. In crypto-
graphic terms: at the i-th stage of decryption the first letter in the remaining
cryptotext uniquely determines the first letter of the still uncovered plaintext,
but the decryption process depends oni.

Consider next the “only if”’-part. Let 4 be in S. By Theorem 1, 4 is a prefix
code. Proceeding indirectly, we assume that there are two distinct lettersa
and b such that first (2 (a)) =first (4 (b)). Since, 4 is a prefix code, we may
write

h(a)=cxdy and h(b)=cxez,

where x, y, z are (possibly empty) words and ¢, d, e are letters such that
d#e. By Lemma 4, a and b are growing letters. This implies, by Lemma 5,
that also ¢ is growing. Hence, for every k, there is an i such that

pref, (4 h(a)) = pref, (h"** () = pref, (A" (b)),

which contradicts the assumption that 2isin S. O

Theorem 2 gives a straightforward decision method for testing membership
in S. We do not know any decision method for testing membership in M
or W. Of course, for a fixed bound %, such a method is obvious.

6. THE FAMILY M

Medium bounded delay can be viewed in the theory of L codes as the
most natural counterpart of bounded delay codes. It is natural to require
that only a bounded amount of lookahead at each stage of the decryption
process is needed. However, if the amount of lookahead remains the same
throughout the process, the resulting notion is a very restricted one. This
was seen in Section S.

The drawback in the definition of M is that, in general, the construction
of the sequence of values

fi)=k, i=0,1,2,...,
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seems to be an infinitary task. The purpose of this section is to show that,
in fact, it suffices to construct the values only up to card (£)—2. [We assume
that card (£)=2.] This construction already guarantees that the morphism is
in M.

More specifically, we say that a morphism A:X* — X* is in the set M’ if|
for some k>0 and all i with 0 <i<card (X)— 2, the equation

pref, (At ki (u)) = pref, (B h (w))

always implies the equation first («) = first (w).

Thus, we consider the sequence f(i)=k; only up to card(£)—2, and take
the maximum of the resulting numbers.

THEOREM 3: M'=M.

Proof: The inclusion of the right side in the left side is obvious: if a
recursive function f is associated with 4 as required in M, then a constant k
as required in M’ can be immediately found in the way indicated before the
theorem.

To prove the reverse inclusion, we assume that 4 is in M’. Assume that
i=card (X£)— 1. We give a method of computing f(i) such that

pref, ) (W' i (w) = pref; ;, (W h (w))

always implies first (u) = first(w). The value f(i) depends on the constants
involved; this will be explained more explicitly in the next section.

It will be more convenient to write  and w as products of letters. Thus,
our basic equation assumes the form

(%) pref,, (WY (a) B2 (ay). . K (ay)
=pref, (Kb R T2 (by). . BT (b))

By Lemma 2, we may exclude the case where the words appearing in (%)
are short. The following argument holds quite independently of the value
S(@@). Assume that one of the words appearing in (%) is shorter than f(i).
Then also the other must be so, and (%) assumes the form

RV (@), . K (a)=h"t (b)) . KD
Hence, by Lemma 2,

Way).. K+~ 1(a)=h(b,).. . K+ 1(b,).

Informatique théorique et Applications/Theoretical Informatics and Applications
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If izcard (X), the argument can be repeated until the value card (£)~1 is
reached. Hence, we may conclude that @, =b,.

From now on we assume that the lengths of the words appearing in (*)
are at least f(i). We denote card(X)—1=n and rewrite (*) according to
Lemma 3:

i+1—-n

q(ay)...gp""°""q(a))
=pref; (gp'* ' "q(by). . .gp' T T q (b))

(*) Pfeff ) (gr

Observe that the length of gp'*/~"q(a), where a is a letter, is bounded by a
constant. This means that f(i) being large forces s and ¢ to be large, too.
This, in turn, gives enough lookahead (recall that g is of bounded delay) so
that we can drop g from a long initial part of the words in (%)’. We may
have to replace f(i) by a smaller value f’ (i) because, after removingg, the
common prefixes may be considerably shorter. Altogether, (%)’ assumes the
form

(x*) prefj’(i) (Pi+1-nq(a1)- . ~Pi+s’—n‘I(as'))
=pref,. , "1 7"q(by). . P g (b)),

where s’ and ¢’ are still large but smaller than s and ¢.

We now read the left side of (*%) as long as possible without exceeding
S (@) in length. This gives rise to an equation

(%) prThg(ay). . p Mg (ag)=p" g (by) . P T g (b)) 2,

where we still assume s” and " to be large. Observe that the “final mess” z
is needed because the right side may be interrupted in the middle of morphic
image. Observe also that we may obtain (**)" directly from (%) if the left
side of (%) is shorter than f (i).

Let k& be the constant associated with 4 according to the definition of M'.
Since p is of bounded delay, also p'**~" is of bounded delay d(i). We now
view (*%)’ in the form

Pi+1_"(°‘1 Ay A3 . -)=Pi+1_"(ﬁ1 B2Bs---)z,

where the o’s and B’s are letters, and decrypt from the left, until on the right
side the first letter of p*(q(b,,,)) has been reached. Since a full p'* !~ ™image
remains on the left side, we obtain

PTG (Bi ). - P T g (b)) z=p (),

vol. 26, n® 3, 1992
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for some z’, and hence by (**)’
(kxx) p'17"q(ay). . .p g (ag)=p "t T g (b)) P R q(B) P T ().

Here ¢ has to be large enough to provide lookahead of size d(i). Since

Pt is injective, (x*%) yields

g(a)...p7" " tq(ag)=q(by)...p* gz

Taking first the g-images and then using the representation of 4 in terms of
g, p and g, we obtain

pref (h"(a ) K" (ay). . . """ " (@) =pref (A" (b)) K" (by). . K71 (b)),

which implies @, =b,. O

7. SCATTERED REMARKS

We now present some supplementary material to the two preceding sec-
tions. Let us first consider in more detail the computation of f(i) in the
preceding proof. The value f(i) does not depend on f(i—1). On the other
hand, f(i) depends on certain constants which, in turn, depend on i. Such
constants are k, d(i) and the delay d, of g, as well as upper bounds of the
form

By=max{|H(a)| |ain T},

where H is a composition of known morphisms, possibly depending on i.

The computation of f(i) can be explained by going through the proof
backwards. The number ¢ has to be large enough to yield (***). When we
take into account the delay d (i), we obtain the estimate

¢ >d@)+k.

On the other hand, we must have ¢>7"+d,. In the estimate for f(i), we
must take the b-images as long as possible. Since d(i) is linear (see [15]), our
estimate for ¢ is a linear function e (i). Hence, we may choose

fG)=B,+...+B

e(i)

where the B’s are bounds of the form By. They may grow exponentially
withi. (In fact, we are dealing here with DOL growth functions.) Thus we
obtain an exponential expression for f(i).

Informatique théorique et Applications/Theoretical Informatics and Applications
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This shows that the class M remains unchanged if it is assumed that 7 (i)
is an exponential function. It is an open problem whether a better estimate
can be obtained for f(i).

It follows by Theorems ! and 3 that the class M’ is contained in L. We
now present a direct argument showing this, based on Lemma 2.

Assume that 4 is in M’ and that
hia,...a)=h(b,...b).

Denoting again n=card(X)—1, we infer by the definition of M’ that
a;=b,,...,a,=b, and

hha,,,...a)=h"h(b,,,...b,).
Hence, by Lemma 2,
W h(ayy,...a)=h"Yh(b,s,...b),

which implies a,.;=b,,,. Continuing in the same way, we conclude that
u=tand g;=b; for i=1, .. .t

Finally, we outline a straightforward method for deciding membership
in S. The method does not use Theorem 2 or Lemmas 4 and 5. The resulting
algorithm is not as simple as the one obtained from Theorem 2. By
Theorem 1, we may assume that the given morphism #4:X* — X% is a prefix
code.

For any pair (a, b) of distinct letters, there is a pair (¢, d) of distinct letters
such that

h(a)=wcx and h(b)=wdy,
where w, x, y are words (possibly empty). We denote
eqa,b)=w and diff (a, b) = (¢, d).

(It is possible that diff(a, b)=(a,b).) Let now diffseq (a, b) be the sequence
(0, B, i=0,1,. .., with (a9, Bo)=(a,b) and (o4, B;+,)=diff(;, B;). Con-
sider the smallest number »n such that there is a number m<n such that
(®s Br) = (o, B,)- Define w;=eq (v, B;), i=0, and the “deposit of period”

depper(a,b)=w,,...w,_,.
Then the verification of the following criterion is immediate.
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The morphism # is in S iff, for every pair (a, b), €q (a,b) does not contain
any growing letter and dep per (a, b) is empty.
The conditions are easily decidable, by Lemma 1.

8. LL CODES

The purpose of this section is to define a notion closely related to L codes
and number systems.

A morphism %:X* » X* is a lengthwise L code or, briefly, LL code if all
distinct words u and w satisfy |4 (u)|#]|h(w)|. The notation LL is used for
the class of LL codes.

Assume that £={a,, ...,a,}. The growth matrix M associated with # is
an n X n-matrix whose (i,j)-th entry equals the number of occurrences of a;
in h(a;). Let m; be the i-th coordinate vector and n the n-dimensional column
vector consisting of 1’s. The morphism # is unary if there is a letter g; such
that 2 (a;) is a power of g;, for all j.

THEOREM 4: A unary morphism is an LL code iff it is an L code. The class
LL is strictly contained in L. A morphism h is an LL code iff the function
f:X* > N defined by

f6)=( m(¥, MH)n

is an injection. Here the first sum is over the indices i such that a; appears
in x, and the second sum over the indices j such that a; is the j-th letter in x.

Proof: The first sentence follows because in the unary case two words are
different iff they differ in length. Similarly, LL is contained in L because
difference in length, for any words, implies their difference. That the contain-
ment is strict is seen by considering the Fibonacci morphism: 4 (a)=25,
h(b)=ab. 1t is, by Theorem2, even in S but it is not in LL because
| A (ab)|=|h(ba)|. The rest of the theorem follows from the definition of LL
codes and the fact that f(x)=|A(x)|. O

Observe that the condition given is not as such a decision method for
membership in LL. Any decision method must also settle the uniqueness of
representation in number systems, a problem solved in [7].

As regards the hierarchy of Theorem 1, LL is strictly contained in L but
incomparable with all the other families in the hierarchy. This follows by the
proof of Theorem 4 and the fact that W does not contain all unary L codes.

Informatique théorique et Applications/Theoretical Informatics and Applications



of

CHARACTERIZATION RESULTS ABOUT L CODES 301

From the point of view of number systems, LL codes give the possibility
working with several bases at the same time. We hope to return to this

area in a forthcoming paper.

—
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