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ON A TREE COLLISION RESOLUTION ALGORITHM IN
PRESENCE OF CAPTURE (*)

by U. SCHMID O

Communicated by P. FLAJOLET

Abstract. - We investigaie some characteristic parameters of trees underlying a collision résolu-
tion with a simple tree-algorithm. An extension of the usual assumptions about the basic model
provides the ability of treating capture effects: in case of a collision it is not necessary to assume
the destruction of ail packets involved. Our investigations are based on the analysis of complicated
alternating sums of a certain type already known from the analysis of search trees. By using an
extension of techniques applied in those studies, which are mainly based on Rice's approach, we
obtain asymptoiic expansions for a number of interesting quantities.

Résumé. - Cet article a pour objet l'examen de certains paramètres caractéristiques induits par
les protocoles de résolution de collision en arbre. Le modèle classique d'analyse est étendu par la
possibilité d'effets de capture : dans ce cas, un paquet peut éventuellement survivre à une collision.
L'analyse met en jeu des sommes alternées voisines de celles que l'on rencontre dans l'étude des
arbres digitaux. Par l'utilisation de tehniques fondées sur la méthode de Rice, l'on obtient diverses
analyses asymptotiques des caractéristiques principales du protocole sous ce modèle modifié.

1. INTRODUCTION

We study one of the simple tree-algorithms (Capetanakis, Hayes, Tsybakov,
Mikhailov) for collision resolution in a random access broadeast System,
where a lot of results (through-put, delay-characteristics, stability...) are well
known from the past, see for example [1] for a nice survey. Most of the
investigations mentioned based on a model which is similar to the following:

(1) A (infinité) large population of identical transmitters is supposed to
have access to a common time-slotted noiseless collision-type channel.

(*) Received 1988, revised February 1991.
This project was supported by the FWF Austria, project number P6477P.
(*) Department of Automation at the Technical University of Vienna, Treitlstrape 3, A-1040

Vienna, Austria.
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164 U. SCHMID

(2) The transmitters are constrained to transmit independent information
in the form of "packets" whose length is one time slot, and the packet
génération in the whole System is according to a Poisson-process with fixed
rate X.

(3) The channel feedback is supposed to be identical for all transmitters,
and in case of a collision all packets involved in that collision are completely
lost.

Our intention is to study the behavior of the algorithm (or exactly, para-
meters of the underlying tree) in the présence of capture effects. In many
real communication Systems the "strongest" of the actually colliding packets
is able to capture the receiver und thus be received without error. To handle
this subject we have to change (3) of the common used model.

In [3] the population of transmitters is statically divided into two disjoint
groups (the dominating and nondominating group). A transmitter of the
dominating group is supposed to capture out one or more transmitter(s) of
the other group. Since choosing the strongest of two or more colliding packets
is not enough to détermine the présence of an actual capture (e. g., in a radio
system we have the influence of atmospheric effects like fading), we model
our capture in a (very simple) different way: We assume a fixed probability
p for the complete lost of all packets involved in a collision. This destruction
probability does not depend on the multiplicity of the collision. Moreover,
we assume disjoint packets, so 1 — p is the probability that exactly one of
two or more colliding packets is received successfully.

However, we should admit that our approach is not able to cover all
possible varieties of capture effects sufficiently (x). For instance, capture is
sometimes a local phenomenon, i. e,, concerns not all receivers in the network
in the same way. The assumption of all stations agreeing on the destruction/
non destruction of all packets involved in a collision is therefore sometimes
too optimistic. Another question concerns the assumption of a destruction
probability which is independent of the multiplicity of the collision. In radio
networks, the possibility of a capture is determined by the ratio between the
strongest and the sum of the other signais, which is clearly not independent
of the multiplicity of the conflict.

(*) We should like to thank the anonymous référée for stressing some possible directions of
further research.
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ON A TREE RESOLUTION ALGORITHM 165

2. BASICS

We study a ô-ary CRA (Collision Resolution Algorithm) with the obvious
BAP (Blocked Access Protocol, see [1]), which works as follows:

(1) No collision resolution. If the system is in an idle state, each transmitter
who has a ready packet transmits it in the very next slot.

(2) Collision resolution. If the System manages the resolution of a (previous)
conflict, all transmitters not involved in the initial collision remain blocked
until the complete resolution. They may contend for the following idle
slot(s), thus eventually forcing a new initial collision. After a collision, each
transmitter involved flips a fair "g-sided coin" with values from 1,2, . . ., Q.
This value is used for determining the relative number of the slot in which
the packet should be transmitted, e. g., ail transmitters with 1 flipped transmit
in the very next slot. If a new collision occurs, it is resolved immediately,
suspending the resolution of the other values. Transmitters who are not
involved in the current collision but who have already a value flipped have
to keep track with the current resolution process, e.g., to add Q—lto their
relative slot number.

We may represent the resolution of each initial conflict by a ô-ary tree
containing two types of nodes. We distinguish C-nodes (Capture-nodes,
representing a successful transmission of a packet in a collision slot, or a single
transmission), and NC-nodes (NonCapture-nodes, representing a collision slot
with total destruction of ail packets involved, or an empty slot), each labelled
with the multiplicity of the corresponding conflict (O is the label for empty
slots, 1 for a slot used by a single transmitter). Since the coin-flipping
process splits the set of collided transmitters in exactly Q subsets, we use the
cardinality of them for labelling the Q successors of the root, recursively for
each subtree.

If we examine the trees generated by the application of these rules, further
denoted by /?-triees {p mixed radix search trie and digital search tree), we
obtain the following properties:

(1) For each resolution of a conflict of multiplicity n there exists a unique
représentation of the resolution process with exactly n C-nodes, and conver-
sely (if we assume indistinguishable transmitters, of course).

(2) Traversing the tree in preorder, we obtain the "traffïc" on the channel;
each C-node represents a slot with a successful transmission.

(3) Nodes with no successors correspond to empty slots (label 0) or to
single transmission slots (label 1).

vol. 26, n° 2, 1992



166 U. SCHMID

(4) Nodes with successors correspond to collision slots of multiplicity equal
to their label.

(5) Each such tree may be viewed as a "mixture" of a digital search tree and
a radix search trie, see [4] for a survey. For we are interested in parameters
investigated for both type of trees, one could argue, that it might be possible
to extend techniques used in these studies, and in fact, this is true.

3. OUTLINE

We are mainly interested in studying parameters of the underlying /7-triee
rather than obtaining results concerning the performance of the algorithm.
Of course, it is possible to dérive results like throughput easily from our
computations, see [2] for a very complete survey.

Assuming a /?-triee as mentioned before with exactly n C-nodes, we are
interested in the following questions:

(1) What is the expected number of nodes in the whole tree? This problem
corresponds to the computation of the CRI-length (Collision Resolution
Interval) of an initial collision of multiplicity n.

(2) What is the expected number of nodes with label 0? This problem
corresponds to the computation of the number of empty slots in the CRI,
when resolving an initial collision of multiplicity n.

What is the expected number of nodes with label V^/ïl This problem
corresponds to the computation of the number of collision slots with given
multiplicity V when resolving an initial collision of multiplicity n.

We use the same gênerai outline for the dérivation of all three results:
First, we obtain a récurrence relation for the desired parameter, say Ln.
Starting from a functional équation for the corresponding EGF (Exponential
Generating Function) L(z) we dérive a simpler one by introducing the PoGF
(Poisson Generating Function) H (z). Now we are able to obtain a simple
linear récurrence for the Taylor-coefficients hn of the PoGF, which leads to
an explicit expression involving a sum of some partial products. Eventually,
an explicit expression for the desired qantity Ln may be found, which is an

alternating sum^M ](— \)kfk with fk essentially hk.
k \kj

The remaining problem is to détermine an asymptotic expression for Ln as
n gets large. This task is done by means of the so called Rice's method, see
for example [5], Exercise 5.2.2-54. Rice's method is based on a classical

Informatique théorique et Applications/Theoretical Informaties and Applications



ON A TREE RESOLUTION ALGORITHM 167

formula from the calculus of finite différences, which states an identity for
alternating sums involving binomial coefficients and a special type contour
intégral. Ail we need to find the asymptotic expansion of our sum is a function
F(z) with the property F{k)~fk for ail summation values k, analytically in
a skinny région covering the (positive) real axis.

Unfortunately, easy computations show that lim ƒ„= oo, thus no appropri-
n -> oo

ate function could be found. Instead, we détermine the asymptotic expansion
of fn = c1n + c2 + (exponential small terms) and investigate the alternating sum
on gn

==zfn-c1n — c2 with the approach mentioned. The évaluation of the
contour intégral is done by expanding the intégration curve in an appropriate
way and taking into account the residues of encounterd poles.

Hère we present our results stated as theorems:

THEOREM (1): The average number Ln of nodes in a p-triee with exactly n
C-nodes is

Ln nQ(
Vlogô

+ nQq0P(loêQn)

The function P (w) is periodic with periode 1, has very low amplitude, mean 0
and its Fourier expansion is given by

THEOREM (2); The average number En of nodes with label 0 in a p-triee with
exactly n C-nodes is

E„ = n (fi -P) ( r \ + O -PIQ) Pi (/>) " <7x + O " q0)
Vlogô

77: )
-pIQJ

+ n(Q-p)q0P(\ogQn)

The function P(u) is periodic with periode 1, has very low amplitude, mean 0
and its Fourier expansion is given by

( ) r ^
logg

vol. 26, n ' 2, 1992



168 U. SCHMID

THEOREM (3); The average number In = In{V) of nodes with label
p-triee with exactly n Q-nodes is

^2 in a

f
\j=o

The functions Pt(u) are periodic with periode 1, have very low amplitude,
mean 0 and the Fourier expansions are given by

logô

The constants refered to in the theorems are defined as

qk
for k>\

FI

At last, we list some numerical results for different values of Q and p. The
first table shows the major term in the asymptotic expansion of the quantity
LJn, i. e., the average number of nodes in a /?-triee with exactly n C-nodes:

TABLE I

Major term of LJn.

Q

2
3
4

P
0

1.25
1.57
1.86

0.1

1.32
1.64
1.94

0.2

1.41
1.72
2.02

0.3

1.52
1.81
2.10

0.4

1.64
1.90
2.18

0.5

1.76
2.00
2.28

0.6

1.92
2.11
2.38

0.7

2.10
2.24
2.48

0.8

2.30
2.38
2.60

0.9

2.56
2.54
2.72

1

2.86
2.72
2.86
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The next table shows the major term of ratio EJn, that is the average
number of label 0 nodes in a /?-triee with exactly n C-nodes:

TABLE II

Major term of EJn,

Q

2

3
4

P
0

0.26

0.57
0.88

0.1

0.27

0.59
0.90

0.2

0.28

0.61
0.93

0.3

0.30

0.63
0.95

0.4

0.31

0.66
0.98

0.5

0.33

0.68
1.02

0.6

0.34

0.70
1.04

0.7

0.36

0.73
1.07

0.8

0.38

0.76

1.10

0.9

0.41

0.79
1.13

1

0.44

0.82

1.17

4. PROOF (1)

Denoting by Ln the average number of nodes in a /?-triee with n C-nodes,
we have the following basic récurrence

•> 1Q

Zjt = n-1

Z
;=oW

— 1

l 7
j=0\ J

for «^2. The initial values resulting from the physical model are

and L1 = \.L0=l

This cornes from the following easily established facts. First, the number of
nodes in the triée is 1 plus the sum of the nodes in the Q subtriees. Second,
with Probability p the sum of C-nodes in the subtriees is n, with Probability
(1 -p) it is only n - 1, because the root is a C-node. Third, the splitting of the
n resp. n— 1 C-nodes in Q subsets is according to a multinomial probability-
distribution. At last, the subtriees themselves are built in the same manner.
Proving the simple multinomial identity is given to the reader.

vol. 26, n° 2, 1992



170 U. SCHMID

We first introducé some notational conviences. 3 dénotes the ordinary
differential operator, Jf the 0-substitution and % the 1-substitution operator,
all with respect to a variable clear from the context or explicitely given, e.g.,
the differential operator w.r.t. t is denoted by@v Let L(t) be the EGF of
Ln, it is clear that Ln = Jf&n*L{(), all operators w.r.t. t. Using this in our
récurrence, we obtain for n ̂  2

the * means application of the operator to the left on the function to the
right. Multiplying both sides with zn~1/(n— 1)! and summing over n^2 with
mentioning the fact Jft e

x®* *ƒ(/)=ƒ (x) yields

L' (z) =pez (1 " 1/ö> L' (z/Q) + g (1 -p/Q) ez (1 " V® L (z/Q) + ez~Q.

Introducing the PoGF of the séquence Ln

zn

which induces the following inverse pair

hn=i('!)(-lY-kLk and L„= J] (")hk (4-1)

yields a simpler functional équation

H' (z) + H(z) = 1 + QH(z/Q) +p H' (z/Q) -Qe~z

ho^\ and h1 = 0.

We will investigate a little généralisation of the above, which helps us to
treat the proof of theorem (2) with the same approach. We look at the
functional équation

H'(z) + H(z)= \+QH(zlQ)+p H' (z/Q)-Ae~z

with some h0 and hx. In the previous case we have A = Q, ho=l and A1 = 0.
Starting our treatment by equating the coefficients of zn/n ! on both sides
yields a simple récurrence for the hn with n ̂  1.

! ^ + 1 ^ . (4-2)K+i K ( )
\-pQ~" l

Informatique théorique et Applications/Theoretical Informaties and Applications



ON A TREE RESOLUTION ALGORITHM 171

Let Pn= [7 (1 - g 1 "*)/(! -PQ'% t h e n JPI =0, because the numerator of the

product for n— 1 has a zero factor. Proving the convergence of the product
is easy and therefore suppressed in this paper. Moreover, let an = hnPn, then
a ^ O and multiplying both sides of the former récurrence with Pn+1 shows
a linear récurrence for the an. The iterated solution is

k=1

After some algebraic manipulations we get the following explicit expression
for the coefficients hn with nltl.

n-l n-1 _Q-j

h =(-\Y - y n ^

The desired quantity Ln is expressible from (4-1) and yields

Ln= Z ()
k = o\kj

The alternating sum is treatable by the formulae of Rice, so we need a
meromorphic function F(z) with the property

"-1 n~2

(4-4)

for all ^

As already mentioned, we are not allowed to treat the sum with Rice's
approach directly. We first have to détermine the high-order terms of their
asymptotic expansion and to manage the remaining sum of residual terms.

Wedefinefor n>0

Qn(P) = n (1 -PQ~J) and Q(p) = Ôoo(P)

vol. 26, n° 2, 1992



172 U. SCHMID

n (P) = T l } Q j a n d T(P) = T„ (f)
ipQ J

An empty product is assumed to be equal to 1, so both Q0{p)= T0{p)— 1
and further Tn(p) = Q„(l)/Qn(p), Moreover, we introducé

TO(P) T.ip) Tn{p)

which enables us to express fn in the following simple manner

We should note that Pn (p) must not be confused with the similar products
Pn, which we used for determining a closed expression for the hn. Fortunately,
we are able to provide the ordinary GF (Generating Function) Sp (z) of the
séquence l/Tn(p), see Appendix (A-l). The GF of their partial sums, denoted
by Rp{z), évaluâtes to

R {Z)-
SP(Z)- 1 g(^Z)

1-z (1-z)2 Ö(z)

and using the known Taylor-expansion of Q(pz)/Q(z) at z= l from (A-2)
leads to

1
RP(Z) ( a ( 1 )

P ( l - z ) 2 0(1) 1-z 0(1)

where r(z) has a radius of convergency of Q around z = 0. Choosing an
arbitrary but fïxed e>0 and q=Q — £, we find the asymptotic expansion of
the coefficients of Rp (z)

k=o

Informatique théorique et Applications/Theoretical Informaties and Applications



ON A TREE RESOLUTION ALGORITHM 173

To obtain the asymptotics of ƒ„, we need two easily proved expansions
\

1-pQ
(4-5)

Multiplication of all expansions concerned with/n yields

with the shorthand

7= — 1 — (a (l)—p a (/?)). (4-6)

Now it is time for the introduction of a new séquence gn, defined by

gn =ƒ,-(*+y).

Before treating the new subject, we deal with manipulating the expression
for the desired quantity Ln. From (4-3) we have

L^ho + nhi+A }

l)fcgfc (4-7)

where we used the well known expressions for ]T( J(— l)k and
\ k /

Zl )(~ 0*^ a n d (4-6) for replacing y by its définition. The remaining task
\kj

is the computation of the alternating sum involving the gn with Rice's method.
It is clear that g(n) = O(q~n), and remembering (4-2) and (4-4) yields after

some algebraic manipulations a récurrence for the gn with n^2.

< r = r I P U
gn g n + l l Q l ^

l Q I-g1""

It should be noted that the condition lim gn = 0 inhibits the existence of
n -*• oo

more than one solution, as can be shown with an indirect proof using

vol. 26, n° 2, 1992
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itération. We investigate a corresponding functional équation rather than the
récurrence, because we need a function G(z) with the property G(ri) = gn for
n ̂ 2 . This is a simple task, of course. Let

with

Û(Z) =

i-Ö 1 - z

We may iterate it and together with the assumption that G(z) vanishes if
9? (z) -+ oo in a certain région of the complex plane we obtain a solution of
the functional équation as desired

The function is meromorphic in the complex plane with poies at most at

z = 1 — j+ Xk with 7^0 an<i Xk= for aU integers A:.
logo

For we are interested only in asymptotic terms of higher order than O(l), it
is necessary to obtain the residues of

- z)

only in the strip 0<9?(z)<2, see (A-7). This fact, together with our previous
statement about G (z) guarantees potential poles only at

O 7

z — 1 + %k with %k = for all integers k.
logg

The point z= 1 plays a special role, because if it were a pôle of G(z), our
function <&n(z)G(z) would have a pôle of order greater than 1. A deeper
investigation of Rice's method shows, that logarithmic terms would occur in
this case. Fortunately, easy computations show that the desired quantity Ln

Informatique théorique et Applications/Theoretical Informaties and Applications



ON A TREE RESOLUTION ALGORITHM 175

is of order O(ri), so we could expect the existence of G(l), e. g., G(z) has no
pole at z = 1.

The key for our further investigations is the function

k
!, v)= y n -

for which we dérive some properties in the Appendix. Rewriting G(z) in
terms of this function yields

x(l, Ö1"2)). (4-8)

We evaluate the first few coefficients of the Laurent-series at z — 1 + %ks which
expresses to

,fi1-') = F(l, l)-loggF2(l,

The indices of the function indicate parital derivatives w.r.t. the first (index 1)
or the second (index 2) argument. Furthermore, an easy computation shows

— - 1 / 2 + 0 ( 2 - 1 - 3 ^ for z^

so we are able to détermine the expansion of (4-8). Paying attention to (A-
4.2) when investigating the principle part of the expansion shows (after some
tedious computations) that it vanishes.

for

We should note the abbreviation P(/>) = P1(p) to get the connection to the
constants given in the outline. With the identities of (A-4) and resubstituting

vol. 26, n° 2, 1992
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y this simplifies to

ca) logg V ö(i)A i-we

Now we treat the pointz z = 1 + %k with k # 0 by multiplying the local expan-
sions in the same manner as above. Here we may not expect the cancellation
of the whole principal part, because <bn (z) does not have any poles at these
points. In fact, only the real part vanishes similar to the former dérivation.

for z - l + Xfc.
ïogg z-l-

Using the identity of (A-4.1) we finally obtain for

Res G ( z ) = -
0(1)

The application of (A-7) makes it necessary to fmd a séquence of rectangular
contours, which will be used for expanding the skinny one of the intégral.
We may select such a séquence with the property that G(z)=O (z) for all z
lying on such a contour as following.

Yi : SR (z) = p > 0 with p arbitrary small but fixed

k (2k+l)n

logô

For each z lying on such a contour the stated property results from easy
established facts, see (4-8). First, F(l9 Qx~z) and all derivatives w.r.t. the
fïrst argument are meromorphic functions and no poles lie on the contours.
Moreover, the second argument Ql~z/(l — Q1 ~z) = \\{QZ~X — 1) is limited even

Informatique théorique et Applications/Theoretical Informaties and Applications



ON A TREE RESOLUTION ALGORITHM 177

on Y2 and y* because of choosing the imaginary part as stated above. The
order of the residual term would be Q (np), but the fact that the next pôles
of the integrand lie at the vertical line 9?(z) = 0 allows us to state Q{\)
instead,

The application of (A-7) yields the following expansion for the alternating
sum involving the gn.

with the function

logÔ k%

Collecting all terms according to (4-7) gives

ô(l)

We simplify the expression by using the notation of (A-2), e.g.,

and q,= Ö ( ^ ( a ( 1 ) ( )}

0(1)
qo and q,

Ö0) 0(1)
which leads to

The resuit as stated in section 3, theorem (1) is obtained by substituting
A^Q, ho=\ and h1 = 0, as mentioned in the beginning of this section. •

The technique used for the détermination of the first term in the asymptotic
expansion may be extended to obtain higher accuracy. This could be done
by extending the intégration path, e. g., shifting y* more to the left and taking
into account the residues of newly encountered pôles. For example, the

vol. 26, n° 2, 1992



178 U. SCHMID

computations for the linear term are more tedious, but manageable, for the
sake of shortness we decided to suppress them in this paper.

5. PROOF (2)

Denoting by En the average number of empty nodes in a /7-triee with n C-
nodes, we have the following basic récurrence

zx z (
1=1 SjV = n - l V / l ' • • ' J

for n ̂  2. The initial values again resulting from the physical model are

E0=l and ^ = 0.

This come from similar reasoning as in the previous section with mentioning
that the number of empty nodes in the triee is the sum of the empty nodes
in the Q subtriees. Fortunately, we need not be concerned with treating this
subject for its own, we may adapt the results of section 4 instead. Denoting
by E(z) the EGF of En and introducing the PoGF

we obtain a functional équation

wo= 1 and w1= — 1.

For using the previous results, we have to modify the functional équation
making it looking like the uni versai one treated there. Let

H(z)=W(z)~ 1

e-i

and therefore

a n ( j

Informatique théorique et Application s/Theo retical Informaties and Applications



ON A TREE RESOLUTION ALGORITHM 179

we obtain the functional équation

as desired for the application of the gênerai solution from chapter 4. The
connection between the Ln and En is given by

E{z) = L{z)+-~^ e.g.,

Therefore, we must substitute A = Q—p, ho—l-l/(Q—ï) and Ax= — 1 and
add l/(Q— 1) to the final expression in chapter 3 in order to obtain Theorem
(2). •

6. PROOF (3)

Denoting by /„ = /„( V) the average number of nodes with label V}>2 in a
p-tvicQ with n C-nodes, we obtain the following basic récurrence

for n^.V. The initial values resulting from the physical model are

1^0 for O ^ z ^ F - 1 .

The reasons are similar to those in the sections before and not further
mentioned. However, following the gênerai strategy of section 4 we obtain
the functional équation for the PoGFH(z) = I(z)e~z with I(z) the EGF of
the séquence ƒ„, e.g.,

H' (z) + H{z)^QH{zlQ) +-p Hf(z[Q) +
(V-\)\

for OSi^V-l.
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Extracting the coefficients of zn/n! for n^ V— 1 yields the simple récurrence

nl-pQ~n

Introducing again Pn= f\ (1~Q1~k)/(l~pQ~k) with Px = 0 and an = hnPn,

we obtain a linear reccurence for the an by multiplying both sides of the
former récurrence with PB + 1. The iterated solution is

After some algebraic manipulations we get the following explicit expression
for the coefficients hn with n ̂  V.

1 " - 1 n~2 \-n-3 f Ir

hn=(~\y-r i y n j ü f Kf

Let in analogy to Section 4 for « g F

= (-l)-"A.. (6-2)

for « ̂  F— 2 we introducé

Tv_2(p) Ty^ip) T„{p)

" + 1 " 1-o-J
= Z II r^

which enables us to express f„ for n ̂  V in the following simple manner

The products Tn (p) are defmed in section 4, but we should note that Pn (p)
must not be confused with the similar products Pn which we used for
determining a closed expression for the hn, and with the products Pn(p) of
the section 4, too.
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Now we have a look at the ordinary GF of the séquence invoîved and
obtain

(„+! ) . . . (n-K+2)
nïV-2 Tn(p)

= zv'2S)y~lzSp{z) with Sp(z) from (A-1). (6-4).

From (A-1) it is clear that Wp{z) has a pôle of order V at z= 1, so

The function w(z) has radius of convergency Q around z = 0 and w(0) = 0.
To evaluate the unknown coefficients we expand zSp{z) with respect to
(A-2), which yields

2(1) l - z „^o

Using the operator approach (6-4) we fînd after a short algebraic manipu-
lation

( _ i r e^) ( F _ 1 ) ! /K2\ for 2

Ô(i) \v-jJ

The GF of the partial sums, denoted by Rp(z), is Wp(z)/(l~z) and choosing
an arbitrary but fixed 8 > 0 and g = g - E w e obtain the asymptotic expansion
of the coefficients

V ^ /
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Multiplying all expansions concerned with fn according to (6-3) with mention-
ing (4-5) yields

Substituting the evaluated w} and mentioning the combinatorial identity from
[8], p. 11

V \ ( p \ = ( n+p\
A P + k ) [m+pj

finally yields the asymptotic expansion

) with

We define a new séquence gn by

Before treating this subject, we deal with manipulating the expression for the
desired quantity ƒ„. In analogy to (4-3) we obtain after some straightforward

computations and mentioning the identity f )( W ( l l 1 an

\kAvJ \VJ\k-Vj
expression

= o
z

The remaining task is the computation of the alternating sum involving the
gn with Rice's method. It is clear that g(n) = O(q~n)9 and remembering (6-1)
and (6-2) we obtain a récurrence for the gn.

_g , , . ,
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The condition lim gn = 0 again inhibits the existence of more than one

solution, as can be shown with an indirect proof using itération. We treat
the corresponding functional équation

G(z) = a(z)G(z+l) + b(z)

with

l - Ô

by iterating it, and mentioning the assumption that G (z) vanishes if 91 (z) -> oo
in a certain région of the complex plane yields a solution

I-Ô"Z - J + 1

meromorphic in the complex plane with pôles at most at

z= 1 —y'+Xfc with 7^0 an<i Xjt= f° r a ^ integers £.
loge

For we are interested only in asymptotic terms pf higher order than O(l), it
is necessary to obtain the residues of

only in the strip 0<$R(z)< V, see (A-7). We start our treatment by investigat-
ing the function-values G(x) for integer 2 < ^ x ^ F - l . At these points we
obtain a simple pôle from ^„(z), and looking at (6-5) with mentioning the
fact that simple computations show In = O(n), we could argue that these
contributions yield to the cancellation of the higher-order terms.
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For m^Q, 1 we define

- i n

(6-6)

with the function F{u, v) defined in section 4. G (z) may be rewritten in terms
of these functions, which yields to

Q l * Ö1 "O+l)). (6-7)

With /(M, Z) = F(U9 Q~Z) we obtain for integer 2 ^ x ^ F - 1

and obviously

First, we evaluate an explicit expression for I(u, x), which leads after some
tedious algebraic manipulations to

and therefore

Ö(«) i -we M I

- z n
k = l j=x-k

For an integer ï^Owe easily obtain the Taylor-expansion at u= 1 of
— - — = E w£° («-!)"

- P W / 8 "èO
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with

PIQ )

for „ > ,

Moreover, for special values of t we find the property

(6-8)
1
1
0

for
for
for

H = 0
« = 1
n>2.

Now we are ready with collecting the expansions at u = 1 of all functions
concerned with our f-m){x\ remembering Lemma (A-2), too. Extracting the
K-th Taylor-coeffîcient yields after some straightforward but nasty computa-
tions the desired expressions

( ) ô n } - Î
^ i 1-pQ J

 k=

Putting all things together we obtain an expression for G(x) with 2^x^ V— 1
according to (6-7)

with

LEMMA (Partition-Identity): For all integers x ^ 1 we have

1

I-PIQ
independent of x. (6-9)

Proof: Mentioning the easy to find récurrence relation

\-pQ-" \-pQ-

for x^2 the proof by induction is trivial. •
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Thus we fïnally obtain

G(x)=Tv_1 for 2 ^ x ^ F - l .

The previous computations could be done in principle even in the case JC= 1,
but unfortunately this leads to an expression 0. oo and the only statement
which we could dérive is that it is of order 0(1), e.g., that G(l) exists. Thus
we have to take into account higher order terms of the functions involved in
G(z). We start this task by investigating the functions from (6-6) and using
the Taylor-expansion of F(u, v) from (4-9) to obtain the first few terms of

/m>(Z) = [ ( M - \)v]uz + m(F(u9 Qx~z)+1)

Mentioning the cancellation of the principal part of the whole function G(z)
for z —> 1 we need not be concerned with the constant term of the functions
/m)(z). This fact becomes clearer when we recall (6-7). The potential pole
comes from the function Q1~z/(1—Q1~z) and is cancelled by a zero of the
bracketed expression. Therefore, the constant term of G(z) only results from
the coefficient of (z — 1) in the bracketed expression, e.g., from the functions
actually investigated, times the residue of

Q Z l 1 l-x*) for z^l+Xk- (6-11)
\-Ql~z logg z - l - X *

Now we start with the first term in (6-10) and use (A-4.1) to obtain

u1+mlogu(F(u,
ux+m

Q(u)

Using the well known Taylor-expansion log(l +z)= £ (— l)n+1 zn/n and the

result from (A-2) we are able to dérive the Taylor-series at w=l of all
functions concerned. Af ter some computations we find the F-th Taylor-
coefficient

n=0 k=l
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Coliecting the terms for m = Q and m— 1 according to (6-7) yields after some
compilations and mentioning the property of w^—p/Qw^ from (6-8) and
the expansion (6-11) the contribution

The second term in (6-10) is treatable by using the expansion of F2(u, 1)
from (A-6) and the trivial one of u1+m at the point «= 1. The requested F"-th
Taylor-coefficient évaluâtes to

The upper limit of the sum could be replaced by 1 + m, because 1+ m ̂  F.
Coliecting this for m = 0 and m—l according to (6-7) yields after using (A-6)
for replacing sn by rn and applying the récurrence from (A-5) the following
contribution

with

The dérivation of the stated expression is straightforward, but a little tedious.
The residue logo °f (6-11) cancels with the factor in the second investigated
term of the Taylor-expansion of ^(z) in (6-10), so it disappears.

After treating the contributions of / m ) (z) we have to deal with the last
term in the large bracket of (6-7), which is simply evaluated by mentioning
the Taylor-expansion of F(l, Q1'2). The whole contribution is

0 -

Note again the cancellation of the residue log Q. The Appendix provides an
alternative expression for F2(\y 1), see (A-4-3).

Coliecting ail contributions yield after some algebraic manipulations the
desired value

=2 JI(B-I) îogg Veo)
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The remaining problem is the détermination of the residues of G (z) at the
points z=l+%k with k^O. Remembering (6-7) we see that the poles come
from (6-11), thus we need the values of all functions concerned at the points
z= 1 +%*• Remembering (A-4.1) and the définition of Tv there is no problem
when treating the last part of the bracketed expression in (6-7). Moreover,
for m = 0,1 we evaluate the remaining terms

Foliowing the dérivation of the previouse value (5(1), we compute the Taylor-
expansion of the functions concerned at the point w= 1 and extract the F-th
coefficient of the whole product. Using (A-4.1) we obtain

l-pu/Q Q(u)

Similar to (6-8) we fïnd the Taylor-expansion

1

with

= E j>im)(«-i)"

j J(l-PIQ)--J+1

and the property

as can be seen by a straightforward computation. Therefore, we can state

and collecting all contributions according to (6-7) we finally obtain the desired
residue
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Now we have computed ail values of G(z) in order to apply Rice's method
(A-7). The behaviour of G(z) along the rectangular contours defmed in
section 4 is proved to be O (zv) with similar reasoning, so no problems occur
on the application. Using (A-7) together with (6-5) and

Tv=^rrr(
Q(p)

yields after some cosmetic manipulations the statement of Theorem (3) in
section 3.

A. APPENDIX

This is the place to establish some Lemmas refered to in the sections
before. (A-l) and (A-2) are related with the products Qn(p) and Tn(p), the
following theorems (A-3) to (A-6) deal with properties of the function F(u, v\
ail defmed in section 4. Finally, theorem (A-7) is a simple version of the
formula of Rice, tuned to the application on our problems.

(A-l) LEMMA (Generating Function Sp{z))\ The ordinary gêneratingfunction
of the séquence l/Tn(p) is given by

s P U .
' 1-2 Q(2)

Proof : We state the following remarkable identity from the theory of
partitions, see [6] for a proof and further details. For | q \ < 1 and | z \ < 1 we
have

1 1 1 _ ^nn ^ l l 1 — nl

»^o A zq „^i ;=i l q

Recalling the définition of Tn(p) from section 4, the substitution a=p/Q and
q= l/Q yields to
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Remembering the définition Q(z)~ f\ (\~zQ~n) yields the desired

result. •
(A-2) LEMMA (Taylor-Expansion Q (pz)/Q (z)): Thefunction

£(z) IA I-ZQ-J

is analytic near the point z = 0 with radius of convergency Q. Moreover, the
Taylor-expansion at the point z = 1 is

and

i " " x

where

abbreviation oi(p) = <x(p, 1).
"/'G )

Proof : The maintained analyticity is clear by mentioning the fact, that the
fïrst pole lies at the point z = Q. Computation of q0 is straightforward, the
récurrence for the qn with n ̂  1 comes from using the so-called logarithmic
dérivation @\ogf(z) = @f(z)/f(z) for Computing the derivative, e. g.,

Q'k

Q(z) Q(z) ktA^zQ~k \-pzQ-

= -^TT-(a(z» l)-/^a(/?z, 1)).
G 00

For « > 1 we have

«! g(z) n\ Q(z)
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and using the Leibnitz-formula for dérivations of higher order together with

@kai(pz, l) = k\pka(pz,k+l)

leads to the desired resuit. •

(A-3) THEOREM (Functional Equation F(u, v)): The function

ksi J=I

solves the functional équation

Proof : Multiplying F(u/Q, v) with v and subtracting it from F{u, v) yields
after some algebraic manipulations*

F(u9 v)-vF(u/Q, v) = u/Q(F(u, v)+l-pv/Q(F(u/Q9 v)+l)).

Iterating this functional équation with mentioning the fact

lim F(u, v)^0
« (M) -> + 00

within a certain région of the complex plane yields

F(u, v) = (1 -pvlQ) - i ^ - + v 1 "PU Q 2 F(u/Q, v)
l-u/Q l-u/Q

l-u/Q

After shifting the range of summafion of k^. 1 and some algebraic manipul-
ations we obtain the desired resuit. •

(A-4) THEOREM (Values F(u, v)): The function F(u, v) has the following
special values.

fi^L(1))
Q(u) l-pu/Q
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F, («, 1) = @uF(u, 1) = (F(u, 1)+1)(OL(U)-POL(pu) + _ ^ L - ) (2)

V \-pulQJ

F2(\, l) = «B^,, JF(l, t ,)=
l

F, 2 (M, I>) = 2V 2U F(u, v) = (oc (v)-p* (pv)) F, (u, v) - p («, ») (4)

with

ïe abbreviation p (p) = pi (jt?) = p (1, 1).
Proof : (1) This foliows directly from the application of the identity stated

in the proof of (A-l) with z = u/Q, a=p/Q and q= l/g. •

(2) We apply the logarithmic dérivation on (1) and mention the définition
of the OL(P) from (A-2), which yields to the desired result. •

(3) Differentiating (A-3) with respect to u leads to

Fiiv, u)= t > ( 1 / w / Q ) F 1 ( H , v)- 1—F(p, u).
u(\-pvlQ) u(l-pu/Q)

Substituting u = v=l and using the result from (2) complètes the proof. •

(4) The function F(u, v) is represented by a uniform convergent series, so
we may exchange the order of differentiation and summation, which yields
to

= 1 II

Differentiating with respect to v is done in the same manner as in the proof
of (A-2), with an(p) = an(p, 1) and

«-(/>,/)=! 7 Q
-kl
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We should note that oc(/?5 1) = VLOD(P, /), of course. Let t be an arbitrary
parameter, we use Abels transformation, e. g.,

n n n-l k

Z akbk = an Z bk- Z (ûfc+i-ûfc) Z è i
k=c k=c k=c j=c

for investigating the following expression.

j=\ 1-vQ J

E n l-^a-y.

Using this in the former équation and mentioning the abbreviation P (w, v)
yields to the desired resuit. •

(A-5) LEMMA (Taylor Expansion F(u, 1)): The expansion of the function
F(u, 1) at the point u=\ is

and
k = 0 \l~Piu)

with qn from (A-2) and hn k denoting the Kronecker-symboL Moreover, the
coefficients solve the following récurrence relation

for «>
I-PIQ \-PIQ - I-PIQ

r - q° - 1
r n i.

l-p/Q

Proof : The Taylor-expansion easily follows from extracting the coefficients
of the Cauchy-product from (A-4.1)

The récurrence relation cornes from a trivial direct manipulation of the
explicit expression, so the proof is completed. •
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(A-6) LEMMA (Taylor Expansion F2(u, 1)): The expansion of the function
F2 (w, 1) at the point u= 1 is

and

sn = rn(a(\)-pa (p)) - p„ (p) + 5„, 0 (a (1) -p oc (/>))

with rn from (A-5), b„ k denoting the Kronecker-symbol and

Proof : Remembering the fact that 0̂ = ^ ( 1 , 1) is known from (A-4.3) the
case n = 0 is trivial to show. For « ^ I w e have

sn= - W - 1 Fl2(u, 1).
n\

Using (A-4.4) and

we achieve the desired result mentioning the Taylor-expansion of F(w, 1)
from (A-5). •

(A-7) THEOREM (Rice's Method): The asymptotic expansion of the alternat-
ing sum

is given by

A„=- £ Res
p<p<b

on the premises
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(1) F{z) is a meromorphîc function with at most simple pôles at z=p + %k

with integer s p<b and %k = 2 k n //log Q for all integer s k, except pointz z=p
with 0SP<b, where no pôles are allowed, Moreover, F(z) Has to fulfill the
condition F{k) =fk for ail b^k^n.

(2) There exists a séquence of ctosed, rectangular contours yl with the left
margin fixed on 9î(z):=p) enclosing the whole halfplane 9?(z)^p as /-»oo,
and the property thatfor all z lying on such a contour F(z) = O(za) with an
arbitrary but fixed constant a^O.

(3) The function 0>n(z) is expressible in terms of the Gamma-function in the
following manner.

$ (Z)= (-1)""' = _ r(n+i)r(-z)

The contributions to the sum of residues are

(1) For the integer s 0^p<b we obtain

Res (4>, (z) F(z)) = ( - ! ) " ( " ) F(p).

(2) For ail integers p<0 we have

Res (G. (z) f(z))= 1 ResF(z).
z=P z = p

\p\

(3) The remaining points with nonzero imaginary part yield

Y. Res ($„

P(u)= X Res F(z)T{-p-xk)e
2k™

supposing the convergence of the infinité sum, of course.

Proof {Sketch): Rice's method bases, itself as already mentioned, on an
old identity from the calculus of finite différences, see [7] for example. Let
F(z) be a meromorphic function with finite F(k)=fk for O^b^k^n, and y
a positive oriented contour enclosing the points b, b+ 1, . . . ,n but no other
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pôles of the integrand below, we have

Jy z ( z - l ) . . . (z-n)

Extending the skinny contour y to our rectangular ones, we obtain

On(z)F(z)dz = Q}n(z)F(z)dz + Yj Residues of newly encountered poles.
Jyi Jy

The computation of the first intégral shows that it contributes O(np) for
/-•oo. This follows from the following facts. First, the properties of the
Gamma-function ensures that the intégration along the horizontal part of y,
is of order O(ld) with a constant c<0. Second, with the same argument one
can prove, that the contribution of the intégration along the right vertical
part of the contour is of order O(ld) with a constant d<Q. In the limiting
case, all these terms vanish. The main term comes from the left vertical part,
which lies on SR(z) = p. Using the so-called limes relation of the Gamm-
function and other estimations of the function On (z) yields the stated contri-
bution after some tricky valuations.

Evaluating the contributions (1) and (2) to the sum of residues is straight-
forward, the expression for (3) is obtained by using the limes relation of the
Gamma-function again. We should mention that the latter mainly comes
from poles with small imaginary part, say | %k|<rf with some fixed e>0.

Actually, the complete computation is too long for this paper and not very
interesting for practical applications. Most of the "usual" appearing functions
simply allow to deal with the sum of residues only, neglecting all estimations
above. A simple pôle, say Ç with ^R(Q = r yields a contribution 0{nr) to the
asymptotic expansion of the desired quantity. If the order of the pole is
greater than 1, logarithmic terms occur in the expansion, but we will not
treat this case here.
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